Insulin Regulates Lipolysis and Fat Mass by Upregulating Growth/Differentiation Factor 3 in Adipose Tissue Macrophages

Total Page:16

File Type:pdf, Size:1020Kb

Insulin Regulates Lipolysis and Fat Mass by Upregulating Growth/Differentiation Factor 3 in Adipose Tissue Macrophages Diabetes Volume 67, September 2018 1761 Insulin Regulates Lipolysis and Fat Mass by Upregulating Growth/Differentiation Factor 3 in Adipose Tissue Macrophages Yun Bu,1 Katsuhide Okunishi,1 Satomi Yogosawa,1 Kouichi Mizuno,1 Maria Johnson Irudayam,2 Chester W. Brown,2 and Tetsuro Izumi1,3 Diabetes 2018;67:1761–1772 | https://doi.org/10.2337/db17-1201 Previous genetic studies in mice have shown that func- hematopoietic cells inside WAT, and cause chronic inflam- tional loss of activin receptor–like kinase 7 (ALK7), a type I mation and obesity-related disorders (1). The TG content in transforming growth factor-b receptor, increases lipol- adipocytes is determined by the balance between the syn- ysis to resist fat accumulation in adipocytes. Although thesis and breakdown of TG. Although TG synthesis depends growth/differentiation factor 3 (GDF3) has been sug- on the uptake of nutrients, the rate of lipid removal through gested to function as a ligand of ALK7 under nutrient- lipolysis is proportional to the total fat mass as well as the excess conditions, it is unknown how GDF3 production is activities of lipases, and is regulated by external factors, such METABOLISM regulated. Here, we show that a physiologically low level 2 as catecholamine and insulin. It is important to understand of insulin converts CD11c adipose tissue macrophages the mechanisms of fat accumulation to dissect the patho- (ATMs) into GDF3-producing CD11c+ macrophagesexvivo physiology of obesity. Our previous genetic analyses using and directs ALK7-dependent accumulation of fat in vivo. F2 progeny between the Tsumura, Suzuki, obese diabetes Depletion of ATMs by clodronate upregulates adipose (TSOD) and control BALB/c mice revealed a naturally oc- lipases and reduces fat mass in ALK7-intact obese mice, fi curring mutation in Acvr1c encoding the type I transforming but not in their ALK7-de cient counterparts. Furthermore, – depletion of ATMs or transplantation of GDF3-deficient growth factor-b (TGF-b) receptor activin receptor like ki- – bone marrow negates the in vivo effects of insulin on both nase 7 (ALK7) in BALB/c mice (2 5). The mutation gives rise lipolysis and fat accumulation in ALK7-intact mice. The to a stop codon in the kinase domain of ALK7. The congenic GDF3-ALK7 axis between ATMs and adipocytes repre- strain T.B-Nidd5/3 is isogenic with TSOD mice except for the sents a previously unrecognized mechanism by which BALB/c-derived ALK7 mutation and exhibits decreased ad- insulin regulates both fat metabolism and mass. iposity because of enhanced lipolysis. The activation of ALK7 downregulates the master regulators of adipogenesis, C/EBPa and peroxisome proliferator–activated receptor g (PPARg), in The worldwide prevalence of obesity increases morbidity differentiated adipocytes, which leads to the suppression of and mortality and imposes a growing public health burden. lipolysis and to increases in adipocyte size and TG content. Most excess food intake is converted into fat, and specif- To understand the regulatory mechanisms associated ically into triglycerides (TGs), which are stored in adipocytes with ALK7, it is essential to determine its physiological of white adipose tissue (WAT). As adipocytes accumulate fat ligand. TGF-b family members such as Nodal, inhibin-bB and increase in size, they start to secrete proinflammatory (activin B or activin AB), growth/differentiation factor adipocytokines, recruit or polarize macrophages and other (GDF) 3, and GDF11 bind ALK7 and mediate its signals 1Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Received 4 October 2017 and accepted 30 May 2018. Medicine, Institute for Molecular and Cellular Regulation, Gunma University, This article contains Supplementary Data online at http://diabetes Maebashi, Japan .diabetesjournals.org/lookup/suppl/doi:10.2337/db17-1201/-/DC1. 2Division of Genetics, Department of Pediatrics, University of Tennessee Health © 2018 by the American Diabetes Association. Readers may use this article as Science Center, Memphis, TN long as the work is properly cited, the use is educational and not for profit, and the 3Research Program for Signal Transduction, Division of Endocrinology, Metabolism work is not altered. More information is available at http://www.diabetesjournals and Signal Research, Gunma University Initiative for Advanced Research, Gunma .org/content/license. University, Maebashi, Japan Corresponding author: Tetsuro Izumi, [email protected], or Katsuhide Okunishi, [email protected]. 1762 Roles of the Insulin-GDF3-ALK7 Axis in Obesity Diabetes Volume 67, September 2018 under specific conditions (6–9). Among these ligands, during shaking. The digested cells were filtered through GDF3 seems to function under nutrient-excess conditions, a 250-mm nylon mesh (Kyoshin Rikoh) and centrifuged at because both GDF3 and ALK7 knockout mice attenuate fat 50g for 10 min. The floating adipocytes were washed with accumulation in the face of high-fat diet (HFD)–induced PBS twice. After dispersing the pellet containing the obesity (9,10). However, it has not been shown that GDF3 stromal-vascular fraction (SVF), the medium was filtered directly activates ALK7 in adipocytes. Besides, neither through a 40-mm nylon mesh and centrifuged at 300g for the producer nor the upstream regulator of GDF3 under 10 min. The pellet was then incubated with erythrocyte- nutrient-excess conditions is known. In the current study, lysing buffer consisting of 155 mmol/L NH4Cl, 5.7 mmol/L we establish GDF3 as the physiological ligand that acti- K2HPO4, and 0.1 mmol/L EDTA at room temperature for vates ALK7 in adipocytes, and CD11c+ adipose tissue 1 min and washed twice with PBS. macrophages (ATMs) as the main cell source of GDF3. The cells in the SVF were resuspended in PBS, 2 mmol/L We further demonstrate that insulin upregulates GDF3 in EDTA, and 2% FBS, and were incubated with excess Fc ATMs ex vivo and stimulates fat accumulation in vivo block (anti-CD16/CD32 antibodies; BD Biosciences) to block through the GDF3-ALK7 signaling pathway. Our findings Fc receptor–mediated, nonspecific antibody binding. Cell reveal a novel mechanism by which insulin regulates surface markers were stained on ice in the dark for 20 min adiposity through ATMs in addition to its classically de- using CD11b-phycoerythrin-Cy7, F4/80-allophycocyanin fined direct effect on adipocytes. (Tonbo Biosciences), and CD11c-phycoerythrin (BD Bio- sciences) monoclonal antibodies. Some cells were stained RESEARCH DESIGN AND METHODS as negative controls with fluorochrome-matched isotype Animal Procedures control antibodies. After excluding dead cells by staining with 7-aminoactinomycin D, live cells were subjected to Animal experiments were performed in accordance with characterization of cell populations or to sorting of spe- the rules and regulations of the Animal Care and Exper- cific cell populations by a FACSVerse or a FACSAriaII Flow imentation Committee, Gunma University. The TSOD Cytometer (BD Biosciences). mouse was originally established from an outbred ddY strain as an inbred strain with obesity and urinary glucose RNA Preparation and Gene Expression Analyses (11). The congenic mouse strain T.B-Nidd5/3 was devel- RNA was extracted using Sepasol-RNA I Super (Nacalai oped and characterized previously (3,4). The GDF3 knock- Tesque). Total RNA (1 mg) was reverse transcribed using out mouse with a genetic background of C57BL/6J was oligo-(dT)12–18 primer and Superscript III (Invitrogen). described previously (10). C57BL/6N and BALB/cA mice Quantitative PCR was performed with SYBR Premix Ex were purchased from CLEA Japan. Only male mice were Taq (TaKaRa Bio) using a LightCyler 480 System (Roche). phenotypically characterized in the current study. Mice The results were normalized against 36B4 mRNA expres- had ad libitum access to water and standard laboratory sion. The primer sequences are listed in Supplementary chow (CE-2; CLEA Japan) in an air-conditioned room with Table 1. 12-h light/dark cycles. An HFD (55% fat, 28% carbohy- Antibodies, Immunoblotting, and Immunostaining drate, and 17% protein in calorie percentage; Oriental Rabbit polyclonal anti-ALK7 antibody was described pre- Yeast Co., Ltd.) was given to mice from 4 weeks of age viously (4). Rabbit monoclonal antibodies toward Smad3, for the indicated duration. For macrophage depletion, phospho-Smad3 (Ser 423/425), Akt, and phospho-Akt (Ser liposomes containing 110 mg/kg body weight clodronate 473) were purchased from Cell Signaling Technology. Rat (ClodronateLiposomes.org) were injected intraperitoneally monoclonal anti-Cripto and goat polyclonal anti-GDF3 twice per week. For the in vivo insulin administration, saline or 0.75 units/kg body weight insulin (Humulin R; antibodies were purchased from R&D Systems. Mouse monoclonal antibodies toward b-actin and a-tubulin Lilly), the amount generally used for insulin tolerance were purchased from Sigma-Aldrich. For immunoblotting, tests, was injected intraperitoneally twice daily. For bone isolated adipocytes and the SVF were lysed with buffer marrow (BM) transplantation, recipient C57BL/6N mice at (20 mmol/L HEPES, pH 7.4, 150 mmol/L NaCl, 1% Triton 8–10 weeks of age were irradiated twice with an individual X-100, 0.2 mmol/L EDTA, and 1 mmol/L dithiothreitol) dose of 5.4 Gy with a 3-h interval, and subsequently 6 containing protease and phosphatase inhibitors. The pro- received an intravenous injection of 2 3 10 BM cells tein extracts (8–10 mgformacrophagesand20mgfor from donor wild-type or GDF3 knockout mice. Mice
Recommended publications
  • Spemann Organizer Transcriptome Induction by Early Beta-Catenin, Wnt
    Spemann organizer transcriptome induction by early PNAS PLUS beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis Yi Dinga,b,1, Diego Plopera,b,1, Eric A. Sosaa,b, Gabriele Colozzaa,b, Yuki Moriyamaa,b, Maria D. J. Beniteza,b, Kelvin Zhanga,b, Daria Merkurjevc,d,e, and Edward M. De Robertisa,b,2 aHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662; bDepartment of Biological Chemistry, University of California, Los Angeles, CA 90095-1662; cDepartment of Medicine, University of California, Los Angeles, CA 90095-1662; dDepartment of Microbiology, University of California, Los Angeles, CA 90095-1662; and eDepartment of Human Genetics, University of California, Los Angeles, CA 90095-1662 Contributed by Edward M. De Robertis, February 24, 2017 (sent for review January 17, 2017; reviewed by Juan Larraín and Stefano Piccolo) The earliest event in Xenopus development is the dorsal accumu- Wnt8 mRNA leads to a dorsalized phenotype consisting entirely of lation of nuclear β-catenin under the influence of cytoplasmic de- head structures without trunks and a radial Spemann organizer terminants displaced by fertilization. In this study, a genome-wide (9–11). Similar dorsalizing effects are obtained by incubating approach was used to examine transcription of the 43,673 genes embryos in lithium chloride (LiCl) solution at the 32-cell stage annotated in the Xenopus laevis genome under a variety of con- (12). LiCl mimics the early Wnt signal by inhibiting the enzymatic ditions that inhibit or promote formation of the Spemann orga- activity of glycogen synthase kinase 3 (GSK3) (13), an enzyme nizer signaling center.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • Follistatin and Noggin Are Excluded from the Zebrafish Organizer
    DEVELOPMENTAL BIOLOGY 204, 488–507 (1998) ARTICLE NO. DB989003 Follistatin and Noggin Are Excluded from the Zebrafish Organizer Hermann Bauer,* Andrea Meier,* Marc Hild,* Scott Stachel,†,1 Aris Economides,‡ Dennis Hazelett,† Richard M. Harland,† and Matthias Hammerschmidt*,2 *Max-Planck Institut fu¨r Immunbiologie, Stu¨beweg 51, 79108 Freiburg, Germany; †Department of Molecular and Cell Biology, University of California, 401 Barker Hall 3204, Berkeley, California 94720-3204; and ‡Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707 The patterning activity of the Spemann organizer in early amphibian embryos has been characterized by a number of organizer-specific secreted proteins including Chordin, Noggin, and Follistatin, which all share the same inductive properties. They can neuralize ectoderm and dorsalize ventral mesoderm by blocking the ventralizing signals Bmp2 and Bmp4. In the zebrafish, null mutations in the chordin gene, named chordino, lead to a severe reduction of organizer activity, indicating that Chordino is an essential, but not the only, inductive signal generated by the zebrafish organizer. A second gene required for zebrafish organizer function is mercedes, but the molecular nature of its product is not known as yet. To investigate whether and how Follistatin and Noggin are involved in dorsoventral (D-V) patterning of the zebrafish embryo, we have now isolated and characterized their zebrafish homologues. Overexpression studies demonstrate that both proteins have the same dorsalizing properties as their Xenopus homologues. However, unlike the Xenopus genes, zebrafish follistatin and noggin are not expressed in the organizer region, nor are they linked to the mercedes mutation. Expression of both genes starts at midgastrula stages.
    [Show full text]
  • Nodal Signaling Is Required for Mesodermal and Ventral but Not For
    © 2015. Published by The Company of Biologists Ltd | Biology Open (2015) 4, 830-842 doi:10.1242/bio.011809 RESEARCH ARTICLE Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava Eric Röttinger1,2,3,*, Timothy Q. DuBuc4, Aldine R. Amiel1,2,3 and Mark Q. Martindale4 ABSTRACT early fate maps of direct and indirect developing hemichordates, are Nodal signaling plays crucial roles in vertebrate developmental similar to those of indirect-developing echinoids (Colwin and processes such as endoderm and mesoderm formation, and axial Colwin, 1951; Cameron et al., 1987; Cameron et al., 1989; Cameron patterning events along the anteroposterior, dorsoventral and left- and Davidson, 1991; Henry et al., 2001). While the bilaterally right axes. In echinoderms, Nodal plays an essential role in the symmetric echinoderm larvae exhibit strong similarities to establishment of the dorsoventral axis and left-right asymmetry, but chordates in axial patterning and germ layer specification events, not in endoderm or mesoderm induction. In protostomes, Nodal adult body plan comparisons in echinoderms have been difficult due signaling appears to be involved only in establishing left-right to their unique adult pentaradial symmetry. However, both the larval asymmetry. Hence, it is hypothesized that Nodal signaling has and adult body plans of enteropneust hemichordates are bilaterally been co-opted to pattern the dorsoventral axis of deuterostomes and symmetric, and larvae from indirect developing hemichordates for endoderm, mesoderm formation as well as anteroposterior such as Ptychodera flava (P. flava) share similarities in patterning in chordates. Hemichordata, together with echinoderms, morphology, axial organization, and developmental fate map with represent the sister taxon to chordates.
    [Show full text]
  • TGF Beta Signaling Pathways and Microrna Function in the Female Reproductive Tract
    TGF Beta signaling pathways and microRNA function in the female reproductive tract Prof. Martin Matzuk Baylor College of Medicine Intellectual and Developmental Disabilities Research Center Houston, TX, USA TGFb signaling pathways and microRNA function in the female reproductive tract Topic 1 TGFb Superfamily N Pro RRRR Mature C • Largest family of growth factor ligands in mammals • Function as secreted homodimers or heterodimers in multiple developmental and physiologic processes • We have been studying 12 family members including growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), activins, inhibins, and GDF3 GDF9 functions in folliculogenesis & cumulus expansion Pre-Ovulatory Follicle Cumulus GC Early Antral Follicle Ovulating Follicle Mural GC Fertilization Secondary & Embryo Follicle Development GDF9 KO Primary Primordial Follicle Follicles Dong et. al. Nature 1996 Elvin et al. Mol Endo, 1999a, b TGFb Superfamily “Canonical” Signaling Pathways – GDF9 and BMP15 appear to signal in different pathways GDF9/BMP b b Extracellular Cytoplasm Type II Type I (Kinase) (Kinase) “BMP” SMAD1/5/8 SMAD2/3 “Activin/TGFb” Pathway SMAD4 SMAD4 Pathway (BMP15) (GDF9) Nucleus BMP-Specific Activin-Specific Genes Genes What is the ovarian GDF9 type 1 receptor? ALK1 Activin receptor like-1 ALK2 Activin receptor 1 ALK3 BMP receptor 1A ALK4 Activin receptor 1B ALK5 TGFb receptor 1 ALK6 BMP receptor 1B ALK7 Activin receptor 1C b b Extracellular Cytoplasm Type II Type I (Kinase) (Kinase) “BMP” ALK2, ALK5, “GDF9” Pathway ALK3, ALK6
    [Show full text]
  • The Transcriptional Co-Regulator Jab1 Is Crucial for Chondrocyte
    234 Research Article The transcriptional co-regulator Jab1 is crucial for chondrocyte differentiation in vivo Dongxing Chen1, Lindsay A. Bashur1, Bojian Liang1,*, Martina Panattoni2, Keiko Tamai3,`, Ruggero Pardi2 and Guang Zhou1,3,4,§ 1Department of Orthopaedics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA 2San Raffaele University, School of Medicine and Scientific Institute San Raffaele, Milan, Italy 3Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA 4Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA *Present address: Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, People’s Republic of China `Present address: Oncology Research Laboratories, Daiichi Sankyo Co., Ltd.., Tokyo, Japan §Author for correspondence ([email protected]) Accepted 11 November 2012 Journal of Cell Science 126, 234–243 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.113795 Summary The evolutionarily conserved transcriptional cofactor Jab1 plays critical roles in cell differentiation, proliferation, and apoptosis by modulating the activity of diverse factors and regulating the output of various signaling pathways. Although Jab1 can interact with the bone morphogenetic protein (BMP) downstream effector Smad5 to repress BMP signaling in vitro, the role of Jab1 in BMP-mediated skeletogenesis in vivo is still poorly understood. As a key regulator of skeletogenesis, BMP signaling regulates the critical Ihh-Pthrp feedback loop to promote chondrocyte hypertrophy. In this study, we utilized the loxP/Cre system to delineate the specific role of Jab1 in cartilage formation. Strikingly, Jab1 chondrocyte-specific knockout Jab1flox/flox; Col2a1-Cre (cKO) mutants exhibited neonatal lethal chondrodysplasia with severe dwarfism.
    [Show full text]
  • Inhibition of Activin/Nodal and Wnt Signaling Andrey V
    RESEARCH ARTICLE 5345 Development 138, 5345-5356 (2011) doi:10.1242/dev.068908 © 2011. Published by The Company of Biologists Ltd Novel functions of Noggin proteins: inhibition of Activin/Nodal and Wnt signaling Andrey V. Bayramov*, Fedor M. Eroshkin*, Natalia Y. Martynova, Galina V. Ermakova, Elena A. Solovieva and Andrey G. Zaraisky‡ SUMMARY The secreted protein Noggin1 is an embryonic inducer that can sequester TGF cytokines of the BMP family with extremely high affinity. Owing to this function, ectopic Noggin1 can induce formation of the headless secondary body axis in Xenopus embryos. Here, we show that Noggin1 and its homolog Noggin2 can also bind, albeit less effectively, to ActivinB, Nodal/Xnrs and XWnt8, inactivation of which, together with BMP, is essential for the head induction. In support of this, we show that both Noggin proteins, if ectopically produced in sufficient concentrations in Xenopus embryo, can induce a secondary head, including the forebrain. During normal development, however, Noggin1 mRNA is translated in the presumptive forebrain with low efficiency, which provides the sufficient protein concentration for only its BMP-antagonizing function. By contrast, Noggin2, which is produced in cells of the anterior margin of the neural plate at a higher concentration, also protects the developing forebrain from inhibition by ActivinB and XWnt8 signaling. Thus, besides revealing of novel functions of Noggin proteins, our findings demonstrate that specification of the forebrain requires isolation of its cells from BMP, Activin/Nodal and Wnt signaling not only during gastrulation but also at post-gastrulation stages. KEY WORDS: Noggin, Activin, Nodal, Wnt, Forebrain, Xenopus INTRODUCTION laevis embryos, to bind to and antagonize several secreted proteins The secreted protein Noggin (Noggin1) was first discovered in known to be involved in regulation of TGF and Wnt signaling.
    [Show full text]
  • Signal Transduction Pathway Through Activin Receptors As a Therapeutic Target of Musculoskeletal Diseases and Cancer
    Endocr. J./ K. TSUCHIDA et al.: SIGNALING THROUGH ACTIVIN RECEPTORS doi: 10.1507/endocrj.KR-110 REVIEW Signal Transduction Pathway through Activin Receptors as a Therapeutic Target of Musculoskeletal Diseases and Cancer KUNIHIRO TSUCHIDA, MASASHI NAKATANI, AKIYOSHI UEZUMI, TATSUYA MURAKAMI AND XUELING CUI Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi 470-1192, Japan Received July 6, 2007; Accepted July 12, 2007; Released online September 14, 2007 Correspondence to: Kunihiro TSUCHIDA, Institute for Comprehensive Medical Science (ICMS), Fujita Health University, Toyoake, Aichi 470-1192, Japan Abstract. Activin, myostatin and other members of the TGF-β superfamily signal through a combination of type II and type I receptors, both of which are transmembrane serine/threonine kinases. Activin type II receptors, ActRIIA and ActRIIB, are primary ligand binding receptors for activins, nodal, myostatin and GDF11. ActRIIs also bind a subset of bone morphogenetic proteins (BMPs). Type I receptors that form complexes with ActRIIs are dependent on ligands. In the case of activins and nodal, activin receptor-like kinases 4 and 7 (ALK4 and ALK7) are the authentic type I receptors. Myostatin and GDF11 utilize ALK5, although ALK4 could also be activated by these growth factors. ALK4, 5 and 7 are structurally and functionally similar and activate receptor-regulated Smads for TGF-β, Smad2 and 3. BMPs signal through a combination of three type II receptors, BMPRII, ActRIIA, and ActRIIB and three type I receptors, ALK2, 3, and 6. BMPs activate BMP-specific Smads, Smad1, 5 and 8. Smad proteins undergo multimerization with co-mediator Smad, Smad4, and translocated into the nucleus to regulate the transcription of target genes in cooperation with nuclear cofactors.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials + - NUMB E2F2 PCBP2 CDKN1B MTOR AKT3 HOXA9 HNRNPA1 HNRNPA2B1 HNRNPA2B1 HNRNPK HNRNPA3 PCBP2 AICDA FLT3 SLAMF1 BIC CD34 TAL1 SPI1 GATA1 CD48 PIK3CG RUNX1 PIK3CD SLAMF1 CDKN2B CDKN2A CD34 RUNX1 E2F3 KMT2A RUNX1 T MIXL1 +++ +++ ++++ ++++ +++ 0 0 0 0 hematopoietic potential H1 H1 PB7 PB6 PB6 PB6.1 PB6.1 PB12.1 PB12.1 Figure S1. Unsupervised hierarchical clustering of hPSC-derived EBs according to the mRNA expression of hematopoietic lineage genes (microarray analysis). Hematopoietic-competent cells (H1, PB6.1, PB7) were separated from hematopoietic-deficient ones (PB6, PB12.1). In this experiment, all hPSCs were tested in duplicate, except PB7. Genes under-expressed or over-expressed in blood-deficient hPSCs are indicated in blue and red respectively (related to Table S1). 1 C) Mesoderm B) Endoderm + - KDR HAND1 GATA6 MEF2C DKK1 MSX1 GATA4 WNT3A GATA4 COL2A1 HNF1B ZFPM2 A) Ectoderm GATA4 GATA4 GSC GATA4 T ISL1 NCAM1 FOXH1 NCAM1 MESP1 CER1 WNT3A MIXL1 GATA4 PAX6 CDX2 T PAX6 SOX17 HBB NES GATA6 WT1 SOX1 FN1 ACTC1 ZIC1 FOXA2 MYF5 ZIC1 CXCR4 TBX5 PAX6 NCAM1 TBX20 PAX6 KRT18 DDX4 TUBB3 EPCAM TBX5 SOX2 KRT18 NKX2-5 NES AFP COL1A1 +++ +++ 0 0 0 0 ++++ +++ ++++ +++ +++ ++++ +++ ++++ 0 0 0 0 +++ +++ ++++ +++ ++++ 0 0 0 0 hematopoietic potential H1 H1 H1 H1 H1 H1 PB6 PB6 PB7 PB7 PB6 PB6 PB7 PB6 PB6 PB6.1 PB6.1 PB6.1 PB6.1 PB6.1 PB6.1 PB12.1 PB12.1 PB12.1 PB12.1 PB12.1 PB12.1 Figure S2. Unsupervised hierarchical clustering of hPSC-derived EBs according to the mRNA expression of germ layer differentiation genes (microarray analysis) Selected ectoderm (A), endoderm (B) and mesoderm (C) related genes differentially expressed between hematopoietic-competent (H1, PB6.1, PB7) and -deficient cells (PB6, PB12.1) are shown (related to Table S1).
    [Show full text]
  • The Nuclear Receptor REVERB Represses the Transcription of Growthdifferentiation Factor 10 and 15 Genes in Rat Endometrium Strom
    Physiological Reports ISSN 2051-817X ORIGINAL RESEARCH The nuclear receptor REV-ERBa represses the transcription of growth/differentiation factor 10 and 15 genes in rat endometrium stromal cells Lijia Zhao1, Keishiro Isayama1, Huatao Chen1,*, Nobuhiko Yamauchi1, Yasufumi Shigeyoshi2, Seiichi Hashimoto3 & Masa-aki Hattori1 1 Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan 2 Department of Anatomy and Neurobiology, Kinki University School of Medicine, Osaka, Japan 3 Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Keywords Abstract Circadian clock, decidualization, growth/ differentiation factors, REV-ERBa. Cellular oscillators in the uterus play critical roles in the gestation processes of mammals through entraining of the clock proteins to numerous downstream Correspondence genes, including growth/differentiation factor (Gdf)10 and Gdf15. The expres- Masa-aki Hattori, Department of Animal and sion of Gdf10 and Gdf15 is significantly increased in the uterus during decidu- Marine Bioresource Sciences, Graduate alization, but the mechanism underlying the regulation of Gdf gene expression School of Agriculture, Kyushu University, in the uterus is poorly understood. Here, we focused on the function of the Hakozaki, Higashi-ku, Fukuoka 812-8581, cellular oscillators in the expression of Gdf family by using uterine endome- Japan. Tel: +81-92-642-2938 trial stromal cells (UESCs) isolated from pregnant Per2-dLuc transgenic rats. Fax: +81-92-642-2938 A significant decline of Per2-dLuc bioluminescence activity was induced in E-mail: [email protected] in vitro decidualized UESCs, and concomitantly the expression of canonical clock genes was downregulated. Conversely, the expression of Gdf10 and ⁄ Present address Gdf15 of the Gdf was upregulated.
    [Show full text]
  • Vg1-Nodal Heterodimers Are the Endogenous Inducers of Mesendoderm Tessa G Montague1*, Alexander F Schier1,2,3,4,5*
    RESEARCH ARTICLE Vg1-Nodal heterodimers are the endogenous inducers of mesendoderm Tessa G Montague1*, Alexander F Schier1,2,3,4,5* 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States; 2Center for Brain Science, Harvard University, Cambridge, United States; 3Broad Institute of MIT and Harvard, Cambridge, United States; 4Harvard Stem Cell Institute, Cambridge, United States; 5FAS Center for Systems Biology, Harvard University, Cambridge, United States Abstract Nodal is considered the key inducer of mesendoderm in vertebrate embryos and embryonic stem cells. Other TGF-beta-related signals, such as Vg1/Dvr1/Gdf3, have also been implicated in this process but their roles have been unclear or controversial. Here we report that zebrafish embryos without maternally provided vg1 fail to form endoderm and head and trunk mesoderm, and closely resemble nodal loss-of-function mutants. Although Nodal is processed and secreted without Vg1, it requires Vg1 for its endogenous activity. Conversely, Vg1 is unprocessed and resides in the endoplasmic reticulum without Nodal, and is only secreted, processed and active in the presence of Nodal. Co-expression of Nodal and Vg1 results in heterodimer formation and mesendoderm induction. Thus, mesendoderm induction relies on the combination of two TGF-beta- related signals: maternal and ubiquitous Vg1, and zygotic and localized Nodal. Modeling reveals that the pool of maternal Vg1 enables rapid signaling at low concentrations of zygotic Nodal. DOI: https://doi.org/10.7554/eLife.28183.001 Introduction *For correspondence: tessa. [email protected] (TGM); The induction of mesoderm and endoderm (mesendoderm) during embryogenesis and embryonic [email protected] (AFS) stem cell differentiation generates the precursors of the heart, liver, gut, pancreas, kidney and other internal organs.
    [Show full text]
  • Activin/Nodal Signalling in Stem Cells Siim Pauklin and Ludovic Vallier*
    © 2015. Published by The Company of Biologists Ltd | Development (2015) 142, 607-619 doi:10.1242/dev.091769 REVIEW Activin/Nodal signalling in stem cells Siim Pauklin and Ludovic Vallier* ABSTRACT organisms. Of particular relevance, genetic studies in the mouse Activin/Nodal growth factors control a broad range of biological have established that Nodal signalling is necessary at the early processes, including early cell fate decisions, organogenesis and epiblast stage during implantation, in which the pathway functions adult tissue homeostasis. Here, we provide an overview of the to maintain the expression of key pluripotency factors as well as to mechanisms by which the Activin/Nodal signalling pathway governs regulate the differentiation of extra-embryonic tissue. Activins, β stem cell function in these different stages of development. dimers of different subtypes of Inhibin , are also expressed in pre- We describe recent findings that associate Activin/Nodal signalling implantation blastocyst but not in the primitive streak (Albano to pathological conditions, focusing on cancer stem cells in et al., 1993; Feijen et al., 1994). However, genetic studies have β tumorigenesis and its potential as a target for therapies. Moreover, shown that Inhibin s are not necessary for early development in the we will discuss future directions and questions that currently remain mouse (Lau et al., 2000; Matzuk, 1995; Matzuk et al., 1995a,b). unanswered on the role of Activin/Nodal signalling in stem cell self- Combined gradients of Nodal and BMP signalling within the renewal, differentiation and proliferation. primitive streak control endoderm and mesoderm germ layer specification and also their subsequent patterning whilst blocking KEY WORDS: Activin, Cell cycle, Differentiation, Nodal, neuroectoderm formation (Camus et al., 2006; Mesnard et al., Pluripotency, Stem cells 2006).
    [Show full text]