The Transcriptional Co-Regulator Jab1 Is Crucial for Chondrocyte

Total Page:16

File Type:pdf, Size:1020Kb

The Transcriptional Co-Regulator Jab1 Is Crucial for Chondrocyte 234 Research Article The transcriptional co-regulator Jab1 is crucial for chondrocyte differentiation in vivo Dongxing Chen1, Lindsay A. Bashur1, Bojian Liang1,*, Martina Panattoni2, Keiko Tamai3,`, Ruggero Pardi2 and Guang Zhou1,3,4,§ 1Department of Orthopaedics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA 2San Raffaele University, School of Medicine and Scientific Institute San Raffaele, Milan, Italy 3Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA 4Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA *Present address: Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, People’s Republic of China `Present address: Oncology Research Laboratories, Daiichi Sankyo Co., Ltd.., Tokyo, Japan §Author for correspondence ([email protected]) Accepted 11 November 2012 Journal of Cell Science 126, 234–243 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.113795 Summary The evolutionarily conserved transcriptional cofactor Jab1 plays critical roles in cell differentiation, proliferation, and apoptosis by modulating the activity of diverse factors and regulating the output of various signaling pathways. Although Jab1 can interact with the bone morphogenetic protein (BMP) downstream effector Smad5 to repress BMP signaling in vitro, the role of Jab1 in BMP-mediated skeletogenesis in vivo is still poorly understood. As a key regulator of skeletogenesis, BMP signaling regulates the critical Ihh-Pthrp feedback loop to promote chondrocyte hypertrophy. In this study, we utilized the loxP/Cre system to delineate the specific role of Jab1 in cartilage formation. Strikingly, Jab1 chondrocyte-specific knockout Jab1flox/flox; Col2a1-Cre (cKO) mutants exhibited neonatal lethal chondrodysplasia with severe dwarfism. In the mutant embryos, all the skeletal elements developed via endochondral ossification were extremely small with severely disorganized chondrocyte columns. Jab1 cKO chondrocytes exhibited increased apoptosis, G2 phase cell cycle arrest, and increased expression of hypertrophic chondrocyte markers Col10a1 and Runx2. Jab1 can also inhibit the transcriptional activity of Runx2, a key regulator of chondrocyte hypertrophy. Notably, our study reveals that Jab1 is likely a novel inhibitor of BMP signaling in chondrocytes in vivo.InJab1 cKO chondrocytes, there was heightened expression of BMP signaling components including Gdf10/Bmp3b and of BMP targets during chondrocyte hypertrophy such as Ihh. Furthermore, Jab1 cKO chondrocytes exhibited an enhanced response to exogenous BMP treatment. Together, our study demonstrates that Jab1 represses chondrocyte hypertrophy in vivo, likely in part by downregulating BMP signaling and Runx2 activity. Journal of Cell Science Key words: Jab1/Csn5, Chondrodysplasia, BMP, Runx2, COP9 signalosome Introduction (Kronenberg, 2003). During endochondral bone development, During development, endochondral ossification forms most of Ihh is synthesized by prehypertrophic chondrocytes and early the skeleton, including vertebrae, ribs and long bones. It involves hypertrophic chondrocytes. Ihh binds to its receptor Patched-1 an initial cartilage anlagen within which chondrocytes undergo (Ptc-1), which triggers a cascade that leads to the activation of an elaborate and well-controlled differentiation process target genes including Pthrp under a mechanism still poorly (Kronenberg, 2003). The mesenchymal precursors first understood. Pthrp acts on its receptor to keep the chondrocyte condense and commit to chondrocyte lineage under master proliferating and inhibits the production of Ihh. This Ihh/Pthrp regulator Sox9, followed by the robust secretion of cartilage- negative-feedback loop controls the length of proliferating specific extracellular matrix including type II collagen and rapid columns during cartilage growth (Kronenberg, 2003). proliferation to form orderly columns. Chondrocytes then stop The intracellular factor Jab1 (c-Jun activation domain-binding dividing, exit the cell cycle, and start prehypertrophy with the protein-1) interacts with numerous proteins to regulate diverse expression of type X collagen under key regulators Runx2, signaling pathways and cell differentiation processes (Shackleford Runx3 and Indian Hedgehog (Ihh). Subsequently, chondrocytes and Claret, 2010). Jab1 is also the fifth subunit of the evolutionarily undergo overt hypertrophy and endochondral ossification occurs conserved proteolysis regulator COP9 signalosome (Csn5) when hypertrophic chondrocytes within the cartilaginous model complex (Bech-Otschir et al., 2002; Olma et al., 2009). CSN is begin to undergo apoptosis in the center of the cartilage. similar, both in size and composition, to the lid of the 19S Osteoblasts are recruited here from adjacent perichondrium and proteasome regulatory particle (Wei and Deng, 2003). CSN has secrete bone matrix, forming a primary ossification center deneddylase activity to regulate the stability of complex Skip1– (Kronenberg, 2003). Ihh is a master regulator of skeletal Cullin–F-box proteins (SCF), a major group of cullin ring E3 development by coordinating chondrocyte proliferation, ubiquitin ligase (CRL). SCF core component cullin is covalently chondrocyte differentiation, and osteoblast differentiation modified with the ubiquitin-like protein NEDD8. Repeated cycles Jab1 and chondrocyte differentiation 235 of NEDD8 conjugation (neddylation) and NEDD8 removal in chondrocytes results in severe chondrodysplasia with reduced (deneddylation) maintain SCF E3 ubiquitin ligase activity (Wei Col10a1 expression, a phenotype very similar to chondrocyte- et al., 2008). By regulating SCF activity, CSN can regulate the specific BMP receptors null mice (Retting et al., 2009). Thus, the stability and activity of numerous cell-cycle proteins such as p27, effect of BMP signaling in embryonic cartilage formation largely p53 and transcriptional regulators including IkB-a (Wei et al., depends on Smad 1/5/8. Further analysis reveals that Smad1 and 2008; Chamovitz, 2009). Within the whole COP9 signalosome, Smad5 are positive and redundant regulators of chondrocyte Jab1/Csn5 is the only subunit possessing a catalytic metal binding differentiation, whereas Smad8 is mostly dispensable for metalloprotease motif that is required for removing NEDD8 from cartilage formation (Retting et al., 2009). the cullin subunit of SCF (Shackleford and Claret, 2010). Thus, The effect of BMP signaling during skeletogenesis ultimately Jab1 is required for COP9 signalosome activity. impinges on a complex transcriptional network in which the Jab1 is involved in signaling transduction, cell cycle control, transcription factors Sox9 and Runx2 play essential roles apoptosis, DNA repair, and a vast array of developmental (Kronenberg, 2003). Runt domain transcription factor Runx2 processes by regulating the stability and activity of various regulates all the major genes expressed by osteoblasts in tissue transcription factors (Wei et al., 2008; Chamovitz, 2009; Kato culture (Ducy et al., 1997). Runx2 null mice display a complete and Yoneda-Kato, 2009; Shackleford and Claret, 2010). lack of osteoblast differentiation (Komori et al., 1997; Otto et al., Furthermore, Jab1 overexpression has been implicated in the 1997). Moreover, mutations in RUNX2 result in cleidocranial initiation and progression of various cancers, suggesting an dysplasia (CCD), a dominantly inherited skeletal dysplasia with oncogenic role (Shackleford and Claret, 2010). The constitutive generalized bone defects (Lee et al., 1997; Mundlos et al., 1997; deletion of Jab1 in mice results in early embryonic lethality by Zhou et al., 1999). Besides its essential role in osteoblast E8.5 with impaired proliferation and accelerated apoptosis differentiation, Runx2 is also important for chondrocyte (Tomoda et al., 2004; Tian et al., 2010), whereas cell type- maturation. Continuous expression of Runx2 in mouse specific deletions of Jab1 in T-cell, B-cell, or myeloid cells all proliferating chondrocytes accelerated the hypertrophy (Takeda lead to severe postnatal cell differentiation defects and increased et al., 2001; Ueta et al., 2001). Conversely, chondrocyte apoptosis (Panattoni et al., 2008; Deng et al., 2011; Sitte et al., maturation was delayed in some skeletal elements in Runx22/2 2012). Thus, Jab1 plays essential roles both in general mice (Inada et al., 1999; Kim et al., 1999). Runx2 directly binds embryogenesis and in the differentiation of specific organs and to the conserved cis-elements in Col10a1 and Ihh promoters, and tissues. However, the specific function of Jab1 in skeletogenesis contributes to their activity in prehypertrophic and hypertrophic in vivo was completely unknown prior to this study. chondrocytes (Yoshida et al., 2004; Zheng et al., 2003). Bone morphogenetic protein (BMP) signaling coordinates all Moreover, Runx2 and related Runx3 play an essential and steps of skeletal growth and differentiation during endochondral redundant role during chondrocyte hypertrophy. Runx22/2; ossification (Chen et al., 2004; Yoon and Lyons, 2004; Wan and Runx32/2 mice show the complete absence of chondrocyte Cao, 2005). BMPs are members of the TGF-b superfamily that hypertrophy with reduced chondrocyte proliferation and reduced activate heterodimeric receptors with serine/threonine kinase cell size in the embryonic limbs (Yoshida et al., 2004). activity (Chen et
Recommended publications
  • Evolutionary Origin of Bone Morphogenetic Protein 15 And
    Evolutionary origin of Bone Morphogenetic Protein 15 and growth and differentiation factor 9 and differential selective pressure between mono- and polyovulating species Olivier Monestier, Bertrand Servin, Sylvain Auclair, Thomas Bourquard, Anne Poupon, Géraldine Pascal, Stéphane Fabre To cite this version: Olivier Monestier, Bertrand Servin, Sylvain Auclair, Thomas Bourquard, Anne Poupon, et al.. Evo- lutionary origin of Bone Morphogenetic Protein 15 and growth and differentiation factor 9 and differ- ential selective pressure between mono- and polyovulating species. Biology of Reproduction, Society for the Study of Reproduction, 2014, 91 (4), pp.1-13. 10.1095/biolreprod.114.119735. hal-01129871 HAL Id: hal-01129871 https://hal.archives-ouvertes.fr/hal-01129871 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BIOLOGY OF REPRODUCTION (2014) 91(4):83, 1–13 Published online before print 6 August 2014. DOI 10.1095/biolreprod.114.119735 Evolutionary Origin of Bone Morphogenetic Protein 15 and Growth and Differentiation Factor 9
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • TGF Beta Signaling Pathways and Microrna Function in the Female Reproductive Tract
    TGF Beta signaling pathways and microRNA function in the female reproductive tract Prof. Martin Matzuk Baylor College of Medicine Intellectual and Developmental Disabilities Research Center Houston, TX, USA TGFb signaling pathways and microRNA function in the female reproductive tract Topic 1 TGFb Superfamily N Pro RRRR Mature C • Largest family of growth factor ligands in mammals • Function as secreted homodimers or heterodimers in multiple developmental and physiologic processes • We have been studying 12 family members including growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), activins, inhibins, and GDF3 GDF9 functions in folliculogenesis & cumulus expansion Pre-Ovulatory Follicle Cumulus GC Early Antral Follicle Ovulating Follicle Mural GC Fertilization Secondary & Embryo Follicle Development GDF9 KO Primary Primordial Follicle Follicles Dong et. al. Nature 1996 Elvin et al. Mol Endo, 1999a, b TGFb Superfamily “Canonical” Signaling Pathways – GDF9 and BMP15 appear to signal in different pathways GDF9/BMP b b Extracellular Cytoplasm Type II Type I (Kinase) (Kinase) “BMP” SMAD1/5/8 SMAD2/3 “Activin/TGFb” Pathway SMAD4 SMAD4 Pathway (BMP15) (GDF9) Nucleus BMP-Specific Activin-Specific Genes Genes What is the ovarian GDF9 type 1 receptor? ALK1 Activin receptor like-1 ALK2 Activin receptor 1 ALK3 BMP receptor 1A ALK4 Activin receptor 1B ALK5 TGFb receptor 1 ALK6 BMP receptor 1B ALK7 Activin receptor 1C b b Extracellular Cytoplasm Type II Type I (Kinase) (Kinase) “BMP” ALK2, ALK5, “GDF9” Pathway ALK3, ALK6
    [Show full text]
  • “Neonatal Exposure to Estradiol Reprograms the Expression Of
    “Neonatal exposure to estradiol reprograms the expression of androgen receptor and anti-Müllerian hormone: short and long term effects and their relation to the polycystic ovary phenotype” Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (dr. rer. nat.) der Fakultät für Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Jonathan Eloy Martínez Pinto aus Santiago, Chile im Jahr 2014 i Die vorgelegte Dissertation mit dem Titel “Neonatal exposure to estradiol reprograms the expression of androgen receptor and anti-Müllerian hormone: short and long term effects and their relation to the polycystic ovary phenotype” von Jonathan Martínez entstand unter der gemeinsamen Betreuung der Universitaet Regensburg und der Universidad de Chile im Rahmen des bi- nationalen Promotionsprogramms RegenVald als Doppelpromotion. ii Das Promotionsgesuch wurde eingereicht am: 24.03.2014 Die Arbeit wurde angeleitet von: Dr. Michael Rehli Dr. Hernán Lara iii UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS QUIMICAS Y FARMACEUTICAS “NEONATAL EXPOSURE TO ESTRADIOL REPROGRAMS THE EXPRESSION OF ANDROGEN RECEPTOR AND ANTI- MÜLLERIAN HORMONE: SHORT AND LONG TERM EFFECTS AND THEIR RELATION TO THE POLYCYSTIC OVARY PHENOTYPE” Thesis submitted to University of Chile in accordance with the degree requirements for a PhD in Biochemistry by JONATHAN ELOY MARTÍNEZ PINTO Thesis Advisors: Prof. Dr. Hernán Lara Peñaloza Prof. Dr. Michael Rehli Santiago, Chile 2014 iv UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS QUÍMICAS Y FARMACÉUTICAS INFORME DE APROBACIÓN TESIS DE DOCTORADO Se informa a la Dirección de Postgrado de la Facultad de Ciencias Químicas y Farmacéuticas que la Tesis de Doctorado presentada por el candidato: JONATHAN ELOY MARTINEZ PINTO Ha sido aprobada por la Comisión Informante de Tesis como requisito para optar al grado de Doctor en Bioquímica, en el examen de defensa de Tesis rendida el día _____________________ Directores de Tesis: Dr.
    [Show full text]
  • The Nuclear Receptor REVERB Represses the Transcription of Growthdifferentiation Factor 10 and 15 Genes in Rat Endometrium Strom
    Physiological Reports ISSN 2051-817X ORIGINAL RESEARCH The nuclear receptor REV-ERBa represses the transcription of growth/differentiation factor 10 and 15 genes in rat endometrium stromal cells Lijia Zhao1, Keishiro Isayama1, Huatao Chen1,*, Nobuhiko Yamauchi1, Yasufumi Shigeyoshi2, Seiichi Hashimoto3 & Masa-aki Hattori1 1 Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan 2 Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan 3 Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Keywords Abstract Circadian clock, decidualization, growth/ differentiation factors, REV-ERBa. Cellular oscillators in the uterus play critical roles in the gestation processes of mammals through entraining of the clock proteins to numerous downstream Correspondence genes, including growth/differentiation factor (Gdf)10 and Gdf15. The expres- Masa-aki Hattori, Department of Animal and sion of Gdf10 and Gdf15 is significantly increased in the uterus during decidu- Marine Bioresource Sciences, Graduate alization, but the mechanism underlying the regulation of Gdf gene expression School of Agriculture, Kyushu University, in the uterus is poorly understood. Here, we focused on the function of the Hakozaki, Higashi-ku, Fukuoka 812-8581, cellular oscillators in the expression of Gdf family by using uterine endome- Japan. Tel: +81-92-642-2938 trial stromal cells (UESCs) isolated from pregnant Per2-dLuc transgenic rats. Fax: +81-92-642-2938 A significant decline of Per2-dLuc bioluminescence activity was induced in E-mail: [email protected] in vitro decidualized UESCs, and concomitantly the expression of canonical clock genes was downregulated. Conversely, the expression of Gdf10 and ⁄ Present address Gdf15 of the Gdf was upregulated.
    [Show full text]
  • Vg1-Nodal Heterodimers Are the Endogenous Inducers of Mesendoderm Tessa G Montague1*, Alexander F Schier1,2,3,4,5*
    RESEARCH ARTICLE Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm Tessa G Montague1*, Alexander F Schier1,2,3,4,5* 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States; 2Center for Brain Science, Harvard University, Cambridge, United States; 3Broad Institute of MIT and Harvard, Cambridge, United States; 4Harvard Stem Cell Institute, Cambridge, United States; 5FAS Center for Systems Biology, Harvard University, Cambridge, United States Abstract Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta- related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. DOI: https://doi.org/10.7554/eLife.28183.001 Introduction *For correspondence: tessa. [email protected] (TGM); The induction of mesoderm and endoderm (mesendoderm) during embryogenesis and embryonic [email protected] (AFS) stem cell differentiation generates the precursors of the heart, liver, gut, pancreas, kidney and other internal organs.
    [Show full text]
  • 6 Signaling and BMP Antagonist Noggin in Prostate Cancer
    [CANCER RESEARCH 64, 8276–8284, November 15, 2004] Bone Morphogenetic Protein (BMP)-6 Signaling and BMP Antagonist Noggin in Prostate Cancer Dominik R. Haudenschild, Sabrina M. Palmer, Timothy A. Moseley, Zongbing You, and A. Hari Reddi Center for Tissue Regeneration and Repair, Department of Orthopedic Surgery, School of Medicine, University of California, Davis, Sacramento, California ABSTRACT antagonists has recently been discovered. These are secreted proteins that bind to BMPs and reduce their bioavailability for interactions It has been proposed that the osteoblastic nature of prostate cancer with the BMP receptors. Extracellular BMP antagonists include nog- skeletal metastases is due in part to elevated activity of bone morphoge- gin, follistatin, sclerostatin, chordin, DCR, BMPMER, cerberus, netic proteins (BMPs). BMPs are osteoinductive morphogens, and ele- vated expression of BMP-6 correlates with skeletal metastases of prostate gremlin, DAN, and others (refs. 11–16; reviewed in ref. 17). There are cancer. In this study, we investigated the expression levels of BMPs and several type I and type II receptors that bind to BMPs with different their modulators in prostate, using microarray analysis of cell cultures affinities. BMP activity is also regulated at the cell membrane level by and gene expression. Addition of exogenous BMP-6 to DU-145 prostate receptor antagonists such as BAMBI (18), which acts as a kinase- cancer cell cultures inhibited their growth by up-regulation of several deficient receptor. Intracellularly, the regulation of BMP activity at cyclin-dependent kinase inhibitors such as p21/CIP, p18, and p19. Expres- the signal transduction level is even more complex. There are inhib- sion of noggin, a BMP antagonist, was significantly up-regulated by itory Smads (Smad-6 and Smad-7), as well as inhibitors of inhibitory BMP-6 by microarray analysis and was confirmed by quantitative reverse Smads (AMSH and Arkadia).
    [Show full text]
  • GDF10, Growth Differentiation Factor 10 Poly- Clonal Antibody
    GDF10, Growth differentiation factor 10 poly- clonal antibody rowth differentiation factor 10 (GDF10) is a member of or Research Use Only. Not for Gthe bone morphogenetic protein (BMP) family and the FDiagnostic or Therapeutic Use. TGF-beta superfamily. BMP proteins are secreted growth Purchase does not include or carry factors that are characterized by seven conserved cysteine any right to resell or transfer this residues. In general, they are regulators of cell growth and product either as a stand-alone product or as a component of another differentiation in both embryonic and adult tissues. GDF10 product. Any use of this product other seems to play a role in skeletal morphogenesis. than the permitted use without the express written authorization of Allele Biotech is strictly prohibited Buffers Purified rabbit polyclonal antibody supplied in PBS with Website: www.allelebiotech.com 0.09% (W/V) sodium azide. This antibody is purified through Call: 1-800-991-RNAi/858-587-6645 a protein G column and eluted out with both high and low pH (Pacific Time: 9:00AM~5:00PM) buffers and neutralized immediately after elution then fol- Email: [email protected] lowed by dialysis against PBS. Box 1 | Basic Info Immunogen Cat. No. ABP-PAB-10690 KLH conjugated synthetic peptide comprised of amino acids 48 - 62 [DGLQGDRDLQRHPGD] of the human growth dif- Animal ID RB1873-1874 ferentiation factor 10 (GDF10) protein. Host Rabbit Reactivity Human Format Purified Accession number NM_004962 Application 100µg Amount Tested by peptide-specific ELISA (1:1,000). WB (1:100 ~1:500), IHC (1:50 ~1:100) Alternative Name(s): BMP3B, bone morphogenetic protein 3B, GDF10 Storage Maintain refrigerated at 2-8ºC for up to 6 months.
    [Show full text]
  • Context-Dependent Roles in Cell and Tissue Physiology
    Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press TGF-b and the TGF-b Family: Context-Dependent Roles in Cell and Tissue Physiology Masato Morikawa,1 Rik Derynck,2 and Kohei Miyazono3 1Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden 2Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143 3Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Correspondence: [email protected] The transforming growth factor-b (TGF-b) is the prototype of the TGF-b family of growth and differentiation factors, which is encoded by 33 genes in mammals and comprises homo- and heterodimers. This review introduces the reader to the TGF-b family with its complexity of names and biological activities. It also introduces TGF-b as the best-studied factor among the TGF-b family proteins, with its diversity of roles in the control of cell proliferation and differentiation, wound healing and immune system, and its key roles in pathology, for exam- ple, skeletal diseases, fibrosis, and cancer. lthough initially thought to stimulate cell TGF-b has been well documented in most cell Aproliferation, just like many growth factors, types, and has been best characterized in epithe- it became rapidly accepted that transforming lial cells. The bifunctional and context-depen- growth factor b (TGF-b) is a bifunctional reg- dent nature of TGF-b activities was further con- ulator that either inhibits or stimulates cell pro- firmed in a large variety of cell systems and liferation.
    [Show full text]
  • Activin Receptor Type IIB (RIIB)
    Activin Receptor Type IIB (RIIB) Catalog number A0856-10D Supplier United States Biological Members of the TGF-beta superfamily exert their biological effects by binding to heteromeric complexes of a type I and a type II serine-threonine kinase receptor, both of which are essential for signal transduction. Activin receptor type IIB is a type II receptor that mediates multiple signals for transforming growth factor-beta (TGF-beta) family members, including Activin, Nodal, Bmp7, Gdf1, Gdf3, Myostatin (Gdf8), and Gdf11. Through alternative mRNA splicing, multiple ActR-IIB isoforms can also be generated. Applications Suitable for use in ELISA and Western Blot. Other applications not tested. Recommended Dilution . Western Blot: 1ug/ml using recombinant human Activin RIIB Fc Chimera. Optimal dilutions to be determined by the researcher. Storage and Stability Lyophilized powder may be stored at -20°C. Stable for 12 months after receipt at -20°C. Reconstitute with sterile PBS. Aliquot to avoid repeated freezing and thawing. Store at -20°C. For maximum recovery of product, centrifuge the original vial after thawing and prior to removing the cap. Further dilutions can be made in assay buffer. Immunogen Recombinant protein corresponding to Ser19-Thr134 from human Activin Receptor Type IIB, expressed in NSO cells. Swiss/UniProt Accession # Q13705. Formulation Supplied as a lyophilized powder from PBS, pH 7.4, 5% trehalose. Reconstitute with 200ul sterile PBS. Purity Purified by Protein G affinity chromatography from ascites. Specificity Recognizes human Activin Receptor Type IIB. Shows ~5% crossreactivity with recombinant human Activin RIIA. Product Type Mab Source human Isotype IgG1 Grade Affinity Purified Applications E WB Crossreactivity Hu Storage -20°C Powered by TCPDF (www.tcpdf.org).
    [Show full text]
  • GDF10 Monoclonal ANTIBODY
    For Research Use Only GDF10 Monoclonal ANTIBODY www.ptgcn.com Catalog Number:66371-1-Ig 1 Publications Basic Information Catalog Number: GenBank Accession Number: Recommended Dilutions: 66371-1-Ig BC028237 WB 1:500-1:2000 Size: GeneID (NCBI): 1000 μg/ml 2662 Source: Full Name: Mouse growth differentiation factor 10 Isotype: Calculated MW: IgG2a 53 kDa Purification Method: Observed MW: Protein A purification 53 kDa Immunogen Catalog Number: AG4906 Applications Tested Applications: Positive Controls: WB, ELISA WB : pig bone marrow tissue; ROS1728 cells Cited Applications: WB Species Specificity: human, pig, rat Cited Species: rat Note: suggested angen retrieval with TE buffer pH 9.0; (*) Alternavely, angen retrieval may be performed with citrate buffer pH 6.0 Growth differentiation factor-10 (GDF10), also known as BMP3b, is a member of the transforming growth factor-b (TGF-b) superfamily. Ligands of this family Background Information bind various TGF-beta receptors leading to recruitment and activation of SMAD family transcription factors that regulate gene expression. The encoded preproprotein is proteolytically processed to generate each subunit of the disulfide-linked homodimer. This promotes neural repair after stroke. GDF10 plays a role in head formation and may have multiple roles in skeletal morphogenesis. Additionally, GDF10 may act as a tumor suppressor and reduced expression of this gene is associated with oral cancer. Notable Publications Author Pubmed ID Journal Application Yun Wei Shi 28690033 Brain Behav Immun WB Storage: Storage Store at -20ºC. Stable for one year after shipment. Storage Buffer: PBS with 0.02% sodium azide and 50% glycerol pH 7.3. Aliquoting is unnecessary for -20ºC storage For technical support and original validation data for this product please contact: This product is exclusively available under T: 4006900926 E: [email protected] W: ptgcn.com Proteintech Group brand and is not available to purchase from any other manufacturer.
    [Show full text]
  • Smelt Was the Likely Beneficiary of an Antifreeze Gene Laterally Transferred Between Fishes Laurie a Graham1, Jieying Li2, William S Davidson2 and Peter L Davies1*
    Graham et al. BMC Evolutionary Biology 2012, 12:190 http://www.biomedcentral.com/1471-2148/12/190 RESEARCH ARTICLE Open Access Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes Laurie A Graham1, Jieying Li2, William S Davidson2 and Peter L Davies1* Abstract Background: Type II antifreeze protein (AFP) from the rainbow smelt, Osmerus mordax, is a calcium-dependent C-type lectin homolog, similar to the AFPs from herring and sea raven. While C-type lectins are ubiquitous, type II AFPs are only found in a few species in three widely separated branches of teleost fishes. Furthermore, several other non-homologous AFPs are found in intervening species. We have previously postulated that this sporadic distribution has resulted from lateral gene transfer. The alternative hypothesis, that the AFP evolved from a lectin present in a shared ancestor and that this gene was lost in most species, is not favored because both the exon and intron sequences are highly conserved. Results: Here we have sequenced and annotated a 160 kb smelt BAC clone containing a centrally-located AFP gene along with 14 other genes. Quantitative PCR indicates that there is but a single copy of this gene within the smelt genome, which is atypical for fish AFP genes. The corresponding syntenic region has been identified and searched in a number of other species and found to be devoid of lectin or AFP sequences. Unlike the introns of the AFP gene, the intronic sequences of the flanking genes are not conserved between species. As well, the rate and pattern of mutation in the AFP gene are radically different from those seen in other smelt and herring genes.
    [Show full text]