Pearls: Infectious Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Melioidosis: a Clinical Model for Gram-Negative Sepsis
J. Med. Microbiol. Ð Vol. 50 2001), 657±658 # 2001 The Pathological Society of Great Britain and Ireland ISSN 0022-2615 EDITORIAL Melioidosis: a clinical model for gram-negative sepsis The recently published study of recombinant human clinical sepsis model over the current heterogeneous activated protein C drotrecogin-á, Eli Lilly, Indiana- clinical trials. Our knowledge of melioidosis and its polis, IN, USA) in severe sepsis makes welcome causative organism, Burkholderia formerly Pseudomo- reading. At last a clinical trial of an augmentative nas) pseudomallei, has expanded considerably over the therapy in severe sepsis has managed to show a last 15 years. Melioidosis was originally described in mortality bene®t from the trial agent [1]. Most studies Myanmar then Burma) in 1911 and came to of augmentative treatments in serious sepsis have failed prominence during the Vietnam con¯ict, when French to show clear bene®t. Sepsis studies commonly involve and American soldiers became infected. It has been a syndrome caused by a myriad of organisms, occurring described in most countries of south-east Asia, in a very heterogeneous group of patients, who may be including the Peoples Republic of China and the Lao enrolled in one of several centres. This introduces PDR [5], but Thailand has the greatest reported disease multiple confounding factors. Agood model for clinical burden [6]. It is also endemic to northern Australia [7]. sepsis studies would ideally cause disease in a relatively Understanding of the epidemiology of the disease has homogeneous population, be acquired in a community been improved by the demonstration of two pheno- setting, present in large numbers to a single institution, typically similar but genetically distinct biotypes in the be caused by a single organism, and ordinarily result in environment [8], only one of which appears to be a substantial mortality rate. -
Kellie ID Emergencies.Pptx
4/24/11 ID Alert! recognizing rapidly fatal infections Susan M. Kellie, MD, MPH Professor of Medicine Division of Infectious Diseases, UNMSOM Hospital Epidemiologist UNMHSC and NMVAHCS Fever and…. Rash and altered mental status Rash Muscle pain Lymphadenopathy Hypotension Shortness of breath Recent travel Abdominal pain and diarrhea Case 1. The cross-country trucker A 30 year-old trucker driving from Oklahoma to California is hospitalized in Deming with fever and headache He is treated with broad-spectrum antibiotics, but deteriorates with obtundation, low platelet count, and a centrifugal petechial rash and is transferred to UNMH 1 4/24/11 What is your diagnosis? What is the differential diagnosis of fever and headache with petechial rash? (in the US) Tickborne rickettsioses ◦ RMSF Bacteria ◦ Neisseria meningitidis Key diagnosis in this case: “doxycycline deficiency” Key vector-borne rickettsioses treated with doxycycline: RMSF-case-fatality 5-10% ◦ Fever, nausea, vomiting, myalgia, anorexia and headache ◦ Maculopapular rash progresses to petechial after 2-4 days of fever ◦ Occasionally without rash Human granulocytotropic anaplasmosis (HGA): case-fatality<1% Human monocytotropic ehrlichiosis (HME): case fatality 2-3% 2 4/24/11 Lab clues in rickettsioses The total white blood cell (WBC) count is typicallynormal in patients with RMSF, but increased numbers of immature bands are generally observed. Thrombocytopenia, mild elevations in hepatic transaminases, and hyponatremia might be observed with RMSF whereas leukopenia -
Acquired Aphasia in Children
13 Acquired Aphasia in Children DOROTHY M. ARAM Introduction Children versus Adults Language disruptions secondary to acquired central nervous system (CNS) lesions differ between children and adults in multiple respects. Chief among these differences are the developmental stage of language ac- quisition at the time of insult and the developmental stage of the CNS. In adult aphasia premorbid mastery of language is assumed, at least to the level of the aphasic's intellectual ability and educational opportunities. Acquired aphasia sustained in childhood, however, interferes with the de- velopmental process of language learning and disrupts those aspects of language already mastered. The investigator and clinician thus are faced with sorting which aspects of language have been lost or impaired from those yet to emerge, potentially in an altered manner. Complicating re- search and clinical practice in this area is the need to account continually for the developmental stage of that aspect of language under consideration for each child. In research, stage-appropriate language tasks must be se- lected, and comparison must be made to peers of comparable age and lan- guage stage. Also, appropriate controls common in adult studies, such as social class and gender, are critical. These requirements present no small challenge, as most studies involve a wide age range of children and ado- lescents. In clinical practice, the question is whether assessment tools used for developmental language disorders should be used or whether adult aphasia batteries should be adapted for children. The answer typically de- pends on the age of the child and the availability of age- and stage-appro- 451 ACQUIRED APHASIA, THIRD EDITION Copyright 1998 by Academic Press. -
Synchronized Babinski and Chaddock Signs Preceded the MRI Findings in a Case of Repetitive Transient Ischemic Attack
□ CASE REPORT □ Synchronized Babinski and Chaddock Signs Preceded the MRI Findings in a Case of Repetitive Transient Ischemic Attack Kosuke Matsuzono 1,2, Takao Yoshiki 1, Yosuke Wakutani 1, Yasuhiro Manabe 3, Toru Yamashita 2, Kentaro Deguchi 2, Yoshio Ikeda 2 and Koji Abe 2 Abstract We herein report a 53-year-old female with repeated transient ischemic attack (TIA) symptoms including 13 instances of right hemiparesis that decreased in duration over 4 days. Two separate examinations using diffusion weighted image (DWI) in magnetic resonance imaging (MRI) revealed normal findings, but we ob- served that both Babinski and Chaddock signs were completely synchronized with her right hemiparesis. We were only able to diagnose this case of early stage TIA using clinical signs. This diagnosis was confirmed 4 days after the onset by the presence of abnormalities on the MRI. DWI-MRI is generally useful when diag- nosing TIA, but a neurological examination may be more sensitive, especially in the early stages. Key words: Babinski sign, Chaddock sign, TIA, diffusion weighted image (Intern Med 52: 2127-2129, 2013) (DOI: 10.2169/internalmedicine.52.0190) Introduction Case Report Transient ischemic attack (TIA) is a clinical syndrome A 53-year-old woman suddenly developed right hemipare- that consists of sudden focal neurologic signs and a com- sis, and she was admitted to our hospital 30 minutes after plete recovery usually within 24 hours (1). Because TIA can the onset. She had smoked 10 cigarettes daily for 23 years, sometimes develop into a cerebral infarction, an early diag- and quit at 43 years of age. -
Health: Epidemiology Subchapter 41A
CHAPTER 41 – HEALTH: EPIDEMIOLOGY SUBCHAPTER 41A – COMMUNICABLE DISEASE CONTROL SECTION .0100 – REPORTING OF COMMUNICABLE DISEASES 10A NCAC 41A .0101 REPORTABLE DISEASES AND CONDITIONS (a) The following named diseases and conditions are declared to be dangerous to the public health and are hereby made reportable within the time period specified after the disease or condition is reasonably suspected to exist: (1) acquired immune deficiency syndrome (AIDS) - 24 hours; (2) anthrax - immediately; (3) botulism - immediately; (4) brucellosis - 7 days; (5) campylobacter infection - 24 hours; (6) chancroid - 24 hours; (7) chikungunya virus infection - 24 hours; (8) chlamydial infection (laboratory confirmed) - 7 days; (9) cholera - 24 hours; (10) Creutzfeldt-Jakob disease - 7 days; (11) cryptosporidiosis - 24 hours; (12) cyclosporiasis - 24 hours; (13) dengue - 7 days; (14) diphtheria - 24 hours; (15) Escherichia coli, shiga toxin-producing - 24 hours; (16) ehrlichiosis - 7 days; (17) encephalitis, arboviral - 7 days; (18) foodborne disease, including Clostridium perfringens, staphylococcal, Bacillus cereus, and other and unknown causes - 24 hours; (19) gonorrhea - 24 hours; (20) granuloma inguinale - 24 hours; (21) Haemophilus influenzae, invasive disease - 24 hours; (22) Hantavirus infection - 7 days; (23) Hemolytic-uremic syndrome – 24 hours; (24) Hemorrhagic fever virus infection - immediately; (25) hepatitis A - 24 hours; (26) hepatitis B - 24 hours; (27) hepatitis B carriage - 7 days; (28) hepatitis C, acute - 7 days; (29) human immunodeficiency -
One Vaccine, Two Diseases, Three Lessons
Wednesday, 2 October 2019 One vaccine, two diseases, three lessons Helen Petousis-Harris, PhD Senior Lecturer, Vaccinology Dept General Practice and Primary Health Care Overview Virtues of an outer Kissing cousins, two Serendipity and membrane vesicle vaccine? divergent diseases opportunity Wednesday, October 2, 2019 • Most meningococcal vaccines based on polysaccharide antigens (groups A, C, W135, Y) • Meningococcal Group B oligosaccharides cross react with fetal neuro tissue – not suitable vaccine antigen • Meningococcal Group B vaccine approaches needed to be 3 different – non PS-Conjugate Solution – outer membrane vesicles There are many other antigenic structures aside from PS Outer-membrane vesicles generate mainly strain specific responses against PorA which is highly variable across strains Developed in 1980’s and used Cuba and Norway 4 2/10/2019 Tan LKK, Carlone GM, Borrow R. Advances in the Development of Vaccines against Neisseria meningitidis. New England Journal of Medicine. 2010;362:1511-20. Meet the family 80-90% homology in primary sequences High level of recombination 5 Muzzi, A., Mora, M., Pizza, M., Rappuoli, R., & Donati, C. (2013). Conservation of meningococcal antigens in the genus Neisseria. MBio, 4(3), e00163-13. What is gonorrhoea? 6 2/10/2019 How common is gonorrhoea? • Second most reported sexually transmitted disease in US (600,000 cases per annum) • In NZ ~3000 cases per annum (60-90 per 100,000) • To put in context – Invasive Pneumococal Disease pre-vaccine <2s ~100 per 100,000 – Meningococcal disease at its height 17 per 100,000 • Tairawhiti DHB 400 per 100,000 7 No correlate of protection and repeat infections • Natural infection with gonorrhoea does not induce a protective immune response. -
2017 Indiana Report of Infectious Diseases
ANNUAL REPORT OF INFECTIOUS DISEASES 2017 INTRODUCTION Indiana Field Epidemiology Districts ................................................................................................ iv Indiana Population Estimates, 2017 ...........................................................................................v List of Reportable Diseases & Conditions in Indiana, 2017 ............................................................ vii FOODBORNE & WATERBORNE DISEASES & CONDITIONS ..................................................................... 1 Campylobacteriosis ............................................................................................................................ 3 Cryptosporidiosis ................................................................................................................................ 7 Escherichia coli, Shiga toxin-producing .......................................................................................... 11 Giardiasis ........................................................................................................................................... 15 Hepatitis A ........................................................................................................................................ 18 Legionellosis .................................................................................................................................... 21 Listeriosis ........................................................................................................................................ -
COMMUNICABLE DISEASES BULLETIN Centre for Disease Control
THE NORTHERN TERRITORY NT COMMUNICABLE DISEASES BULLETIN Centre for Disease Control ISSN 1323-8612 Vol. 5, No 1, March 1998 Congratulations to all the heroic service providers and volunteers who cleaned up after the Katherine and Douglas Daly River floods and kept things going throughout. In the aftermath of the Katherine and Douglas Daly River floods The recent floods in Katherine and the Douglas Ross River virus since the floods. In addition, there Daly River region gave CDC the opportunity to has been no apparent increase in the number of assess and review disease control priorities in cases of hepatitis A (incubation period 15-50 days, disaster situations. While disasters and their public usually 30 days) although it is still under enhanced health consequences differ according to individual Contents circumstances, a number of important lessons for In the aftermath of the Katherine and Douglas Daly River disaster preparedness can be learned from the floods .................................................................................. 1 international and local literature on disasters (short The effect of conjugate Hib vaccines on the incidence of invasive Hib disease in the NT ....................................... 3 list overleaf). The main dangers in the acute post- Evidence associating measles viruses with Crohn’s disaster phase are injuries and acute exacerbations disease and autism inconclusive ......................................... 6 of chronic diseases such as diabetes, especially if Update on HIV and hepatitis C in the NT........................... 7 medical supplies run short. Non-communicable diseases update: No.4 ......................... 9 Death of a five year old from meningococcal disease Outbreaks of infectious disease after a disaster are in Darwin.......................................................................... 12 Lessons from a case of meningococcal eye disease ......... -
UCSD Moores Cancer Center Neuro-Oncology Program
UCSD Moores Cancer Center Neuro-Oncology Program Recent Progress in Brain Tumors 6DQWRVK.HVDUL0'3K' 'LUHFWRU1HXUR2QFRORJ\ 3URIHVVRURI1HXURVFLHQFHV 0RRUHV&DQFHU&HQWHU 8QLYHUVLW\RI&DOLIRUQLD6DQ'LHJR “Brain Cancer for Life” Juvenile Pilocytic Astrocytoma Metastatic Brain Cancer Glioblastoma Multiforme Glioblastoma Multiforme Desmoplastic Infantile Ganglioglioma Desmoplastic Variant Astrocytoma Medulloblastoma Atypical Teratoid Rhabdoid Tumor Diffuse Intrinsic Pontine Glioma -Mutational analysis, microarray expression, epigenetic phenomenology -Age-specific biology of brain cancer -Is there an overlap? ? Neuroimmunology ? Stem cell hypothesis Courtesy of Dr. John Crawford Late Effects Long term effect of chemotherapy and radiation on neurocognition Risks of secondary malignancy secondary to chemotherapy and/or radiation Neurovascular long term effects: stroke, moya moya Courtesy of Dr. John Crawford Importance Increase in aging population with increased incidence of cancer Patients with cancer living longer and developing neurologic disorders due to nervous system relapse or toxicity from treatments Overview Introduction Clinical Presentation Primary Brain Tumors Metastatic Brain Tumors Leptomeningeal Metastases Primary CNS Lymphoma Paraneoplastic Syndromes Classification of Brain Tumors Tumors of Neuroepithelial Tissue Glial tumors (astrocytic, oligodendroglial, mixed) Neuronal and mixed neuronal-glial tumors Neuroblastic tumors Pineal parenchymal tumors Embryonal tumors Tumors of Peripheral Nerves Shwannoma Neurofibroma -
Infectious Diseases Weekly Report Tokyo
Infectious Diseases Weekly Report Tokyo Metropolitan Infectious Disease Surveillance Center 3 June 2021 / Number 21 ( 5/24 ~ 5/30 ) Surveillance System in Tokyo, Japan The infectious diseases which all physicians must report All physicians must report to health centers the incidence of the diseases which are shown at page one. Health centers electronically report the individual cases to Tokyo Metropolitan Infectious Disease Surveillance Center. The infectious diseases required to be reported by the sentinels The numbers of patients who visit the sentinel clinics or hospitals during a week are reported to health centers in Tokyo. And they electronically report the numbers to Tokyo Metropolitan Infectious Disease Surveillance Center. We have about 500 sentinel clinics and hospitals in Tokyo. Tokyo Metropolitan Institute of Public Health TEL:81-3-3363-3213 FAX:81-3-5332-7365 e-mail:[email protected] URL:idsc.tokyo-eiken.go.jp/ Number of patients with the diseases which all physicians must report Tokyo Japan Category Diseases Cum Cum 18th 19th 20th 21st 21st 2021 2021 Ebola hemorrhagic fever Crimean-Congo hemorrhagic fever Smallpox I South American hemorrhagic fever Plague Marburg disease Lassa fever Acute poliomyelitis Tuberculosis 26 32 63 45 883 268 6,125 Diphtheria II Severe Acute Respiratory Syndrome(SARS) Middle East Respiratory Syndrome (MERS) Avian influenza H5N1 Avian influenza H7N9 Cholera Shigellosis 24 III Enterohemorrhagic Escherichia coli infection 22885349483 Typhoid fever Paratyphoid fever Hepatitis E 1441631226 West Nile -
Clinical Characteristics and Prognostic Factors in Childhood
BALKAN MEDICAL JOURNAL 80 THE OFFICIAL JOURNAL OF TRAKYA UNIVERSITY FACULTY OF MEDICINE © Trakya University Faculty of Medicine Balkan Med J 2013; 30: 80-4 • DOI: 10.5152/balkanmedj.2012.092 Available at www.balkanmedicaljournal.org Original Article Clinical Characteristics and Prognostic Factors in Childhood Bacterial Meningitis: A Multicenter Study Özden Türel1, Canan Yıldırım2, Yüksel Yılmaz2, Sezer Külekçi3, Ferda Akdaş3, Mustafa Bakır1 1Department of Pediatrics, Section of Pediatric Infectious Diseases, Faculty of Medicine, Marmara University, İstanbul, Turkey 2Department of Pediatrics, Section of Pediatric Neurology, Faculty of Medicine, Marmara University, İstanbul, Turkey 3Department of Audiology, Faculty of Medicine, Marmara University, İstanbul, Turkey İstanbul, Turkey ABSTRACT Objective: To evaluate clinical features and sequela in children with acute bacterial meningitis (ABM). Study Design: Multicenter retrospective study. Material and Methods: Study includes retrospective chart review of children hospitalised with ABM at 11 hospitals in İstanbul during 2005. Follow up visits were conducted for neurologic examination, hearing evaluation and neurodevelopmental tests. Results: Two hundred and eighty three children were included in the study. Median age was 12 months and 68.6% of patients were male. Almost all patients had fever at presentation (97%). Patients younger than 6 months tended to present with feeding difficulties (84%), while patients older than 24 months were more likely to present with vomitting (93%) and meningeal signs (84%). Seizures were present in 65 (23%) patients. 26% of patients were determined to have at least one major sequela. The most common sequelae were speech or language problems (14.5%). 6 patients were severely disabled because of meningitis. Presence of focal neurologic signs at presentation and turbid cerebrospinal fluid appearance increased sequelae signifi- cantly. -
Illinois Register Department of Public Health Notice of Proposed Amendments Title 77
ILLINOIS REGISTER DEPARTMENT OF PUBLIC HEALTH NOTICE OF PROPOSED AMENDMENTS TITLE 77: PUBLIC HEALTH CHAPTER I: DEPARTMENT OF PUBLIC HEALTH SUBCHAPTER k: COMMUNICABLE DISEASE CONTROL AND IMMUNIZATIONS PART 690 CONTROL OF COMMUNICABLE DISEASES CODE SUBPART A: GENERAL PROVISIONS Section 690.10 Definitions 690.20 Incorporated and Referenced Materials 690.30 General Procedures for the Control of Communicable Diseases SUBPART B: REPORTABLE DISEASES AND CONDITIONS Section 690.100 Diseases and Conditions 690.110 Diseases Repealed from This Part SUBPART C: REPORTING Section 690.200 Reporting SUBPART D: DETAILED PROCEDURES FOR THE CONTROL OF COMMUNICABLE DISEASES Section 690.290 Acquired Immunodeficiency Syndrome (AIDS) (Repealed) 690.295 Any Unusual Case of a Disease or Condition Caused by an Infectious Agent Not Listed in this Part that is of Urgent Public Health Significance (Reportable by telephone immediately (within three hours)) 690.300 Amebiasis (Reportable by mail, telephone, facsimile or electronically as soon as possible, within 7 days) (Repealed) 690.310 Animal Bites (Reportable by mail or telephone as soon as possible, within 7 days) (Repealed) 690.320 Anthrax (Reportable by telephone immediately, within three hours, upon initial clinical suspicion of the disease) 690.322 Arboviral Infections (Including, but Not Limited to, Chikungunya Fever, ILLINOIS REGISTER DEPARTMENT OF PUBLIC HEALTH NOTICE OF PROPOSED AMENDMENTS California Encephalitis, St. Louis Encephalitis, Dengue Fever and West Nile Virus) (Reportable by mail, telephone, facsimile