Contributions of a Global Network of Tree Diversity Experiments To

Total Page:16

File Type:pdf, Size:1020Kb

Contributions of a Global Network of Tree Diversity Experiments To Contributions of a global network of tree diversity experiments to sustainable forest plantations Kris Verheyen, Margot Vanhellemont, Harald Auge, Lander Baeten, Christopher Baraloto, Nadia Barsoum, Simon Bilodeau-Gauthier, Helge Bruelheide, Bastien Castagneyrol, Douglas Godbold, et al. To cite this version: Kris Verheyen, Margot Vanhellemont, Harald Auge, Lander Baeten, Christopher Baraloto, et al.. Con- tributions of a global network of tree diversity experiments to sustainable forest plantations. AMBIO: A Journal of the Human Environment, Springer Verlag, 2015, online first (1), 10.1007/s13280-015- 0685-1. hal-01204232 HAL Id: hal-01204232 https://hal.archives-ouvertes.fr/hal-01204232 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ambio 2016, 45:29–41 DOI 10.1007/s13280-015-0685-1 PERSPECTIVE Contributions of a global network of tree diversity experiments to sustainable forest plantations Kris Verheyen, Margot Vanhellemont, Harald Auge, Lander Baeten, Christopher Baraloto, Nadia Barsoum, Simon Bilodeau-Gauthier, Helge Bruelheide, Bastien Castagneyrol, Douglas Godbold, Josephine Haase, Andy Hector, Herve´ Jactel, Julia Koricheva, Michel Loreau, Simone Mereu, Christian Messier, Bart Muys, Philippe Nolet, Alain Paquette, John Parker, Mike Perring, Quentin Ponette, Catherine Potvin, Peter Reich, Andy Smith, Martin Weih, Michael Scherer-Lorenzen Received: 31 January 2015 / Revised: 16 June 2015 / Accepted: 27 June 2015 / Published online: 12 August 2015 Abstract The area of forest plantations is increasing part of REDD?. Forest plantations already provide up to worldwide helping to meet timber demand and protect 33 % of the total industrial roundwood volume harvested natural forests. However, with global change, monospecific annually in the world, and are projected to make up as plantations are increasingly vulnerable to abiotic and biotic much as 50 % of the global industrial roundwood produc- disturbances. As an adaption measure we need to move to tion by 2040 (Kanninen 2010). Beyond wood production, plantations that are more diverse in genotypes, species, and plantations also provide a range of other ecosystem ser- structure, with a design underpinned by science. TreeDivNet, vices, including carbon sequestration and water retention a global network of tree diversity experiments, responds to this (Pawson et al. 2013). Moreover, when incorporated into need by assessing the advantages and disadvantages of mixed integrated landscape management, plantations can play a species plantations. The network currently consists of 18 large role in achieving biodiversity conservation objectives experiments, distributed over 36 sites and five ecoregions. by offsetting the need to extract resources from natural With plantations 1–15 years old, TreeDivNet can already forests (Paquette and Messier 2010). provide relevant data for forest policy and management. In Currently, plantation forests are almost exclusively this paper, we highlight some early results on the carbon planted as monocultures (Nichols et al. 2006, Box 1). Yet, sequestration and pest resistance potential of more diverse several reviews published recently provide evidence, from plantations. Finally, suggestions are made for new, innovative both natural forests and plantations that biomass produc- experiments in understudied regions to complement the tion and the delivery of other ecosystem services can existing network. improve with tree diversity (Nadrowski et al. 2010; Scherer-Lorenzen 2014). Furthermore, global change may Keywords Biodiversity experiments Á increase disturbance frequencies and intensities in both Functional biodiversity research Á Plantation forest Á natural forest (Woods et al. 2005) and plantations (Pawson Sustainable forest management Á Ecological restoration et al. 2013), significantly affecting wood supply chains with severe economic consequences (Hanewinkel et al. 2012). Forest plantations that are diverse in genotypes, A GLOBAL CALL FOR SUSTAINABLE FOREST species, structure, and function, should be better able to PLANTATIONS adapt to changing environmental conditions than mono- cultures (van Hensbergen 2006; Bauhus et al. 2010). This Although the global forest area declined by ca. 13 million calls for the development of novel, more diversified forest ha per year between 2000 and 2010, the forest plantation plantations that can improve plantations’ stability, pro- area actually increased annually by ca. 5 million ha in the ductivity, and delivery of ecosystem services. Since plan- same time period, representing ca. 7 %, i.e., 264 million ha, tations are often established near human settlements, they of the global forest area in 2010 (FAO 2010). Afforestation are the primary window through which society looks at rates may increase further due to incentives for carbon forest management. Changing the way we manage plan- sequestration and the global pledge to protect the remain- tations and setting objectives for them can therefore have ing natural forests of the world against degradation, e.g., as profound and rapid impacts on the social acceptance of Ó Royal Swedish Academy of Sciences 2015 www.kva.se/en 123 30 Ambio 2016, 45:29–41 forestry (Paquette and Messier 2013). It has been noted, long-term silvicultural trials were established to identify however, that foresters currently resist establishing mixed the most productive species and provenances to plant in plantations, in large parts because of the perception that novel forests. The trials were definitely a success for the mixing genotypes and species reduces yield and compli- development of production-oriented management; large- cates forest management operations (Carnol et al. 2014). scale forest plantations were established with fast-growing TreeDivNet, a new global network of tree diversity tree species. The trials were often designed as common experiments, responds to the need for a solid, science- garden experiments comparing the growth and perfor- based framework for documenting and understanding the mance of different species and provenances at one site, i.e., benefits and drawbacks of mixed plantations. In this paper, under similar environmental conditions. Despite the lively we explain the need for new afforestation trials and present debate about the advantages and disadvantages of pure the TreeDivNet network of experimental plantations. We versus mixed forests (even in that early era), most of the show some early results from the network and formulate trials consisted of monocultures or, less frequently, two- suggestions for additional experimental plantations that species mixtures (Scherer-Lorenzen 2014). Presently, may cover existing research gaps. 300 years after von Carlowitz´s proposition of sustainability and given recent advances in biodiversity science (e.g., Cardinale et al. 2012), we need to know which mixtures BOX 1 provide higher levels of biomass production and of other ecosystem services and how environmental conditions Multi-species tree plantations are still relatively rare affect the relationship between tree diversity and forest worldwide, but is this topic important within the functioning, both in space and time. forest research communities and is there an increas- To address these issues, several scientific approaches are ing interest in the last 10 years? We investigated available. Given the long lifespan and size of trees, simu- these questions using the software WORDSTAT 6.0 lation models that predict ecosystem service output along a (Pe´ladeau 2003) by comparing the percentage of range of tree diversities and environmental conditions are abstracts containing the word ‘‘plantation’’ that also an obvious approach. However, such models need param- contained the words ‘‘species mixture, mixed system, eterization, which is an enormous challenge given how mixed plantation, mixed-species plantation or multi- poorly we understand biotic interactions among species. species plantation’’ between the proceedings of the Parameters can be estimated based on experiments or IUFRO World Congresses1 of 2005 and 2014. In the observational studies, but both the types and ranges of tree proceedings of 2014, we found 2426 abstracts of diversities we seek to study are not always present. Still, which 267 used the term ‘‘plantation’’. Of these 267 highly interesting and relevant work has been accom- abstracts, 20 (or 7.5 %) also used at least one of the plished with simulation tools (e.g., Morin et al. 2011). terms referring to mixed plantation mentioned above. Observational studies are invaluable for providing real- In the proceedings of 2005, we found 1454 abstracts world reference data (Baeten et al. 2013), but also have of which 238 used the term ‘‘plantation’’. Of these many drawbacks because tree species composition strongly 238 abstracts, only 1 (or 0.4 %) used at least one of depends on environmental factors or management. Exper- the terms referring to mixed plantation. This clearly iments avoid these issues, but there are still relatively few shows that the interest
Recommended publications
  • Simulation Tools for Decision Support to Adaptive Forest Management in Europe
    https://helda.helsinki.fi Simulation tools for decision support to adaptive forest management in Europe Muys, B. 2010 Muys , B , Hynynen , J , Palahi , M , Lexer , M J , Fabrika , M , Pretzsch , H , Gillet , F , Briceno-Elizondo , E , Nabuurs , G J & Kint , V 2010 , ' Simulation tools for decision support to adaptive forest management in Europe ' Forest Systems , vol 19 , pp. 86-99 . http://hdl.handle.net/10138/161938 Downloaded from Helda, University of Helsinki institutional repository. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Please cite the original version. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Forest Systems 2010 19(SI), 86-99 Available online at www.inia.es/forestsystems ISSN: 1131-7965 eISSN: 2171-9845 Simulation tools for decision support to adaptive forest management in Europe B. Muys1*, J. Hynynen2, M. Palahí3, M. J. Lexer4, M. Fabrika5, H. Pretzsch6, F. Gillet7, E. Briceño8, G. J. Nabuurs9 and V. Kint1 1 Division Forest. Nature and Landscape. Katholieke Universiteit Leuven. Celestijnenlaan, 200E. P.O. Box 2411. BE-3001 Leuven. Belgium 2 Finnish Forest Research Institute (METLA) PL 18. FI-01301 Vantaa. Finland 3 European Forest Institute. Mediterranean Regional Office (EFIMED). Castella 33. 08018 Barcelona. Spain 4 Institute of Siviculture. University of Natural Resources and Applied Life Sciences Vienna (BOKU). Peter Jordanstrasse, 82. AT-1190 Vienna. Austria 5 Faculty of Forestry. Technical University Zvolen. TG Masaryka, 24. SK-96053 Zvolen. Slovakia 6 Chair for Forest Growth and Yield Science. Faculty of Forest Science and Resource Management. Technische Universität München.
    [Show full text]
  • Leading the Way to a European Circular Bioeconomy Strategy
    FROM SCIENCE TO POLICY 5 Leading the way to a European circular bioeconomy strategy Lauri Hetemäki, Marc Hanewinkel, Bart Muys, Markku Ollikainen, Marc Palahí and Antoni Trasobares Foreword Esko Aho, Cristina Narbona Ruiz, Göran Persson and Janez Potočnik From Science to Policy 5 Authors Marc Hanewinkel is Professor of Forest Economics and Forest Management in the Faculty of Environment and Natural Resources, University of Freiburg. Lauri Hetemäki is Assistant Director of the European Forest Institute and Adjunct Professor in the Department of Forest Science, University of Helsinki. Bart Muys is Professor of Forest Ecology and Management, in the Department of Earth and Environmental Sciences, University of Leuven. Markku Ollikainen is Professor of Environmental and Resource Economics in the Department of Economics and Management, University of Helsinki and Chair of the Finnish Climate Panel. Marc Palahí is Director of the European Forest Institute. Antoni Trasobares is Director of Centre Tecnològic Forestal de Catalunya (CTFC). Advisors Esko Aho is Strategic Advisor for the European Forest Institute and former Prime Minister of Finland (1991–1995). Cristina Narbona Ruiz is Counselor, Nuclear Safety Council, and President of the Spanish Socialist Worker’s Party (PSOE) and former Minister of Environment, Spain (2004–2008). Göran Persson is the President of the European Forest Institute’s ThinkForest Forum, and former Prime Minister of Sweden (1996–2006). Janez Potocnik is the Co-Chair of International Resource Panel, United Nations Environment Programme and former European Commissioner (2004–2014) and former Minister for European Affairs, Slovenia (2002–2004). ISSN 2343-1229 (print) ISSN 2343-1237 (online) ISBN 978-952-5980-39-4 (print) ISBN 978-952-5980-40-0 (online) Editor in chief: Pekka Leskinen Managing editor: Rach Colling Layout: Grano Oy / Jouni Halonen Printing: Grano Oy Disclaimer: The views expressed in this publication are those of the authors and do not necessarily represent those of the European Forest Institute.
    [Show full text]
  • Trees, Forests and Water: Cool Insights for a Hot World
    Global Environmental Change 43 (2017) 51–61 Contents lists available at ScienceDirect Global Environmental Change journa l homepage: www.elsevier.com/locate/gloenvcha Research paper Trees, forests and water: Cool insights for a hot world a,b, c,d e,f g h David Ellison *, Cindy E. Morris , Bruno Locatelli , Douglas Sheil , Jane Cohen , i,j k l,m n Daniel Murdiyarso , Victoria Gutierrez , Meine van Noordwijk , Irena F. Creed , o i p a Jan Pokorny , David Gaveau , Dominick V. Spracklen , Aida Bargués Tobella , a q r,s Ulrik Ilstedt , Adriaan J. Teuling , Solomon Gebreyohannis Gebrehiwot , d t t u v David C. Sands , Bart Muys , Bruno Verbist , Elaine Springgay , Yulia Sugandi , w Caroline A. Sullivan a Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden b Ellison Consulting, Denver, CO, USA c INRA, UR0407 Plant Pathology, Montfavet, France d Department Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA e Agricultural Research for Development (CIRAD), Paris, France f Center for International Forestry Research (CIFOR), Lima, Peru g Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway h Texas Law, University of Texas, Austin, TX, USA i Center for International Forestry Research (CIFOR), Bogor, Indonesia j Department of Geophysics and Meteorology, Bogor Agricultural University, Bogor, Indonesia k WeForest, London, UK l World Agroforestry Centre (ICRAF), Bogor, Indonesia m Plant Production Systems, Wageningen
    [Show full text]
  • Tree Species Identity Shapes Earthworm Communities
    Article Tree Species Identity Shapes Earthworm Communities Stephanie Schelfhout 1,2,*, Jan Mertens 1, Kris Verheyen 2, Lars Vesterdal 3, Lander Baeten 2, Bart Muys 4 and An De Schrijver 2,5 1 Department of Applied Biosciences, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium; [email protected] 2 Forest & Nature Lab, Department of Forest and Water Management, Faculty of Bioscience Engineering, Geraardsbergsesteenweg 267, 9090 Gontrode, Belgium; [email protected] (K.V.); [email protected] (L.B.); [email protected] (A.D.S.) 3 Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark; [email protected] 4 Division of Forest, Nature and Landscape, Department of Earth & Environmental Sciences, KU Leuven, Celestijnenlaan 200 E, Box 2411, 3001 Leuven, Belgium; [email protected] 5 Faculty of Science and Technology, University College Ghent, Brusselsesteenweg 161, 9090 Melle, Belgium * Correspondence: [email protected]; Tel.: +32-9264-90-46 Academic Editor: Laurent Augusto Received: 25 January 2017; Accepted: 13 March 2017; Published: 17 March 2017 Abstract: Earthworms are key organisms in forest ecosystems because they incorporate organic material into the soil and affect the activity of other soil organisms. Here, we investigated how tree species affect earthworm communities via litter and soil characteristics. In a 36-year old common garden experiment, replicated six times over Denmark, six tree species were planted in blocks: sycamore maple (Acer pseudoplatanus), beech (Fagus sylvatica), ash (Fraxinus excelsior), Norway spruce (Picea abies), pedunculate oak (Quercus robur) and lime (Tilia cordata). We studied the chemical characteristics of soil and foliar litter, and determined the forest floor turnover rate and the density and biomass of the earthworm species occurring in the stands.
    [Show full text]
  • Silviculture and Forest Management of Deciduous Broadleaved Forests 08:30 - 10:30 Wednesday, 2Nd October, 2019 Venue R08 - WING 2 Congress Theme C
    C1f: Silviculture and forest management of deciduous broadleaved forests 08:30 - 10:30 Wednesday, 2nd October, 2019 Venue R08 - WING 2 Congress Theme C. Forests and Forest Products for a Greener Future Presentation Types Oral Chair Magnus Prof Temperate broadleaved forests are common throughout Eurasia, Americas and elsewhere where they are of outstanding importance for biodiversity and they provide many ecosystem services. For example, some oaks can harbor nearly 500 species of flora and fauna and in many countries these tree species are managed for high quality timber, firewood, wine barrels, truffles, building materials, mushrooms, cork, fodder production etc. There are many tree species included in this group of which some are relatively unknown from ecological and management perspectives. Temperate broadleaved forests are many times located near urban areas connected to agricultural fields and water. They are therefore among our most preferred forest habitats for recreation purposes and are connected to esthetical and cultural/historical values. Sustainable management of these forests is a global issue and is connected to many environmental and developmental strategies, and large amounts of governmental funding is involved for protection and management with conservation purposes. The main objective of this session is to review different management options applied for sustainable management in these types of forests. The session is organized through a cooperation between IUFRO unit 1.01.06 (Ecology and Silviculture of Oak) and Ignacio Diaz-Maroto. Our intention with this session is to promote a discussion on temperate broadleaved forests between researchers, decision-making authorities and other stakeholders. 08:30 - 08:45 C1f MANAGING REGENERATION POTENTIAL TO SUSTAIN OAK FORESTS IN NORTH AMERICA Daniel Dey US Forest Service, Columbia, USA Abstract Today in North America, there is a well-accepted recognition of oak regeneration failure and the widespread loss of oak forests.
    [Show full text]
  • Forest Bioenergy for Europe
    What Science Can Tell Us Tell What Science Can What Science Can Tell Us | No 4 | We live in an intricate and changing environment with Bioenergy for Europe Forest interrelated feedback between ecosystems, society, economy and the environment. EFI’s ‘What Science Can Tell Us’ series is based on collective scientific ex- pert reviews providing interdisciplinary background information on key and complex forest-related issues for policy and decision makers, citizens and society in general. What Science Forest Bioenergy Can Tell Us for Europe Paavo Pelkonen, Mika Mustonen, Antti Asikainen, Gustaf Egnell, Promode Kant, Sylvain Leduc and Davide Pettenella (editors) The European Forest Institute (EFI) is an international organisation established by European States. EFI conducts research and provides policy advice on forest related issues. It facilitates and stimulates forest related networking as well as promotes the supply of unbiased and policy relevant information on forests and What Science Can Tell Us 4 Yliopistokatu 6, FI-80100 Joensuu, Finland forestry. It also advocates for forest research and for scientifically sound infor- 2014 Tel. +358 10 773 4300, Fax. +358 10 773 4377 mation as a basis for policy-making on forests. www.efi.int What Science Can Tell Us Lauri Hetemäki, Editor-In-Chief Marcus Lindner, Associate Editor Robert Mavsar, Associate Editor Minna Korhonen, Managing Editor The editorial office can be contacted at [email protected] Layout: Grano Oy / Jouni Halonen Printing: Painotalo Seiska Oy Disclaimer: The views expressed in this publication are those of the authors and do not necessarily represent those of the European Forest Institute. ISBN: 978-952-5980-10-3 (printed) ISBN: 978-952-5980-11-0 (pdf) Forest Bioenergy What Science Can Tell Us for Europe Paavo Pelkonen, Mika Mustonen, Antti Asikainen, Gustaf Egnell, Promode Kant, Sylvain Leduc and Davide Pettenella (editors) Contents Authors ..............................................................................................................................
    [Show full text]
  • Water-Related Ecosystem Services of Forests: Learning from Regional Cases
    PART II – Chapter 27 Water-related ecosystem services of forests: Learning from regional cases Convening lead author: Bart Muys Lead authors: Jan Nyssen, Ben du Toit, and Enrico Vidale Contributing authors: Irina Prokofieva, Robert Mavsar, and Marc Palahi Abstract: Forests are widely recognised as recommended land cover for protection of water resources. It is commonly understood that forests control erosion, improve water quality and regulate water flows in catchments to some extent. Less-well understood are aspects of the so-called green water flow: biomass production in forests has a price locally in terms of evaporative water losses though it can provide rainfall elsewhere. In this chapter, we discuss the complex and sometimes contra-intuitive issues that emerge when trying to optimise forest management for water-related ecosystem services. We analyse three cases in very different geographical and socio-economic settings where the water-related ecosystem services of the forest have been a driver for forest man- agement transition. In the first example from Ethiopia, forests are restored for soil and water conservation purposes related to green water, while in the second case in South Africa, plantation forests are removed with the intention of ecological restoration and increase in blue water availability. In the last case from Italy, we discover that schemes for payment for ecosystem services (PES) make a change with respect to water-related ecosystem services. The case studies show that such transitions can follow very different pathways, determined by the biophysical, socio-economic, and institutional contexts. But despite these differences, the case studies show patterns in common.
    [Show full text]
  • Above‐ and Below‐Ground Complementarity Rather Than
    Received: 15 October 2020 | Accepted: 18 April 2021 DOI: 10.1111/1365-2435.13825 RESEARCH ARTICLE Above- and below- ground complementarity rather than selection drive tree diversity– productivity relationships in European forests Xin Jing1 | Bart Muys1 | Helge Bruelheide2,3 | Ellen Desie1 | Stephan Hättenschwiler4 | Hervé Jactel5 | Bogdan Jaroszewicz6 | Paul Kardol7 | Sophia Ratcliffe8 | Michael Scherer- Lorenzen9 | Federico Selvi10 | Karen Vancampenhout1 | Fons van der Plas11,12 | Kris Verheyen13 | Lars Vesterdal14 | Juan Zuo1,15 | Koenraad Van Meerbeek1 1Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium; 2Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle- Wittenberg, Halle (Saale), Germany; 3German Centre for Integrative Biodiversity Research (iDiv) Halle- Jena- Leipzig, Leipzig, Germany; 4CEFE, University of Montpellier, CNRS, EPHE, IRD, University of Paul- Valéry Montpellier, Montpellier, France; 5INRAE, University of Bordeaux, BIOGECO, Cestas, France; 6Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland; 7Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden; 8NBN Trust, Nottingham, UK; 9Geobotany, Faculty of Biology, University of Freiburg, Freiburg, Germany; 10Department of Agriculture, Food, Environment and Forestry, University of Firenze, Firenze, Italy; 11Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Germany; 12Plant Ecology and Nature Conservation
    [Show full text]
  • Plantation Forests in Europe: Challenges and Opportunities
    FROM SCIENCE TO POLICY 9 Plantation forests in Europe: challenges and opportunities Peter Freer-Smith, Bart Muys, Michele Bozzano, Lars Drössler, Niall Farrelly, Hervé Jactel, Jaana Korhonen, Gianfranco Minotta, Maria Nijnik, Christophe Orazio From Science to Policy 9 Authors Peter Freer-Smith, University of California Davis, USA & Forest Research, UK Bart Muys, KU Leuven, Belgium Michele Bozzano, European Forest Institute Lars Drössler, Ilia State University, Georgia Niall Farrelly, Teagasc, Ireland Hervé Jactel, INRA, France Jaana Korhonen, University of Helsinki, Finland Gianfranco Minotta, University of Turin, Italy Maria Nijnik, James Hutton Institute, UK Christophe Orazio, European Forest Institute Acknowledgements The report benefited from the helpful comments from external reviewers, Arttu Malkamäki from the University of Helsinki and Margarida Tomé from the University of Lisbon. We wish to express our thanks for their in- sights and comments that helped to improve the report, and acknowledge that they are in no way responsible for any remaining errors. This work and publication has been financed by EFI’s Multi-Donor Trust Fund for Policy Support Facility, which is supported by the Governments of Austria, Czech Republic, Finland, Germany, Ireland, Italy, Lithuania, Norway, Spain and Sweden. ISSN 2343-1229 (print) ISSN 2343-1237 (online) ISBN 978-952-5980-79-0 (print) ISBN 978-952-5980-80-6 (online) Editor in chief: Lauri Hetemäki Managing editor: Rach Colling Layout: Grano Oy Printing: Grano Oy Disclaimer: The views expressed in this publication are those of the authors and do not necessarily represent those of the European Forest Institute, or of the funders. Recommended citation: Freer-Smith, P., Muys, B., Bozzano, M., Drössler, L., Farrelly, N., Jactel, H., Korhonen, J., Minotta, G., Nijnik, M.
    [Show full text]
  • A Forest-Based Circular Bioeconomy for Southern Europe: Visions, Opportunities and Challenges Reflections on the Bioeconomy
    synthesis report A forest-based circular bioeconomy for southern Europe: visions, opportunities and challenges Reflections on the bioeconomy Inazio Martinez de Arano (coord.) Bart Muys, Corrado Topi, Davide Pettenella, Diana Feliciano, Eric Rigolot, Francois Lefevre, Irina Prokofieva, Jalel Labidi, Jean Michel Carnus, Laura Secco, Massimo Fragiacomo, Maurizio Follesa, Mauro Masiero and Rodrigo Llano-Ponte. synthesis report A forest-based circular bioeconomy for southern Europe: visions, opportunities and challenges Authors (in alphabetical order after the coordinator) Inazio Martinez de Arano, European Forest Institute Bart Muys, Catholic University of Leuven Corrado Topi, Stockholm Environment Institute, University of York Davide Pettenella, University of Padova Diana Feliciano, University of Aberdeen Eric Rigolot, French National Institute for Agricultural Research Francois Lefevre, French National Institute for Agricultural Research Irina Prokofieva, Forest Sciences Centre of Catalonia Jalel Labidi, University of the Basque Country Jean Michel Carnus, French National Institute for Agricultural Research Laura Secco, University of Padova Massimo Fragiacomo, University of L’Aquila Maurizio Follesa, Dedalegno Mauro Masiero, University of Padova Rodrigo Llano-Ponte, University of the Basque Country Reflections on the bioeconomy March 2018 Disclaimer: The views expressed in this publication are those of the authors and do not necessarily represent those of the European Forest Institute. Contents Foreword .........................................................................................................................................
    [Show full text]