Mtor Signaling in Metabolism and Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Mtor Signaling in Metabolism and Cancer mTOR Signaling in mTOR Metabolism and Cancer • Shile Huang mTOR Signaling in Metabolism and Cancer Edited by Shile Huang Printed Edition of the Special Issue Published in Cells www.mdpi.com/journal/cells mTOR Signaling in Metabolism and Cancer mTOR Signaling in Metabolism and Cancer Editor Shile Huang MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Shile Huang Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center USA Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Cells (ISSN 2073-4409) (available at: https://www.mdpi.com/journal/cells/special issues/mTOR Signaling). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03943-553-1 (Hbk) ISBN 978-3-03943-554-8 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Preface to “mTOR Signaling in Metabolism and Cancer” ...................... ix Shile Huang mTOR Signaling in Metabolism and Cancer Reprinted from: Cells 2020, 9, 2278, doi:10.3390/cells9102278 ..................... 1 Xiangyong Wei, Lingfei Luo and Jinzi Chen Roles of mTOR Signaling in Tissue Regeneration Reprinted from: Cells 2019, 8, 1075, doi:10.3390/cells8091075 ..................... 5 Ye Chen, Jacob Colello, Wael Jarjour and Song Guo Zheng Cellular Metabolic Regulation in the Differentiation and Function of Regulatory T Cells Reprinted from: Cells 2019, 8, 188, doi:10.3390/cells8020188 ...................... 29 Carolina Simioni, Alberto M. Martelli, Giorgio Zauli, Elisabetta Melloni and Luca M. Neri Targeting mTOR in Acute Lymphoblastic Leukemia Reprinted from: Cells 2019, 8, 190, doi:10.3390/cells8020190 ...................... 41 Simone Mirabilii, Maria Rosaria Ricciardi and Agostino Tafuri mTOR Regulation of Metabolism in Hematologic Malignancies Reprinted from: Cells 2020, 9, 404, doi:10.3390/cells9020404 ...................... 67 Fiona H. Tan, Yuchen Bai, Pierre Saintigny and Charbel Darido mTOR Signalling in Head and Neck Cancer: Heads Up Reprinted from: Cells 2019, 8, 333, doi:10.3390/cells8040333 ...................... 85 Sandra M. Ayuk and Heidi Abrahamse mTOR Signaling Pathway in Cancer Targets Photodynamic Therapy In Vitro Reprinted from: Cells 2019, 8, 431, doi:10.3390/cells8050431 ......................109 Jean Christopher Chamcheu, Tithi Roy, Mohammad Burhan Uddin, Sergette Banang-Mbeumi, Roxane-Cherille N. Chamcheu, Anthony L. Walker, Yong-Yu Liu and Shile Huang Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy Reprinted from: Cells 2019, 8, 803, doi:10.3390/cells8080803 ......................125 Jasmina Makarevi´c, Jochen Rutz, Eva Juengel, Sebastian Maxeiner, Jens Mani, Stefan Vallo, Igor Tsaur, Frederik Roos, Felix K.-H. Chun and Roman A. Blaheta HDAC Inhibition Counteracts Metastatic Re-Activation of Prostate Cancer Cells Induced by Chronic mTOR Suppression Reprinted from: Cells 2018, 7, 129, doi:10.3390/cells7090129 ......................159 Wei Wen, Emily Marcinkowski, David Luyimbazi, Thehang Luu, Quanhua Xing, Jin Yan, Yujun Wang, Jun Wu, Yuming Guo, Dylan Tully, Ernest S. Han, Susan E. Yost, Yuan Yuan and John H. Yim Eribulin Synergistically Increases Anti-Tumor Activity of an mTOR Inhibitor by Inhibiting pAKT/pS6K/pS6 in Triple Negative Breast Cancer Reprinted from: Cells 2019, 8, 1010, doi:10.3390/cells8091010 .....................177 v About the Editor Shile Huang focuses on studying the role of mTOR signaling in human diseases, particularly in cancer. Since 1998, he has been studying how mTOR regulates cell survival, cell motility, and lymphangiogenesis; how some small molecules (e.g. curcumin, cryptotanshinone, dihydroartimisinin, and ciclopirox) act as anticancer agents; and how the heavy metal cadmium induces neuronal apoptosis. vii Preface to “mTOR Signaling in Metabolism and Cancer” The mechanistic/mammalian target of rapamycin (mTOR), a serine/threonine kinase, integrates environmental cues (hormones, growth factors, nutrients, oxygen, and energy), regulating cell growth, proliferation, survival and motility as well as metabolism. Dysregulation of mTOR signaling is implicated in a variety of disorders, such as cancer, obesity, diabetes, and neurodegenerative diseases. The articles published in this Special Issue reprint book summarize the current understanding of the mTOR pathway and its role in the regulation of tissue regeneration, regulatory T cell differentiation and function, and different types of cancer. I am very thankful to all authors for their kind cooperation and wonderful contribution. I am also very grateful to the Managing Editor Beatty Teng for selection of this Special Issue as a reprint book. Shile Huang Editor ix cells Editorial mTOR Signaling in Metabolism and Cancer Shile Huang 1,2 1 Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA; [email protected]; Tel.: +1-318-675-7759 2 Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA Received: 10 October 2020; Accepted: 13 October 2020; Published: 13 October 2020 Abstract: The mechanistic/mammalian target of rapamycin (mTOR), a serine/threonine kinase, is a central regulator for human physiological activity. Deregulated mTOR signaling is implicated in a variety of disorders, such as cancer, obesity, diabetes, and neurodegenerative diseases. The papers published in this special issue summarize the current understanding of the mTOR pathway and its role in the regulation of tissue regeneration, regulatory T cell differentiation and function, and different types of cancer including hematologic malignancies, skin, prostate, breast, and head and neck cancer. The findings highlight that targeting the mTOR pathway is a promising strategy to fight against certain human diseases. Keywords: mTOR; PI3K; Akt; tissue regeneration; regulatory T cells; tumor; photodynamic therapy The mechanistic/mammalian target of rapamycin (mTOR), a serine/threonine kinase, integrates environmental cues such as hormones, growth factors, nutrients, oxygen, and energy, regulating cell growth, proliferation, survival, motility and differentiation as well as metabolism (reviewed in [1,2]). Evidence has demonstrated that deregulated mTOR signaling is implicated in a variety of disorders, such as cancer, obesity, diabetes, and neurodegenerative diseases (reviewed in [1,2]). Current knowledge indicates that mTOR functions at least as two distinct complexes (mTORC1 and mTORC2) in mammalian cells. mTORC1 consists of mTOR, mLST8 (also termed G-protein β-subunit-like protein, GβL, a yeast homolog of LST8), raptor (regulatory-associated protein of mTOR), PRAS40 (proline-rich Akt substrate 40 kDa) and DEPTOR (DEP domain containing mTOR interacting protein), whereas mTORC2 is composed of mTOR, mLST8, rictor (rapamycin insensitive companion of mTOR), mSin1 (mammalian stress-activated protein kinase-interacting protein 1), protor (protein observed with rictor, also named PRR5, proline-rich protein 5), and DEPTOR [1,2]. mTORC1 regulates the phosphorylation or expression of p70 S6 kinase (S6K1), eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), lipin1, ULK1 (Unc-51 like autophagy activating kinase 1), TFEB (transcription factor EB), ATF4 (activating transcription factor 4), HIF1α (hypoxia-inducible factor 1 alpha), etc., and mediates the protein synthesis/turnover, lipid synthesis and nucleotide synthesis, thus controlling cell growth, proliferation, autophagy, and metabolism (reviewed in [1,2]). mTORC2 regulates the phosphorylation/activity of Akt, serum/glucocorticoid regulated kinase (SGK), protein kinase C (PKC), etc., thereby controlling cell migration, apoptosis and metabolism (reviewed in [1,2]). These findings not only reveal the crucial role of mTOR in physiology and pathology, but also reflect the complexity of the mTOR signaling network. The papers published in this special issue summarize the current understanding of the mTOR pathway and its role in the regulation of tissue regeneration, regulatory T cell differentiation and function, and diverse types of cancer including hematologic malignancies, skin, prostate, breast, and head and neck cancer. Cells 2020, 9, 2278; doi:10.3390/cells91022781 www.mdpi.com/journal/cells Cells 2020, 9, 2278 Wei et al. (2019) discussed the role of mTOR signaling in the regeneration of tissues in the optic nerve, spinal cord, muscles, the liver and the intestine [3]. Activated mTOR enhances the regeneration of adult retinal ganglion cells after optic nerve injury. However, hyperactivation of mTOR in astrocytes promotes glial scar formation,
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Neuroinflammation Triggered by Β-Glucan/Dectin-1 Signaling Enables CNS Axon Regeneration
    Neuroinflammation triggered by β-glucan/dectin-1 signaling enables CNS axon regeneration Katherine T. Baldwina,b,1, Kevin S. Carbajalc,d,1, Benjamin M. Segalc,d,2, and Roman J. Gigera,b,c,d,2 aDepartment of Cell and Developmental Biology, bCellular and Molecular Biology Graduate Program, cNeuroscience Graduate Program, and dHoltom-Garrett Program in Neuroimmunology, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109 Edited by Ben A. Barres, Stanford University School of Medicine, Stanford, CA, and approved January 22, 2015 (received for review December 22, 2014) Innate immunity can facilitate nervous system regeneration, yet growth can be undermined by concurrent toxicity (9). A deeper the underlying cellular and molecular mechanisms are not well understanding of these opposing effects will be important for understood. Here we show that intraocular injection of lipopoly- exploiting immunomodulatory pathways to promote neural re- saccharide (LPS), a bacterial cell wall component, or the fungal cell pair while minimizing bystander damage. wall extract zymosan both lead to rapid and comparable intravi- In the present study, we investigated the pathways that drive treal accumulation of blood-derived myeloid cells. However, when innate immune-mediated axon regeneration after ONC. We in- combined with retro-orbital optic nerve crush injury, lengthy duced sterile inflammation in the vitreous on the day of injury by growth of severed retinal ganglion cell (RGC) axons occurs only i.o. administration of zymosan or constituents of zymosan clas- in zymosan-injected mice, and not in LPS-injected mice. In mice sified as pathogen-associated molecular patterns (PAMPs). PAMPs dectin-1 deficient for the pattern recognition receptor but not are highly conserved microbial structures that serve as ligands for TLR2 , Toll-like receptor-2 ( ) zymosan-mediated RGC regeneration pattern recognition receptors (PRRs).
    [Show full text]
  • HEAT INACTIVATION of THIAMINASE in WHOLE FISH by R
    August 1966 COMMERCIAL FISHERIES REVIEW 11 HEAT INACTIVATION OF THIAMINASE IN WHOLE FISH By R. H. Gnaedinger and R. A. Krzeczkowskil,c ABSTRACT The time required at various temperatures to inactivate all of the thiam inase in several species of whole fish was studied. Some effects of pH and enzyme concentra ­ tion on the time-temperature inactivation were also determined. Whole raw fish were ground! sealed in spec~ally-constructed m etal cans, heated a t various tempera ­ tures .for. varIOUS length.s <;>f tune! and analyzed for residual thiaminase a ct ivity. Re ­ sul~ md.lcate that a m~un .um tune -tempe.rature of 5 minutes a t 1800 F. is required t<;> mac.tlvate all the .thl~mma s e of who.le hsh. Enzyme concentrations, pH, a nd pos­ slbly 011 c ontent of flsh mfluence the tune required to destroy thiaminase. INTRODUCTION The heating conditions employed b y commercial mink-food producers and mink ranchers ;0 destroy thiaminase in whole fish are empiri cal. The conditions are not based on predeter­ nined time-temperature relations for the thermal inactivation of this antimetabolite. A com­ mon practice, for example, is to cook the fish at 1800 -2000 F. for 15 minutes (Bor gstrom 1962). Most of the specific data available on the time -temperature r e la tion is found in various research publications dealing with the occurrence of thiamina s e in fish , or with studies on the chemistry of the enzyme. Deutsch and Hasler (1943) used 15 m i nutes at 100 0 C .
    [Show full text]
  • WO 2018/223101 Al 06 December 2018 (06.12.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/223101 Al 06 December 2018 (06.12.2018) W !P O PCT (51) International Patent Classification: (71) Applicant: JUNO THERAPEUTICS, INC. [US/US]; 400 A 61K 35/1 7 (20 15.0 1) A 61P 35/00 (2006 .0 1) Dexter Ave. N., Suite 1200, Seattle, WA 98109 (US). (21) International Application Number: (72) Inventor: ALBERTSON, Tina; 400 Dexter Ave. N., Suite PCT/US2018/035755 1200, Seattle, WA 98109 (US). (22) International Filing Date: (74) Agent: AHN, Sejin et al; Morrison & Foerster LLP, 1253 1 0 1 June 2018 (01 .06.2018) High Bluff Drive, Suite 100, San Diego, CA 92130-2040 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, (30) Priority Data: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 62/5 14,774 02 June 2017 (02.06.2017) US CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, 62/5 15,530 05 June 2017 (05.06.2017) US DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, 62/521,366 16 June 2017 (16.06.2017) u s HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 62/527,000 29 June 2017 (29.06.2017) u s KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 62/549,938 24 August 2017 (24.08.2017) u s MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 62/580,425 0 1 November 2017 (01 .11.2017) u s OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 62/593,871 0 1 December 2017 (01 .12.2017) u s SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/596,764 08 December 2017 (08.12.2017) u s TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Control Engineering Perspective on Genome-Scale Metabolic Modeling
    Control Engineering Perspective on Genome-Scale Metabolic Modeling by Andrew Louis Damiani A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 12, 2015 Key words: Scheffersomyces stipitis, Flux Balance Analysis, Genome-scale metabolic models, System Identification Framework, Model Validation, Phenotype Phase Plane Analysis Copyright 2015 by Andrew Damiani Approved by Jin Wang, Chair, Associate Professor of Chemical Engineering Q. Peter He, Associate Professor of Chemical Engineering, Tuskegee University Thomas W. Jeffries, Professor of Bacteriology, Emeritus; University of Wisconsin-Madison Allan E. David, Assistant Professor of Chemical Engineering Yoon Y. Lee, Professor of Chemical Engineering Abstract Fossil fuels impart major problems on the global economy and have detrimental effects to the environment, which has caused a world-wide initiative of producing renewable fuels. Lignocellulosic bioethanol for renewable energy has recently gained attention, because it can overcome the limitations that first generation biofuels impose. Nonetheless, in order to have this process commercialized, the biological conversion of pentose sugars, mainly xylose, needs to be improved. Scheffersomyces stipitis has a physiology that makes it a valuable candidate for lignocellulosic bioethanol production, and lately has provided genes for designing recombinant Saccharomyces cerevisiae. In this study, a system biology approach was taken to understand the relationship of the genotype to phenotype, whereby genome-scale metabolic models (GSMMs) are used in conjunction with constraint-based modeling. The major restriction of GSMMs is having an accurate methodology for validation and evaluation. This is due to the size and complexity of the models.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Effects of Dietary Thiaminase on Reproductive Traits in Three Populations of Atlantic Salmon Targeted for Reintroduction Into Lake Ontario
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 1-22-2020 1:00 PM Effects of dietary thiaminase on reproductive traits in three populations of Atlantic salmon targeted for reintroduction into Lake Ontario Kimberly T. Mitchell The University of Western Ontario Supervisor Neff, Bryan D. The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Kimberly T. Mitchell 2020 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Mitchell, Kimberly T., "Effects of dietary thiaminase on reproductive traits in three populations of Atlantic salmon targeted for reintroduction into Lake Ontario" (2020). Electronic Thesis and Dissertation Repository. 6826. https://ir.lib.uwo.ca/etd/6826 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The fitness of reintroduced salmonids in Lake Ontario can be reduced by high levels of thiaminase in exotic prey consumed at the adult stage. If sensitivity to dietary thiaminase differs among the three Atlantic salmon populations targeted for reintroduction into Lake Ontario, this could significantly influence their performance. I quantified the effects of experimental diets that contained high or low (control) levels of thiaminase on thiamine concentrations, survival, growth rate, and reproductive traits (sperm and egg quality) in Atlantic salmon from the three candidate source populations.
    [Show full text]
  • Thesis FINAL
    The Role of CD1d-Mediated Lipid Presentation by Regulatory B Cells in Invariant Natural Killer T Cell Suppression of Autoimmunity by Kristine Oleinika Supervisor Professor Claudia Mauri UCL Immunology I, Kristine Oleinika, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Kristine Oleinika Acknowledgements To Professor Claudia Mauri, my supervisor and mentor Throughout my PhD years I have so admired your energy and passion, which has made me fall in love with science over and over again. Thank you for looking after me, your guidance has been invaluable in my journey in both science and life. I am incredibly grateful for being part of the wonderful team that you have gathered around you, scientific debate that you have fostered in the group, and for encouraging the friendships within it. To all my colleagues You have made this such an adventure, sharing my enthusiasm for science, politics and footwear, with you I have always felt like a member of an incredibly, almost insultingly, over-educated and over-loving family. And I apologise for the many times you have had to endure listening to my idea for “PhD: the musical” and late night immunology aphorisms, or being on the receiving end of the impromptu enforced hugs. Lizzy, Diego and Paul – thank you for making me think about immunology, socialism, feminism, literature and art (..) ad infinitum. And for your helpful comments on the thesis. Madhvi, overachieving mama bear, thanks for being a fantastic listener.
    [Show full text]
  • Physiologically Based Pharmacokinetic Modeling in Regulatory Decision‐Making at the European Medicines Agency
    ARTICLES Physiologically Based Pharmacokinetic Modeling in Regulatory Decision-Making at the European Medicines Agency E Luzon1, K Blake1, S Cole2,3,4, A Nordmark4,5, C Versantvoort3,6 and E Gil Berglund3,5 Physiologically based pharmacokinetic (PBPK) modeling is a valuable tool in drug development and regulatory assessment, as it offers the opportunity to simulate the pharmacokinetics of a compound, with a mechanistic understanding, in a variety of populations and situations. This work reviews the use and impact of such modeling in selected regulatory procedures submitted to the European Medicines Agency (EMA) before the end of 2015, together with its subsequent reflection in public documents relating to the assessment of these procedures. It is apparent that the reference to PBPK modeling in regulatory public documents underrepresents its use. A positive trend over time of the number of PBPK models submitted is shown, and in a number of cases the results of these may impact the decision- making process or lead to recommendations in the product labeling. These results confirm the need for regulatory guidance in this field, which is currently under development by the EMA. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE WHAT THIS STUDY ADDS TO OUR KNOWLEDGE TOPIC? þ This is the first work presenting the situation in the Europe- þ PBPK is a cutting-edge technology that is increasingly being an Union and confirms what was detected by the FDA is a applied to drug development to address various aspects related global trend. to clinical pharmacology. Previous works by the FDA acknowl- HOW THIS MIGHT CHANGE CLINICAL PHARMA- edge its use in regulatory submissions in the US, but so far there COLOGY OR TRANSLATIONAL SCIENCE is no analysis of the European perspective.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-Activated Lymphoma Cell Line
    CANCER GENOMICS & PROTEOMICS 12 : 133-142 (2015) Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-activated Lymphoma Cell Line YASUTO AKIYAMA 1* , AKIRA IIZUKA 1* , AKIKO KUME 1, MASARU KOMIYAMA 1, KENICHI URAKAMI 2, TADASHI ASHIZAWA 1, HARUO MIYATA 1, MAHO OMIYA 1, MASATOSHI KUSUHARA 3 and KEN YAMAGUCHI 4 1Immunotherapy Division, 2Cancer Diagnostics Division, 3Regional Resources Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan; 4Office of the President, Shizuoka Cancer Center Hospital, Sunto-gun, Shizuoka, Japan Abstract. Background: Signal transducer and activator of enzymes including fructose-bisphosphate aldolase A transcription (STAT)3 is involved in a metabolic shift in (ALDOA) as a metabolic marker candidate for STAT3- cancer cells, the Warburg effect through its pro-oncogenic targeting therapy using STAT3-specific shRNA gene activity. To develop efficient STAT3 inhibitors against cancer transduction. In particular, latexin expression was up- cells, novel proteomic and metabolic target molecules need regulated in four STAT3-activated cancer cell lines including to be explored using multi-omics approaches in the context of SCC-3 transduced with STAT3-specific shRNA. The up- STAT3 gene inhibition-mediated tumor growth suppression. regulation of latexin was identified in SCC-3 tumors Materials and Methods: We found that short hairpin transplanted to nude mice after treatment with STAT3 (sh)RNA-mediated STAT3 inhibition suppressed tumor inhibitor. Conclusion: Our results suggest that STAT3 growth in a highly STAT3-activated lymphoma cell line, inactivation reverses the glycolytic shift by down-regulating SCC-3 cells, and we investigated the effect of STAT3 key enzymes and that it induces up-regulation of latexin as a inhibition on metabolic switching using 2-dimensional tumor-suppressor molecule, which partially results in cancer differential gel electrophoresis and capillary electrophoresis- cell apoptosis and tumor growth suppression.
    [Show full text]
  • Mtor Regulation of Metabolism in Hematologic Malignancies
    cells Review mTOR Regulation of Metabolism in Hematologic Malignancies Simone Mirabilii 1 , Maria Rosaria Ricciardi 1 and Agostino Tafuri 1,2,* 1 Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (S.M.); [email protected] (M.R.R.) 2 Hematology, “Sant’ Andrea” University Hospital, Sapienza University of Rome, 00185 Rome, Italy * Correspondence: [email protected]; Tel.: +39-06-3377-5113 Received: 6 December 2019; Accepted: 7 February 2020; Published: 11 February 2020 Abstract: Neoplastic cells rewire their metabolism, acquiring a selective advantage over normal cells and a protection from therapeutic agents. The mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase involved in a variety of cellular activities, including the control of metabolic processes. mTOR is hyperactivated in a large number of tumor types, and among them, in many hematologic malignancies. In this article, we summarized the evidence from the literature that describes a central role for mTOR in the acquisition of new metabolic phenotypes for different hematologic malignancies, in concert with other metabolic modulators (AMPK, HIF1α) and microenvironmental stimuli, and shows how these features can be targeted for therapeutic purposes. Keywords: mTOR; hematologic malignancies; cell metabolism 1. mTOR Structure and Function The mammalian Target of Rapamycin (mTOR) is a kinase involved in the PI3k/PTEN/Akt axis, which plays a key role in the control of many biological processes, including cell growth and survival, protein translation, ribosomal biogenesis, autophagy, and metabolism [1–3]. Originally identified in the yeast Saccharomyces cerevisiae, mTOR is a pleiotropic serine/threonine kinase of 289kDa, which shows a terminal COOH catalytic domain with a high sequence homology with PI3K [4].
    [Show full text]