Diseases Reportable to the Minnesota Department of Health 651-201-5414 Or 1-877-676-5414 24 Hours a Day, 7 Days a Week

Total Page:16

File Type:pdf, Size:1020Kb

Diseases Reportable to the Minnesota Department of Health 651-201-5414 Or 1-877-676-5414 24 Hours a Day, 7 Days a Week Reportable Diseases, MN Rules 4605.7000 to 4605.7900 Diseases Reportable to the Minnesota Department of Health 651-201-5414 or 1-877-676-5414 24 hours a day, 7 days a week REPORT IMMEDIATELY BY TELEPHONE Anthrax (Bacillus anthracis) M Middle East Respiratory Syndrome (MERS) M Botulism (Clostridium botulinum) Orthopox virus M Brucellosis (Brucella spp.) M Plague (Yersinia pestis) M Cholera (Vibrio cholerae) M Poliomyelitis M Diphtheria (Corynebacterium diphtheriae) M Q fever (Coxiella burnetii) M Free-living amebic infection M Rabies (animal and human cases and suspected cases) (including at least: Acanthamoeba spp., Naegleria fowleri, Balamuthia spp., Rubella and congenital rubella syndrome M Sappinia spp.) Severe Acute Respiratory Syndrome (SARS) M R Glanders (Burkholderia mallei) M Smallpox (variola) M Hemolytic uremic syndrome M Tularemia (Francisella tularensis) M Measles (rubeola) M Unusual or increased case incidence of any suspect infectious illness M Melioidosis (Burkholderia pseudomallei) M Viral hemorrhagic fever M Meningococcal disease (Neisseria meningitidis) (invasive) M S (including but not limited to Ebola virus disease and Lassa fever) REPORT WITHIN ONE WORKING DAY Amebiasis (Entamoeba histolytica/dispar) Listeriosis (Listeria monocytogenes) M Anaplasmosis (Anaplasma phagocytophilum) Lyme disease (Borrelia burgdorferi, and other Borrelia spp.) Arboviral disease Malaria (Plasmodium spp.) (including, but not limited to, La Crosse encephalitis, eastern equine Meningitis (caused by viral agents) encephalitis, western equine encephalitis, St. Louis encephalitis, West Nile Mumps M virus disease, Powassan virus disease, and Jamestown Canyon virus disease) Neonatal sepsis M S Babesiosis (Babesia spp.) (bacteria isolated from a sterile site, excluding coagulase-negative Blastomycosis (Blastomyces dermatitidis) Staphylococcus) less than seven days after birth Campylobacteriosis (Campylobacter spp.) M Pertussis (Bordetella pertussis) M Candida auris M Psittacosis (Chlamydophila psittaci) Carbapenem-resistant Enterobacteriaceae (CRE) M Retrovirus infections Cat scratch disease (infection caused by Bartonella species) Salmonellosis, including typhoid (Salmonella spp.) M Chancroid (Haemophilus ducreyi) Shigellosis (Shigella spp.) M Chikungunya virus disease Spotted fever rickettsiosis Chlamydia trachomatis infections (Rickettsia spp. infections, including Rocky Mountain spotted fever) Coccidioidomycosis Staphylococcus aureus M Cronobacter sakazakii in infants under one year of age M (only vancomycin-intermediate Staphylococcus aureus [VISA], vancomycin- Cryptosporidiosis (Cryptosporidium spp.) M resistant Staphylococcus aureus [VRSA], and death or critical illness due to community-associated Staphylococcus aureus in a previously healthy individual) Cyclosporiasis (Cyclospora spp.) M Streptococcal disease - invasive disease caused by Groups A and B streptococci Dengue virus infection and S. pneumoniae M S Diphyllobothrium latum infection Streptococcal disease - non-invasive S. pneumoniae Ehrlichiosis (Ehrlichia spp.) (urine antigen laboratory-confirmed pneumonia) Encephalitis (caused by viral agents) Syphilis (Treponema pallidum) B Enteric Escherichia coli infection M Tetanus (Clostridium tetani) (E. coli O157:H7, other Shiga toxin-producing E. coli, enterohemorrhagic Toxic shock syndrome M E. coli, enteropathogenic E. coli, enteroinvasive E. coli, enteroaggregative E. coli, enterotoxigenic E. coli, or other pathogenic E. coli) Toxoplasmosis (Toxoplasma gondii) Giardiasis (Giardia intestinalis) Transmissible spongiform encephalopathy Gonorrhea (Neisseria gonorrhoeae infections) Trichinosis (Trichinella spiralis) Haemophilus influenzae disease (all invasive disease) M S Tuberculosis (Mycobacterium tuberculosis complex) M (pulmonary or extrapulmonary sites of disease, including clinically diagnosed Hantavirus infection disease). Latent tuberculosis infection is not reportable. Hepatitis (all primary viral types including A, B, C, D, and E) B Typhus (Rickettsia spp.) Histoplasmosis (Histoplasma capsulatum) Unexplained deaths and unexplained critical illness Human immunodeficiency virus (HIV) infection, (possibly due to infectious cause) M including Acquired Immunodeficiency Syndrome (AIDS) B Varicella (chickenpox) M Influenza M Vibrio spp. M (unusual case incidence, critical illness, or laboratory-confirmed cases) Yellow fever Kawasaki disease Yersiniosis (enteric Yersinia spp. regardless of specimen source) M Kingella spp. (invasive only) M S Zika virus disease B Legionellosis (Legionella spp.) M Zoster (shingles) M Leprosy (Hansen’s disease) (Mycobacterium leprae) (all cases <18 years old; unusual case incidence/complications regardless of age) Leptospirosis (Leptospira interrogans) SENTINEL SURVEILLANCE FOOTNOTES Diseases reportable through sentinel surveillance are reportable based on the residence of the M Submission of clinical materials required. Submit isolates or, if an isolate is not patient or the specific health care facility. Sentinel surveillance is not statewide reporting. available, submit material containing the infectious agent in the following order of preference: a patient specimen; nucleic acid; or other laboratory material. Staphylococcus aureus M S Call the MDH Public Health Laboratory at 651-201-4953 for instructions. Candidemia (Candida spp.) (blood isolates only) M S S Invasive disease only: isolated from a normally sterile site, e.g.: blood, CSF, joint Carbapenem-resistant Acinetobacter spp. (CRA), fluid, etc. and Pseudomonas aeruginosa (CR-PA) M R In the event of SARS or another severe respiratory outbreak, also report cases Clostridium difficile M of health care workers hospitalized for pneumonia or acute respiratory distress syndrome. Respiratory syncytial virus (RSV) B Also report a pregnancy in a person with Zika; or a person chronically infected Nontuberculous Mycobacteria (NTM), pulminary and extrapulmonary with hepatitis B, HIV, or syphilis. TO REPORT Infectious Disease Epidemiology, Prevention and Control Phone: 651-201-5414 or 1-877-676-5414 | Fax: 651-201-5743 • For immediate reporting call: 651-201-5414 or 1-877-676-5414. www.health.state.mn.us/diseasereport ID# 53119 | 10/2019 • Report forms can be downloaded at www.health.state.mn.us/diseasereport .
Recommended publications
  • Reporting of Diseases and Conditions Regulation, Amendment, M.R. 289/2014
    THE PUBLIC HEALTH ACT LOI SUR LA SANTÉ PUBLIQUE (C.C.S.M. c. P210) (c. P210 de la C.P.L.M.) Reporting of Diseases and Conditions Règlement modifiant le Règlement sur la Regulation, amendment déclaration de maladies et d'affections Regulation 289/2014 Règlement 289/2014 Registered December 23, 2014 Date d'enregistrement : le 23 décembre 2014 Manitoba Regulation 37/2009 amended Modification du R.M. 37/2009 1 The Reporting of Diseases and 1 Le présent règlement modifie le Conditions Regulation , Manitoba Règlement sur la déclaration de maladies et Regulation 37/2009, is amended by this d'affections , R.M. 37/2009. regulation. 2 Schedules A and B are replaced with 2 Les annexes A et B sont remplacées Schedules A and B to this regulation. par les annexes A et B du présent règlement. Coming into force Entrée en vigueur 3 This regulation comes into force on 3 Le présent règlement entre en vigueur January 1, 2015, or on the day it is registered le 1 er janvier 2015 ou à la date de son under The Statutes and Regulations Act , enregistrement en vertu de Loi sur les textes whichever is later. législatifs et réglementaires , si cette date est postérieure. December 19, 2014 Minister of Health/La ministre de la Santé, 19 décembre 2014 Sharon Blady 1 SCHEDULE A (Section 1) 1 The following diseases are diseases requiring contact notification in accordance with the disease-specific protocol. Common name Scientific or technical name of disease or its infectious agent Chancroid Haemophilus ducreyi Chlamydia Chlamydia trachomatis (including Lymphogranuloma venereum (LGV) serovars) Gonorrhea Neisseria gonorrhoeae HIV Human immunodeficiency virus Syphilis Treponema pallidum subspecies pallidum Tuberculosis Mycobacterium tuberculosis Mycobacterium africanum Mycobacterium canetti Mycobacterium caprae Mycobacterium microti Mycobacterium pinnipedii Mycobacterium bovis (excluding M.
    [Show full text]
  • Melioidosis: a Clinical Model for Gram-Negative Sepsis
    J. Med. Microbiol. Ð Vol. 50 2001), 657±658 # 2001 The Pathological Society of Great Britain and Ireland ISSN 0022-2615 EDITORIAL Melioidosis: a clinical model for gram-negative sepsis The recently published study of recombinant human clinical sepsis model over the current heterogeneous activated protein C drotrecogin-á, Eli Lilly, Indiana- clinical trials. Our knowledge of melioidosis and its polis, IN, USA) in severe sepsis makes welcome causative organism, Burkholderia formerly Pseudomo- reading. At last a clinical trial of an augmentative nas) pseudomallei, has expanded considerably over the therapy in severe sepsis has managed to show a last 15 years. Melioidosis was originally described in mortality bene®t from the trial agent [1]. Most studies Myanmar then Burma) in 1911 and came to of augmentative treatments in serious sepsis have failed prominence during the Vietnam con¯ict, when French to show clear bene®t. Sepsis studies commonly involve and American soldiers became infected. It has been a syndrome caused by a myriad of organisms, occurring described in most countries of south-east Asia, in a very heterogeneous group of patients, who may be including the Peoples Republic of China and the Lao enrolled in one of several centres. This introduces PDR [5], but Thailand has the greatest reported disease multiple confounding factors. Agood model for clinical burden [6]. It is also endemic to northern Australia [7]. sepsis studies would ideally cause disease in a relatively Understanding of the epidemiology of the disease has homogeneous population, be acquired in a community been improved by the demonstration of two pheno- setting, present in large numbers to a single institution, typically similar but genetically distinct biotypes in the be caused by a single organism, and ordinarily result in environment [8], only one of which appears to be a substantial mortality rate.
    [Show full text]
  • Kawasaki Disease
    Patient and Family Education Kawasaki Disease What is Kawasaki disease? What you need to know about Kawasaki disease (Cow-a-sa-kee) is an illness that young children, usually Kawasaki Disease younger than 5 years old, can get. It causes swelling and inflammation of the small blood vessels in the body. No one knows what causes it. The illness can last up to a few months. How is it diagnosed? We do not have a specific test that can diagnose Kawasaki disease. Symptoms can show up at different times and come and go. The diagnosis is made when doctors see a few or all of these symptoms in a child: • Fever that lasts for at least 4 to 5 days • Red, blood-shot eyes called conjunctivitis (kon-junk-ti-vi-tis) • Swollen lymph nodes of the neck and armpits called lymphadenopathy (lim-fad-e-nop-a-thee) • Rash on different or all parts of the body • Red, cracked lips, very red tongue (strawberry tongue), redness in the mouth and the back of the throat • Swollen and red hands and feet followed by peeling skin on the fingers and toes • Blood tests that show that your child has swelling (inflammation) • Also, children with Kawasaki disease are often very fussy. It can be hard to diagnose because there are other illnesses that can cause these symptoms. To make sure your child gets the correct diagnosis, doctors and specialists from other areas (such as Rheumatology and Infectious Disease) will be involved in your child’s care. Can this disease be serious? Kawasaki disease causes swelling and inflammation of the small blood vessels in the body.
    [Show full text]
  • Parinaud's Oculoglandular Syndrome
    Tropical Medicine and Infectious Disease Case Report Parinaud’s Oculoglandular Syndrome: A Case in an Adult with Flea-Borne Typhus and a Review M. Kevin Dixon 1, Christopher L. Dayton 2 and Gregory M. Anstead 3,4,* 1 Baylor Scott & White Clinic, 800 Scott & White Drive, College Station, TX 77845, USA; [email protected] 2 Division of Critical Care, Department of Medicine, University of Texas Health, San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; [email protected] 3 Medical Service, South Texas Veterans Health Care System, San Antonio, TX 78229, USA 4 Division of Infectious Diseases, Department of Medicine, University of Texas Health, San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA * Correspondence: [email protected]; Tel.: +1-210-567-4666; Fax: +1-210-567-4670 Received: 7 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Parinaud’s oculoglandular syndrome (POGS) is defined as unilateral granulomatous conjunctivitis and facial lymphadenopathy. The aims of the current study are to describe a case of POGS with uveitis due to flea-borne typhus (FBT) and to present a diagnostic and therapeutic approach to POGS. The patient, a 38-year old man, presented with persistent unilateral eye pain, fever, rash, preauricular and submandibular lymphadenopathy, and laboratory findings of FBT: hyponatremia, elevated transaminase and lactate dehydrogenase levels, thrombocytopenia, and hypoalbuminemia. His condition rapidly improved after starting doxycycline. Soon after hospitalization, he was diagnosed with uveitis, which responded to topical prednisolone. To derive a diagnostic and empiric therapeutic approach to POGS, we reviewed the cases of POGS from its various causes since 1976 to discern epidemiologic clues and determine successful diagnostic techniques and therapies; we found multiple cases due to cat scratch disease (CSD; due to Bartonella henselae) (twelve), tularemia (ten), sporotrichosis (three), Rickettsia conorii (three), R.
    [Show full text]
  • Recognizing and Treating New and Emerging Infections Encountered in Everyday Practice
    Recognizing and treating new and emerging infections encountered in everyday practice STEVEN M. GORDON, MD NFECTIOUS DISEASES, pre- MiikWirj:« Although infectious diseases were once considered a dicted earlier in this cen- diminishing threat, new pathogens are constantly challenging tury to be eliminated as a the health care system. This article reviews the clinical presen- public health problem, re- tation, diagnosis, and treatment of seven emerging infections I main the chief cause of death that primary care physicians are likely to encounter. worldwide and a significant cause of death and morbidity in i Parvovirus B19 attacks erythrocyte precursors; the United States.1 Challenging infection is usually benign and self-limiting but can cause the US public health system are aplastic crises in patients with chronic hemolytic disorders. several newly identified patho- Hemorrhagic colitis due to Escherichia coli 0157:H7 infection gens (eg, human immunodefi- can lead to the hemolytic-uremic syndrome, especially in chil- ciency virus [HIV], Escherichia dren; it also can cause thrombotic thrombocytopenia purpura. coli 0157:H7, hepatitis C) and a Chlamydia pneumoniae causes a mild pneumonia that resem- resurgence of old diseases pre- bles mycoplasmal pneumonia. Bacillary angiomatosis primar- sumed to be under control (eg, ily affects immunocompromised patients, especially those tuberculosis, syphilis). Further, infected with human immunodeficiency virus (HIV). At least multiple-drug resistance in two organisms can cause bacillary angiomatosis: Bartonella hense- strains of pneumococci, gono- lae and Bartonella quintana. Hantavirus pulmonary syndrome cocci, enterococci, staphylo- is spread by exposure to the droppings of infected rodents. cocci, salmonella, and mycobac- Contrary to previous thought, HIV continues to replicate teria undermines efforts to throughout the course of the illness and does not have a latency control the diseases they cause.2 phase.
    [Show full text]
  • With Kawasaki Disease, Time Is Coronary Health
    Clinical AND Health Affairs With Kawasaki Disease, Time is Coronary Health BY CLAIRE JANSSON-KNODELL AND RHAMY MAGID, M.D. previously healthy 3-year-old Hmong his shins believed to be an allergic reac- per minute). His blood pressure was boy presented to Children’s Hospitals tion. During a follow-up visit to his pe- 110/66 mm Hg, and he was irritable. He A and Clinics of Minnesota with a his- diatrician, the boy had a low-grade fever, weighed 15.2 kg. His sclerae were injected tory of fever that was unremitting despite swelling in his legs, and an erythematous bilaterally without exudate. His lips ap- antipyretics. Two weeks prior to admission rash. He was referred to the hospital, but peared bright pink with cheilosis with- at Children’s, he presented to an outside his mother chose to keep him home be- out frank cracking. His oropharynx was hospital with a fever accompanied by left- cause she assumed he had improved. He erythematous. He did not have cervical sided neck swelling. A neck ultrasound was “playful and interactive” at home and lymphadenopathy. His hands and feet were showed a lymph node measuring 3.5 x the neck swelling had lessened. A week edematous bilaterally. He had no rash, pe- 2.7 x 2.2 cm, without abscess or fluid col- later, the child returned to the clinic with techiae or ecchymosis. He had nonbleed- lection. He was treated for acute cervical persistent fever and pain in his foot that ing desquamation of his hands circumfer- lymphadenitis with antibiotics (ceftriaxone caused him to limp.
    [Show full text]
  • Other Tick Borne Illnesses Illnesses Colorado Tick Fever Babesiosis Tularemia Ehrlichiosis
    Disclosures Common Bites and Stings • None David Hartnett, MD Assistant Professor Department of Emergency Medicine The Ohio State University Wexner Medical Center Learning Objectives Impact of bites and stings • Discuss the incidence of bites and stings in the US • 1.5 million ED visits per year • Review management of clinically relevant species • Insects • Mammals • Arachnids • Reptiles • Describe indications and methods of rabies prophylaxis 1 Hymenoptera • Bees, vespids, fire ants • Symptomatic control Insects - 50% • Localized, systemic, and anaphylactic Source: Alvesgaspar - Own work CC BY-SA 3.0, reactions • Stinger removal • Killer Bees Source: James Heilman, MD Own work, CC BY-SA 3.0, Africanized Killer Bees LD50 (mg/kg) Venom (µg) European Honey Bee 2.8 148 Africanized Honey Bee 2.8 156 Cape Honey Bee 3.0 187 LD50 for a 110 lb person Rule of Thumb Honey Bees – 890 Stings 6 stings/lb – survival Yellow Jackets – 3600 stings 8 stings/lb – LD50 Source: James Heilman, MD - Own work CC BY-SA 3.0, Paper wasps – 850 stings 10 stings/lb – Death Source: James Heilman, MD Own work, CC BY-SA 3.0, 2 Bed bugs Mosquito borne illnesses • Behavior • Travel medicine • Chikungunya • Transmission • Dengue • Incidence • Japanese Encephalitis • Malaria • Prevention • Yellow Fever • Zika • Symptom control • Infestation treatment • Endemic to United States Source: CDC • Eastern Equine Encephalitis • St Louis Encephalitis • La Crosse Encephalitis • West Nile La Crosse Virus Encephalitis – West Nile Virus – incidence by Incidence per 100,000 state per
    [Show full text]
  • Ehrlichiosis
    Ehrlichiosis What is ehrlichiosis and can also have a wide range of signs Who should I contact, if I what causes it? including loss of appetite, weight suspect ehrlichiosis? Ehrlichiosis (air-lick-ee-OH-sis) is a loss, prolonged fever, weakness, and In Animals – group of similar diseases caused by bleeding disorders. Contact your veterinarian. In Humans – several different bacteria that attack Can I get ehrlichiosis? the body’s white blood cells (cells Contact your physician. Yes. People can become infected involved in the immune system that with ehrlichiosis if they are bitten by How can I protect my animal help protect against disease). The an infected tick (vector). The disease organisms that cause ehrlichiosis are from ehrlichiosis? is not spread by direct contact with found throughout the world and are Ehrlichiosis is best prevented by infected animals. However, animals spread by infected ticks. Symptoms in controlling ticks. Inspect your pet can be carriers of ticks with the animals and humans can range from frequently for the presence of ticks bacteria and bring them into contact mild, flu-like illness (fever, body aches) and remove them promptly if found. with humans. Ehrlichiosis can also to severe, possibly fatal disease. Contact your veterinarian for effective be transmitted through blood tick control products to use on What animals get transfusions, but this is rare. your animal. ehrlichiosis? Disease in humans varies from How can I protect myself Many animals can be affected by mild infection to severe, possibly fatal ehrlichiosis, although the specific infection. Symptoms may include from ehrlichiosis? bacteria involved may vary with the flu-like signs (chills, body aches and The risk for infection is decreased animal species.
    [Show full text]
  • Kellie ID Emergencies.Pptx
    4/24/11 ID Alert! recognizing rapidly fatal infections Susan M. Kellie, MD, MPH Professor of Medicine Division of Infectious Diseases, UNMSOM Hospital Epidemiologist UNMHSC and NMVAHCS Fever and…. Rash and altered mental status Rash Muscle pain Lymphadenopathy Hypotension Shortness of breath Recent travel Abdominal pain and diarrhea Case 1. The cross-country trucker A 30 year-old trucker driving from Oklahoma to California is hospitalized in Deming with fever and headache He is treated with broad-spectrum antibiotics, but deteriorates with obtundation, low platelet count, and a centrifugal petechial rash and is transferred to UNMH 1 4/24/11 What is your diagnosis? What is the differential diagnosis of fever and headache with petechial rash? (in the US) Tickborne rickettsioses ◦ RMSF Bacteria ◦ Neisseria meningitidis Key diagnosis in this case: “doxycycline deficiency” Key vector-borne rickettsioses treated with doxycycline: RMSF-case-fatality 5-10% ◦ Fever, nausea, vomiting, myalgia, anorexia and headache ◦ Maculopapular rash progresses to petechial after 2-4 days of fever ◦ Occasionally without rash Human granulocytotropic anaplasmosis (HGA): case-fatality<1% Human monocytotropic ehrlichiosis (HME): case fatality 2-3% 2 4/24/11 Lab clues in rickettsioses The total white blood cell (WBC) count is typicallynormal in patients with RMSF, but increased numbers of immature bands are generally observed. Thrombocytopenia, mild elevations in hepatic transaminases, and hyponatremia might be observed with RMSF whereas leukopenia
    [Show full text]
  • Reportable Diseases and Conditions
    KINGS COUNTY DEPARTMENT of PUBLIC HEALTH 330 CAMPUS DRIVE, HANFORD, CA 93230 REPORTABLE DISEASES AND CONDITIONS Title 17, California Code of Regulations, §2500, requires that known or suspected cases of any of the diseases or conditions listed below are to be reported to the local health jurisdiction within the specified time frame: REPORT IMMEDIATELY BY PHONE During Business Hours: (559) 852-2579 After Hours: (559) 852-2720 for Immediate Reportable Disease and Conditions Anthrax Escherichia coli: Shiga Toxin producing (STEC), Rabies (Specify Human or Animal) Botulism (Specify Infant, Foodborne, Wound, Other) including E. coli O157:H7 Scrombroid Fish Poisoning Brucellosis, Human Flavivirus Infection of Undetermined Species Shiga Toxin (Detected in Feces) Cholera Foodborne Disease (2 or More Cases) Smallpox (Variola) Ciguatera Fish Poisoning Hemolytic Uremic Syndrome Tularemia, human Dengue Virus Infection Influenza, Novel Strains, Human Viral Hemorrhagic Fever (Crimean-Congo, Ebola, Diphtheria Measles (Rubeola) Lassa, and Marburg Viruses) Domonic Acid Poisoning (Amnesic Shellfish Meningococcal Infections Yellow Fever Poisoning) Novel Virus Infection with Pandemic Potential Zika Virus Infection Paralytic Shellfish Poisoning Plague (Specify Human or Animal) Immediately report the occurrence of any unusual disease OR outbreaks of any disease. REPORT BY PHONE, FAX, MAIL WITHIN ONE (1) WORKING DAY Phone: (559) 852-2579 Fax: (559) 589-0482 Mail: 330 Campus Drive, Hanford 93230 Conditions may also be reported electronically via the California
    [Show full text]
  • Melioidosis in Birds and Burkholderia Pseudomallei Dispersal, Australia
    LETTERS 5. Mätz-Rensing K, Jentsch KD, Rensing S, Melioidosis in Birds However, these are mostly birds Langenhuynsen S, Verschoor E, Niphuis in captivity and often exotic to the H, et al. Fatal herpes simplex infection in and Burkholderia a group of common marmosets (Callithrix location, suggesting potential reduced jacchus). Vet Pathol. 2003;40:405–11. pseudomallei immunity. Little is known about doi:10.1354/vp.40-4-405 Dispersal, Australia melioidosis in wild birds. In Sabah, 6. Bruno SF, Liebhold M, Mätz-Rensing K, Malaysia, only 1 of 440 wild birds Romão MA, Didier A, Brandes A, et al. Herpesvirus infection in free-living black- To the Editor: Melioidosis is an admitted to a research center over 9 tufted-ear marmoset (Callithrix penicil- emerging infectious disease of humans years was found to have melioidosis lata E. Geoffroyi 1812) at the state park of and animals caused by the gram- (6). Serra da Tiririca, Niterói, Rio de Janeiro, negative bacterium Burkholderia Although birds are endotherms, Brazil. Berl Munch Tierarztl Wochenschr. 1997;110:427–30. pseudomallei, which inhabits soil and with high metabolic rates and body 7. Kalter SS, Heberling RL. Comparative surface water in the disease-endemic temperature (40°C–43°C) protecting virology of primates. Bacteriol Rev. regions of Southeast Asia and northern them from many diseases, some birds 1971;35:310–64. Australia (1). The aim of this study appear more susceptible to melioidosis. 8. Mansfi eld K. Emerging and re-emerging infectious diseases of nonhuman primates. was to assess the potential for birds Indeed, high body temperature would Proceedings of the American College to spread B.
    [Show full text]
  • Anaplasmosis: an Emerging Tick-Borne Disease of Importance in Canada
    IDCases 14 (2018) xxx–xxx Contents lists available at ScienceDirect IDCases journal homepage: www.elsevier.com/locate/idcr Case report Anaplasmosis: An emerging tick-borne disease of importance in Canada a, b,c d,e e,f Kelsey Uminski *, Kamran Kadkhoda , Brett L. Houston , Alison Lopez , g,h i c c Lauren J. MacKenzie , Robbin Lindsay , Andrew Walkty , John Embil , d,e Ryan Zarychanski a Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada b Cadham Provincial Laboratory, Government of Manitoba, Winnipeg, MB, Canada c Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada d Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Internal Medicine, Section of Medical Oncology and Hematology, University of Manitoba, Winnipeg, MB, Canada e CancerCare Manitoba, Department of Medical Oncology and Hematology, Winnipeg, MB, Canada f Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Pediatrics and Child Health, Section of Infectious Diseases, Winnipeg, MB, Canada g Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Internal Medicine, Section of Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada h Rady Faculty of Health Sciences, Max Rady College of Medicine, Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada i Public Health Agency of Canada, National Microbiology Laboratory, Zoonotic Diseases and Special Pathogens, Winnipeg, MB, Canada A R T I C L E I N F O A B S T R A C T Article history: Human Granulocytic Anaplasmosis (HGA) is an infection caused by the intracellular bacterium Received 11 September 2018 Anaplasma phagocytophilum.
    [Show full text]