Bioenergetic Abnormalities in Schizophrenia

Total Page:16

File Type:pdf, Size:1020Kb

Bioenergetic Abnormalities in Schizophrenia Bioenergetic abnormalities in schizophrenia A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Neuroscience of the College of Medicine by Courtney René Sullivan B.S. University of Pittsburgh, 2013 Dissertation Committee: Mark Baccei, Ph.D. (chair) Robert McCullumsmith, M.D., Ph.D. (advisor) Michael Lieberman, Ph.D. Temugin Berta, Ph.D. Robert McNamara, Ph.D. ABSTRACT Schizophrenia is a devastating illness that affects over 2 million people in the U.S. and displays a wide range of psychotic symptoms, as well as cognitive deficits and profound negative symptoms that are often treatment resistant. Cognition is intimately related to synaptic function, which relies on the ability of cells to obtain adequate amounts of energy. Studies have shown that disrupting bioenergetic pathways affects working memory and other cognitive behaviors. Thus, investigating bioenergetic function in schizophrenia could provide important insights into treatments or prevention of cognitive disorders. There is accumulating evidence of bioenergetic dysfunction in chronic schizophrenia, including deficits in energy storage and usage in the brain. However, it is unknown if glycolytic pathways are disrupted in this illness. This dissertation employs a novel reverse translational approach to explore glycolytic pathways in schizophrenia, effectively combining human postmortem studies with bioinformatic analyses to identify possible treatment strategies, which we then examine in an animal model. To begin, we characterized a major pathway supplying energy to neurons (the lactate shuttle) in the dorsolateral prefrontal cortex (DLPFC) in chronic schizophrenia. We found a significant decrease in the activity of two key glycolytic enzymes in schizophrenia (hexokinase, HXK and phosphofructokinase, PFK), suggesting a decrease in the capacity to generate bioenergetic intermediates through glycolysis in this illness. Notably, we did not detect protein changes in enzymes or transporters in this pathway in the DLPFC. This suggests the bioenergetic interplay of astrocytes and neurons in schizophrenia is highly complex and may not be fully appreciated at the region-level. Thus, we utilized a cell-level approach (laser capture microdissection) to generate populations of cells enriched for astrocytes or neurons cut from layers 3 and 5 of the DLPFC of schizophrenia and control ii subjects. We found significant mRNA changes in glycolytic enzymes (HXK1, PFKM, PFKL, and glucose-6-phosphate isomerase, GPI), lactate transporters (monocarboxylate transporter 1, MCT1), and glucose transporters (glucose transporter 1, GLUT1 and GLUT3) in pyramidal neurons in schizophrenia. Interestingly, we did not find any changes in astrocytes. This suggests a neuron-specific deficit in glycolytic pathways in the DLPFC in schizophrenia, which could contribute to pathophysiology of this illness. To build on these findings, we performed bioinformatic analyses to examine the implications of an altered bioenergetic profile in schizophrenia. We first sought to replicate our findings in additional cohorts of schizophrenia and control subjects. We probed 2 independent transcriptomic datasets (Stanley Medical Research Institute Online Genomics Database and Mount Sinai Microarray Dataset) for our metabolic targets. Supporting our hypothesis, we found several glycolytic enzymes and transporters to also be dysregulated in schizophrenia in these databases. Next, we utilized the Library of Integrated Network- Based Cellular Signatures (LINCS) database to generate transcriptional signatures containing differentially expressed genes associated with bioenergetic abnormalities in schizophrenia. Using these signatures, we performed enrichment analyses with Enrichr to probe for connected pathways and biological significance and found hits for cell metabolism, proliferation, immunity, and inflammation pathways. Furthermore, we compared our disease signatures to a library of “drug activity transcriptional signatures” to identify possible perturbagens with the ability to “reverse” the disease signature and inform future preclinical experiments. Top perturbagens included peroxisome proliferator-activated receptor (PPAR) agonists, capable of bolstering metabolic pathways and possibly reversing cognitive deficits. iii To further elucidate the role of bioenergetics in cognitive dysfunction, we examined metabolic pathways in the GluN1 knockdown (KD) model of schizophrenia. This genetic model has 10% of normal functioning n-methyl-D-aspartate receptor (NMDA) receptors levels and exhibits several endophenotypes of schizophrenia including impaired social interaction, increased stereotypic behaviors, and decreased performance in spatial and working memory tasks. Using mass spectrometry and pathway analyses, we found abnormal metabolic pathways in GluN1 KD mice, as well as decreases in lactate and glucose transporter transcripts. With the goal of reversing these deficits, we selected a top perturbagen from our drug discovery bioinformatic analysis (PPAR agonists) with the hypothesis that this drug intervention may help restore schizophrenia endophenotypes in this model. Pioglitazone (pio) is a synthetic ligand for PPARγ, which can alter the transcription and expression of glucose transporters, leading to changes in glucose uptake. We investigated the effects of (pio) treatment in the GluN1 KD model and found that pioglitazone treatment helped to restore explicit memory. This suggests bolstering metabolic pathways via pioglitazone may improve specific subtypes of cognition. This work has important implications for the treatment of cognitive illnesses with bioenergetic deficits such as schizophrenia. iv v ACKNOWLEDGEMENTS I want to extend great thanks to the many people who helped me reach success in this journey. You have all made me a better thinker, teammate, and person. First, I would like to thank my mentor, Dr. Robert McCullumsmith. Over the years, I realized just how lucky I was to work with you, and I am confident you were exactly what I needed. You pushed me to be the best scientist I could be, always supporting but never coddling me. I immediately noticed your great passion for research, as evidenced (you hate that phrase) by your Saturday phone calls to talk about awesome ideas that came to you about my project. You made me excited about science. I have appreciated the way you cared about my well-being, both personally and professionally. I always valued your enthusiasm and belief in me, and I feel honored to have been taken under your wing. I want to thank all the current and former members of the McCullumsmith laboratory. We have always prided ourselves on having an excellent lab milieu, and my career working with all of you is a testament to that. This work could never have been completed without you, and it has been a pleasure to work with you all. A special thanks to Sinead O’Donovan and Adam Funk, who have been there the duration of my time in the lab and never called any of my questions stupid or got annoyed with me for my numerous lab supply orders. You truly are some of the most gifted scientists I have met, and a joy to be around. I wouldn’t want to go to conferences or Christmas parties with any other postdocs. Also to Jennifer McGuire, Erica Carey, Emily Devine, Rachael Koene, Jarek Meller, Eduard Bentea, and Rebekka Meeks for their great help on these projects. The hard work you have done has not gone unnoticed. I would also like to extend a special thanks to my friends up north in Toronto, Canada. Dr. Amy Ramsey was kind enough to host me in her lab and work with her animals to complete the last chapter of my thesis. Our collaboration together has been wonderful, vi and you are an inspiring female role model. Living in another country for a month is not easy. Thus, I would also like to send a special thanks to Catharine Mielnik, who made Canada feel like a home. I learned more under your training than I could have ever hoped. You truly have a talent for what you do and teaching others, and my gratitude for our time together is great. Not only did I become a more well-rounded scientist, I gained a lifelong friend. I would next like to thank the Neuroscience Graduate Program, who proved repeatedly why I came to Cincinnati. Never have I seen faculty care so much about each individual student, and for this I never felt lost or alone. I would especially like to thank my dissertation committee: Dr. Mark Baccei, Dr. Robert McNamara, Dr. Michael Lieberman, and Dr. Temugin Berta, who guided me throughout this journey. Their feedback and thoughtful comments helped shape my ideas into excellent projects. Coming to UC was one of my best decisions thanks to the outstanding science and outstanding people. Of course, words cannot describe how amazing my family has been. From high school, to college, to graduate school, to say you were my biggest cheerleaders is an understatement. It is probably accurate to say you thought my work was cooler than I did, and your excitement for my future was never lost on me. You always made me feel special, and the pride you had in me motivated me every day. To my parents, no one has ever believed in me like you. To my mom, I am the luckiest daughter in the world to have someone who loves me enough to actually want to talk to me on the phone every few days. You have coached me through every part of life, and made me into the woman I am today. To my dad, who taught me that hard work pays off, you instilled in me the work ethic and drive that is essential to survive graduate school. You did everything for me along this journey, from rent money in college to moving me from 3rd floor apartments multiple times- I vii hope to attain your level of selflessness one day. You retain the right to go car shopping with me when I get a big girl job, a day you’ve always dreamed about. A huge thanks to my Grandma, I had no idea being away from you would be so hard.
Recommended publications
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Small-Molecule Inhibition of 6-Phosphofructo-2-Kinase Activity Suppresses Glycolytic Flux and Tumor Growth
    110 Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth Brian Clem,1,3 Sucheta Telang,1,3 Amy Clem,1,3 reduces the intracellular concentration of Fru-2,6-BP, Abdullah Yalcin,1,2,3 Jason Meier,2 glucose uptake, and growth of established tumors in vivo. Alan Simmons,1,3 Mary Ann Rasku,1,3 Taken together, these data support the clinical development Sengodagounder Arumugam,1,3 of 3PO and other PFKFB3 inhibitors as chemotherapeutic William L. Dean,2,3 John Eaton,1,3 Andrew Lane,1,3 agents. [Mol Cancer Ther 2008;7(1):110–20] John O. Trent,1,2,3 and Jason Chesney1,2,3 Departments of 1Medicine and 2Biochemistry and Molecular Introduction Biology and 3Molecular Targets Group, James Graham Brown Neoplastic transformation causes a marked increase in Cancer Center, University of Louisville, Louisville, Kentucky glucose uptake and catabolic conversion to lactate, which forms the basis for the most specific cancer diagnostic 18 Abstract examination—positron emission tomography of 2- F- fluoro-2-deoxyglucose (18F-2-DG) uptake (1). The protein 6-Phosphofructo-1-kinase, a rate-limiting enzyme of products of several oncogenes directly increase glycolytic glycolysis, is activated in neoplastic cells by fructose-2,6- flux even under normoxic conditions, a phenomenon bisphosphate (Fru-2,6-BP), a product of four 6-phospho- originally termed the Warburg effect (2, 3). For example, fructo-2-kinase/fructose-2,6-bisphosphatase isozymes c-myc is a transcription factor that promotes the expression (PFKFB1-4). The inducible PFKFB3 isozyme is constitu- of glycolytic enzyme mRNAs, and its expression is increased tively expressed by neoplastic cells and required for the in several human cancers regardless of the oxygen pressure high glycolytic rate and anchorage-independent growth of (4, 5).
    [Show full text]
  • Open Full Page
    Published OnlineFirst February 12, 2018; DOI: 10.1158/0008-5472.CAN-17-2215 Cancer Metabolism and Chemical Biology Research RSK Regulates PFK-2 Activity to Promote Metabolic Rewiring in Melanoma Thibault Houles1, Simon-Pierre Gravel2,Genevieve Lavoie1, Sejeong Shin3, Mathilde Savall1, Antoine Meant 1, Benoit Grondin1, Louis Gaboury1,4, Sang-Oh Yoon3, Julie St-Pierre2, and Philippe P. Roux1,4 Abstract Metabolic reprogramming is a hallmark of cancer that includes glycolytic flux in melanoma cells, suggesting an important role for increased glucose uptake and accelerated aerobic glycolysis. This RSK in BRAF-mediated metabolic rewiring. Consistent with this, phenotypeisrequiredtofulfill anabolic demands associated with expression of a phosphorylation-deficient mutant of PFKFB2 aberrant cell proliferation and is often mediated by oncogenic decreased aerobic glycolysis and reduced the growth of melanoma drivers such as activated BRAF. In this study, we show that the in mice. Together, these results indicate that RSK-mediated phos- MAPK-activated p90 ribosomal S6 kinase (RSK) is necessary to phorylation of PFKFB2 plays a key role in the metabolism and maintain glycolytic metabolism in BRAF-mutated melanoma growth of BRAF-mutated melanomas. cells. RSK directly phosphorylated the regulatory domain of Significance: RSK promotes glycolytic metabolism and the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), growth of BRAF-mutated melanoma by driving phosphory- an enzyme that catalyzes the synthesis of fructose-2,6-bisphosphate lation of an important glycolytic enzyme. Cancer Res; 78(9); during glycolysis. Inhibition of RSK reduced PFKFB2 activity and 2191–204. Ó2018 AACR. Introduction but recently developed therapies that target components of the MAPK pathway have demonstrated survival advantage in pati- Melanoma is the most aggressive form of skin cancer and arises ents with BRAF-mutated tumors (7).
    [Show full text]
  • Thesis FINAL
    The Role of CD1d-Mediated Lipid Presentation by Regulatory B Cells in Invariant Natural Killer T Cell Suppression of Autoimmunity by Kristine Oleinika Supervisor Professor Claudia Mauri UCL Immunology I, Kristine Oleinika, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Kristine Oleinika Acknowledgements To Professor Claudia Mauri, my supervisor and mentor Throughout my PhD years I have so admired your energy and passion, which has made me fall in love with science over and over again. Thank you for looking after me, your guidance has been invaluable in my journey in both science and life. I am incredibly grateful for being part of the wonderful team that you have gathered around you, scientific debate that you have fostered in the group, and for encouraging the friendships within it. To all my colleagues You have made this such an adventure, sharing my enthusiasm for science, politics and footwear, with you I have always felt like a member of an incredibly, almost insultingly, over-educated and over-loving family. And I apologise for the many times you have had to endure listening to my idea for “PhD: the musical” and late night immunology aphorisms, or being on the receiving end of the impromptu enforced hugs. Lizzy, Diego and Paul – thank you for making me think about immunology, socialism, feminism, literature and art (..) ad infinitum. And for your helpful comments on the thesis. Madhvi, overachieving mama bear, thanks for being a fantastic listener.
    [Show full text]
  • Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: an Update
    International Journal of Molecular Sciences Review Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update Philippe Icard 1,2,3,*, Antoine Coquerel 1,4, Zherui Wu 5 , Joseph Gligorov 6, David Fuks 7, Ludovic Fournel 3,8, Hubert Lincet 9,10 and Luca Simula 11 1 Medical School, Université Caen Normandie, CHU de Caen, 14000 Caen, France; [email protected] 2 UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Normandie Université, 14000 Caen, France 3 Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France; [email protected] 4 INSERM U1075, COMETE Mobilités: Attention, Orientation, Chronobiologie, Université Caen, 14000 Caen, France 5 School of Medicine, Shenzhen University, Shenzhen 518000, China; [email protected] 6 Oncology Department, Tenon Hospital, Pierre et Marie Curie University, 75020 Paris, France; [email protected] 7 Service de Chirurgie Digestive et Hépato-Biliaire, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France; [email protected] 8 Descartes Faculty of Medicine, University of Paris, Paris Center, 75006 Paris, France 9 INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France; [email protected] 10 ISPB, Faculté de Pharmacie, Université Lyon 1, 69373 Lyon, France 11 Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Citation: Icard, P.; Coquerel, A.; Wu, University of Paris, 75014 Paris, France; [email protected] Z.; Gligorov, J.; Fuks, D.; Fournel, L.; * Correspondence: [email protected] Lincet, H.; Simula, L.
    [Show full text]
  • Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-Activated Lymphoma Cell Line
    CANCER GENOMICS & PROTEOMICS 12 : 133-142 (2015) Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-activated Lymphoma Cell Line YASUTO AKIYAMA 1* , AKIRA IIZUKA 1* , AKIKO KUME 1, MASARU KOMIYAMA 1, KENICHI URAKAMI 2, TADASHI ASHIZAWA 1, HARUO MIYATA 1, MAHO OMIYA 1, MASATOSHI KUSUHARA 3 and KEN YAMAGUCHI 4 1Immunotherapy Division, 2Cancer Diagnostics Division, 3Regional Resources Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan; 4Office of the President, Shizuoka Cancer Center Hospital, Sunto-gun, Shizuoka, Japan Abstract. Background: Signal transducer and activator of enzymes including fructose-bisphosphate aldolase A transcription (STAT)3 is involved in a metabolic shift in (ALDOA) as a metabolic marker candidate for STAT3- cancer cells, the Warburg effect through its pro-oncogenic targeting therapy using STAT3-specific shRNA gene activity. To develop efficient STAT3 inhibitors against cancer transduction. In particular, latexin expression was up- cells, novel proteomic and metabolic target molecules need regulated in four STAT3-activated cancer cell lines including to be explored using multi-omics approaches in the context of SCC-3 transduced with STAT3-specific shRNA. The up- STAT3 gene inhibition-mediated tumor growth suppression. regulation of latexin was identified in SCC-3 tumors Materials and Methods: We found that short hairpin transplanted to nude mice after treatment with STAT3 (sh)RNA-mediated STAT3 inhibition suppressed tumor inhibitor. Conclusion: Our results suggest that STAT3 growth in a highly STAT3-activated lymphoma cell line, inactivation reverses the glycolytic shift by down-regulating SCC-3 cells, and we investigated the effect of STAT3 key enzymes and that it induces up-regulation of latexin as a inhibition on metabolic switching using 2-dimensional tumor-suppressor molecule, which partially results in cancer differential gel electrophoresis and capillary electrophoresis- cell apoptosis and tumor growth suppression.
    [Show full text]
  • Mtor Regulation of Metabolism in Hematologic Malignancies
    cells Review mTOR Regulation of Metabolism in Hematologic Malignancies Simone Mirabilii 1 , Maria Rosaria Ricciardi 1 and Agostino Tafuri 1,2,* 1 Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (S.M.); [email protected] (M.R.R.) 2 Hematology, “Sant’ Andrea” University Hospital, Sapienza University of Rome, 00185 Rome, Italy * Correspondence: [email protected]; Tel.: +39-06-3377-5113 Received: 6 December 2019; Accepted: 7 February 2020; Published: 11 February 2020 Abstract: Neoplastic cells rewire their metabolism, acquiring a selective advantage over normal cells and a protection from therapeutic agents. The mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase involved in a variety of cellular activities, including the control of metabolic processes. mTOR is hyperactivated in a large number of tumor types, and among them, in many hematologic malignancies. In this article, we summarized the evidence from the literature that describes a central role for mTOR in the acquisition of new metabolic phenotypes for different hematologic malignancies, in concert with other metabolic modulators (AMPK, HIF1α) and microenvironmental stimuli, and shows how these features can be targeted for therapeutic purposes. Keywords: mTOR; hematologic malignancies; cell metabolism 1. mTOR Structure and Function The mammalian Target of Rapamycin (mTOR) is a kinase involved in the PI3k/PTEN/Akt axis, which plays a key role in the control of many biological processes, including cell growth and survival, protein translation, ribosomal biogenesis, autophagy, and metabolism [1–3]. Originally identified in the yeast Saccharomyces cerevisiae, mTOR is a pleiotropic serine/threonine kinase of 289kDa, which shows a terminal COOH catalytic domain with a high sequence homology with PI3K [4].
    [Show full text]
  • Structures, Functions, and Mechanisms of Filament Forming Enzymes: a Renaissance of Enzyme Filamentation
    Structures, Functions, and Mechanisms of Filament Forming Enzymes: A Renaissance of Enzyme Filamentation A Review By Chad K. Park & Nancy C. Horton Department of Molecular and Cellular Biology University of Arizona Tucson, AZ 85721 N. C. Horton ([email protected], ORCID: 0000-0003-2710-8284) C. K. Park ([email protected], ORCID: 0000-0003-1089-9091) Keywords: Enzyme, Regulation, DNA binding, Nuclease, Run-On Oligomerization, self-association 1 Abstract Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI system are also highlighted. 2 Contents INTRODUCTION…………………………………………………………..4 STRUCTURALLY CHARACTERIZED ENZYME FILAMENTS…….5 Acetyl CoA Carboxylase (ACC)……………………………………………………………………5 Phosphofructokinase (PFK)……………………………………………………………………….6
    [Show full text]
  • Prioritization of Metabolic Genes As Novel Therapeutic Targets in Estrogen-Receptor Negative Breast Tumors Using Multi-Omics Data and Text Mining
    www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 39), pp: 3894-3909 Research Paper Prioritization of metabolic genes as novel therapeutic targets in estrogen-receptor negative breast tumors using multi-omics data and text mining Dinesh Kumar Barupal1,*, Bei Gao1,*, Jan Budczies2, Brett S. Phinney4, Bertrand Perroud4, Carsten Denkert2,3 and Oliver Fiehn1 1West Coast Metabolomics Center, University of California, Davis, CA, USA 2Institute of Pathology, Charité University Hospital, Berlin, Germany 3German Institute of Pathology, Philipps-University Marburg, Marburg, Germany 4UC Davis Genome Center, University of California, Davis, CA, USA *Co-first authors and contributed equally to this work Correspondence to: Oliver Fiehn, email: [email protected] Keywords: set-enrichment; ChemRICH; multi-omics; metabolic networks; candidate gene prioritization Received: March 12, 2019 Accepted: May 13, 2019 Published: June 11, 2019 Copyright: Barupal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Estrogen-receptor negative (ERneg) breast cancer is an aggressive breast cancer subtype in the need for new therapeutic options. We have analyzed metabolomics, proteomics and transcriptomics data for a cohort of 276 breast tumors (MetaCancer study) and nine public transcriptomics datasets using univariate statistics, meta- analysis, Reactome pathway analysis, biochemical network mapping and text mining of metabolic genes. In the MetaCancer cohort, a total of 29% metabolites, 21% proteins and 33% transcripts were significantly different (raw p <0.05) between ERneg and ERpos breast tumors.
    [Show full text]
  • Vitamin K2 Promotes PI3K/AKT/HIF-1Α-Mediated
    www.nature.com/scientificreports OPEN Vitamin K2 promotes PI3K/AKT/ HIF-1α-mediated glycolysis that leads to AMPK-dependent autophagic cell death in bladder cancer cells Fengsen Duan1, Chunlei Mei2, Luhao Yang2, Junyan Zheng2, Huiai Lu1, Yanzhi Xia1, Stacy Hsu4, Huageng Liang3 ✉ & Ling Hong1 ✉ Vitamin K2 has been shown to exert remarkable anticancer activity. However, the detailed mechanism remains unclear. Here, our study was the frst to show that Vitamin K2 signifcantly promoted the glycolysis in bladder cancer cells by upregulating glucose consumption and lactate production, whereas inhibited TCA cycle by reducing the amounts of Acetyl-CoA. Moreover, suppression of PI3K/ AKT and HIF-1α attenuated Vitamin K2-increased glucose consumption and lactate generation, indicating that Vitamin K2 promotes PI3K/AKT and HIF-1α-mediated glycolysis in bladder cancer cells. Importantly, upon glucose limitation, Vitamin K2-upregulated glycolysis markedly induced metabolic stress, along with AMPK activation and mTORC1 pathway suppression, which subsequently triggered AMPK-dependent autophagic cell death. Intriguingly, glucose supplementation profoundly abrogated AMPK activation and rescued bladder cancer cells from Vitamin K2-triggered autophagic cell death. Furthermore, both inhibition of PI3K/AKT/HIF-1α and attenuation of glycolysis signifcantly blocked Vitamin K2-induced AMPK activation and subsequently prevented autophagic cell death. Collectively, these fndings reveal that Vitamin K2 could induce metabolic stress and trigger AMPK-dependent autophagic cell death in bladder cancer cells by PI3K/AKT/HIF-1α-mediated glycolysis promotion. Cancer cells, including bladder carcinoma cells, display the altered metabolism, compared to normal cells1. One of the most metabolic shifs in cancer cells is the aberrant glucose metabolism.
    [Show full text]
  • Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia
    cancers Article Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia Miriam G. Contreras Mostazo 1,2,3, Nina Kurrle 3,4,5, Marta Casado 6,7 , Dominik Fuhrmann 8, Islam Alshamleh 4,9, Björn Häupl 3,4,5, Paloma Martín-Sanz 7,10, Bernhard Brüne 5,8,11 , 3,4,5 4,9 3,4,5, 1,2,7,12, , Hubert Serve , Harald Schwalbe , Frank Schnütgen y , Silvia Marin * y 1,2,7,12, , and Marta Cascante * y 1 Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] 2 Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain 3 Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; [email protected] (N.K.); [email protected] (B.H.); [email protected] (H.S.); [email protected] (F.S.) 4 German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; [email protected] (I.A.); [email protected] (H.S.) 5 Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany; [email protected] 6 Biomedicine Institute of Valencia, IBV-CSIC, 46010 Valencia, Spain; [email protected] 7 CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; [email protected] 8 Institute of Biochemistry I, Faculty of
    [Show full text]