Weiler2006.Pdf (5.444Mb)
Total Page:16
File Type:pdf, Size:1020Kb
Study of the Gas and Dust Activity of Recent Comets vorgelegt von Diplom-Physiker Michael Weiler aus Andernach Von der Fakult¨at II - Mathematik und Naturwissenschaften der Technischen Universit¨at Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr.-Ing. Hans Joachim Eichler Berichter/Gutachter: Prof. Dr. rer. nat. Heike Rauer Berichter/Gutachter: Prof. Dr. rer. nat. Erwin Sedlmayr Tag der wissenschaftlichen Aussprache: 18.12.2006 Berlin 2007 D 83 1 Contents 0 Zusammenfassung 6 1 Introduction 7 1.1 Historical Development of Comet Science in Brief . ...... 7 1.2 Short Overview of the Present Picture of Comets . ..... 7 1.2.1 TheCometaryNucleus ........................ 8 1.2.2 TheDustComaandTail........................ 9 1.2.3 TheNeutralComa ........................... 10 1.2.4 ThePlasmaEnvironment . 10 1.2.5 Dynamical Classification of Comets . 11 1.2.6 CometarySourceRegions . 12 1.2.7 Classification according to the Coma Composition . 13 1.2.8 Correlations between Taxonomy, Source Regions, and Formation RegionsofComets ........................... 14 1.3 The Formation Chemistry of C2 and C3 ................... 15 1.4 Goalsofthiswork................................ 16 2 Optical Comet Observations 19 2.1 OpticalEmissionsfromComets . 19 2.1.1 GasEmissions.............................. 19 2.1.2 Light Scattering by Dust Particles . 20 2.1.3 OpticalObservationsoftheNucleus. 21 2.2 Overview of Observational Techniques . 22 2.2.1 Long-SlitSpectroscopy . 22 2.2.2 Imaging ................................. 23 2.3 ObservationalDatasetofthisWork . 23 2.3.1 Observations of Comet 67P/Churyumov-Gerasimenko . 24 2.3.2 Observations of Comet 9P/Tempel 1 . 27 2.3.3 Observations of Comets C/2002 T7 LINEAR and C/2001 Q4 NEAT 28 2.3.4 Reference Observations of Comet C/1995 O1 Hale-Bopp . 28 3 Data Reduction 32 3.1 BasicReductionSteps ............................. 32 3.1.1 Removal of Cosmic Ray Events . 32 3.1.2 BiasSubtraction ............................ 33 3.1.3 Correction for Dark Current . 34 3.1.4 FlatfieldCorrection. 34 3.1.5 Wavelength Calibration . 35 2 3.1.6 SkyBackgroundSubtraction. 35 3.1.7 ExtinctionCorrection. 37 3.1.8 FluxCalibration ............................ 38 3.1.9 Gas Emission - Continuum Separation . 38 3.2 SpecificReductionSteps . 39 3.2.1 Removal of Coherent Noise . 39 3.2.2 Correction for Straylight . 40 3.2.3 Correction for Differential Movement of a Comet . 41 3.2.4 Removal of Detector Effects . 43 4 Model of the Coma Chemistry 44 4.1 HydrodynamicsoftheComa. 44 4.1.1 BasicEquations............................. 44 4.1.2 Generalization to a Simplified Multi-Fluid Model . ..... 45 4.1.3 InitialConditions ............................ 47 4.1.4 GeneralSourceTerms . 48 4.2 ChemicalReactionsintheComa . 49 4.2.1 ReactionTypes ............................. 49 4.2.2 Mathematical Description of Chemical Reactions . ..... 52 4.2.3 OpticalDensityEffects. 54 4.3 TreatmentoftheEnergySourceTerms . 56 chem chem chem 4.3.1 Gn , Gi , and Ge ....................... 56 4.3.2 ElectronScattering . 57 4.3.3 NeutralScattering ........................... 60 4.3.4 Neutral IonScattering........................ 61 − 4.4 NumericalIntegration ............................. 61 4.4.1 Stiff Systems of Ordinary Differential Equations . 61 4.4.2 The METAN1 Integrator ......................... 62 4.4.3 Numerical Tests for Consistency . 63 4.5 Relative Importance of the Different Source Terms . ...... 65 4.6 DiscussionoftheSimplifications. 66 4.6.1 HydrodynamicFlow .......................... 66 4.6.2 SteadyStateFlow ........................... 67 4.6.3 Spherical Symmetry and the Negligence of Magnetic Fields..... 68 4.6.4 Negligence of Superthermal Species . 68 4.6.5 NegligenceofDust ........................... 69 4.7 RelationtotheHaserModel ......................... 69 4.8 ComparisonofCurrentComaModels . 70 3 5 Comparison between Chemical Model Output and Observations 74 5.1 Conversion from Number Density to Column Density . 74 5.2 Conversion from Line Flux to Column Density . 75 5.3 Simultaneous Fitting of the C3 and C2 Radial Emission Profiles . 75 5.3.1 Fitting of Multiple Parent Species . 75 5.3.2 InfluenceoftheSeeing . 78 5.3.3 Weighting of the Data Points . 78 6 Model Validation 79 6.1 Test Computation for Comet Hyakutake . 79 6.2 Test Computation for Comet C/1995 O1 Hale-Bopp . 80 7 Applications of the Chemistry Model with the Reaction Network by Helbert (2002) 85 7.1 OverviewoftheInputParameters. 85 7.2 Selection of the Column Density Profiles . 85 7.3 Results of the Fitting of the C3 Column Density Profiles . 87 7.4 Results of the Fitting of the C2 Column Density Profiles . 87 7.5 Discussion.................................... 88 8 Revised Formation Chemistry of C3 and C2 92 8.1 Potential C3 and C2 ParentSpecies...................... 92 8.1.1 C3H4, C2H2, and C2H6 ........................ 92 8.1.2 C4H2 .................................. 92 8.1.3 C3H2O ................................. 93 8.1.4 HC3N .................................. 94 8.2 Revised Reaction Rate Coefficients . 96 8.2.1 Electron Impact Reactions . 96 8.2.2 Photoreactions ............................. 97 8.3 Summary of the Revised Formation of C3 and C2 .............. 97 9 Analysis of the C3 and C2 Column Density Profiles 99 9.1 Influence of the Solar Activity Cycle . 99 9.2 Influence of the Different Parent Species upon the C3 and C2 Column DensityProfiles ................................. 99 9.3 Influence of Electron Impact Reactions upon the C3 and C2 Column Den- sityProfiles ...................................103 9.4 Influence of the Gas Expansion Velocity upon the Column Density Profiles 107 9.5 InfluenceoftheNucleusSize. 109 4 10 Applications of the Chemistry Model with Revised Reaction Network 111 10.1 Fitting of the C3 Column Density Profiles . 111 10.2 Fitting of the C2 Column Density Profiles . 112 10.3 Production Rates of the C2 and C3 Parent Species . 112 10.4 SummaryandDiscussion. .113 11 Comet of Special Interest: 67P/Churyumov- Gerasimenko 121 11.1Introduction................................... 121 11.2 StudyoftheGasComa.............................122 11.3 StudyoftheDustComa ............................122 11.3.1 DustColour...............................122 11.3.2 DustComaMorphology . .125 11.3.3 The Afρ Parameter...........................126 11.3.4 Dust Production Rates with a Test Particle Approach . 127 11.3.5 Dust Velocities with Full Gas-Dust Interaction . 131 11.3.6 Dust Production Rates of Comet 67P/Churyumov-Gerasimenko . 133 11.3.7 ImplicationsfortheDustFlux. 135 11.4 Discussion of the Coma Analysis . 136 12 Comet of Special Interest: 9P/Tempel 1 139 12.1Introduction................................... 139 12.2 Comparison of the Pre- and Post-Impact Spectra . 140 12.3 SpatialGasandDustProfiles . 141 12.4 GasProductionRates ............................. 145 12.5 QuantitativeStudyoftheImpactCloud . 146 12.6 Comparison of the Coma and the Impact Cloud Composition . 148 12.7 Rotational Coma Variations . 150 12.8 SummaryandDiscussion. .153 13 A Method for Determining Comet Nuclear Sizes 157 13.1Overview.....................................157 13.2 TheSelectedDataset .............................. 158 13.3 PhotometricAnalysis. 159 13.4 NucleusSizeDetermination . 163 13.5 Check for Undetected Activity . 164 13.6 ComparisonoftheSizeDistributions . 170 13.7 Discussion of Possible Activity Mechanisms . 174 13.8 DiscussionandConclusions . .177 5 14 Summary and Outlook 180 14.1Summary ....................................180 14.1.1 Results of the Coma Chemistry Modelling . 180 14.1.2 Results for Comet 67P/Churyumov-Gerasimenko . 181 14.1.3 Results for Comet 9P/Tempel 1 . 182 14.1.4 Results from the Nuclear Size Determination . 182 14.2Outlook .....................................183 References 185 Appendix A Chemical Reaction Network 198 Appendix B List of Used IAU Circulars 224 ZUSAMMENFASSUNG 6 0 Zusammenfassung Kometen geh¨oren zu den seit seiner Entstehung am wenigsten ver¨anderten Objekten im Sonnensystem. Ihre Untersuchung erm¨oglicht daher R¨uckschl¨usse auf die physikalischen und chemischen Bedingungen im pr¨asolaren Nebel. In dieser Arbeit wurde ein eindimensionales vereinfachtes Multi-Fluid-Model zur Be- schreibung der Chemie in der Kometenkoma aufgebaut. Dieses Modell wurde verwendet, um die Entstehung der Radikale C3 und C2 in zu untersuchen. Dazu wurden radiale Pro- file der optischen Emissionen von C3 und C2 der Kometen C/2001 Q4 NEAT, C/2002 T7 LINEAR und 9P/Tempel 1 bei heliozentrischen Abst¨anden zwischen 1,0 AE und 1,5 AE verwendet. Diese wurden mittels Langspaltspektroskopie erhalten. Ein Reaktionsnetz- werk zur Erkl¨arung der Bildung von C3 und C2 bei gr¨oßeren heliozentrischen Abst¨anden (Helbert, 2002) wurde aktualisiert und erweitert. Es wurden Molek¨ule und Radikale iden- tifiziert, deren Photoreaktionsraten vor einer Erkl¨arung der C3- und C2-Bildung genauer bestimmt werden m¨ussen. Als Kometen von besonderem Interesse wurden 67P/Churyumov-Gerasimenko und 9P/Tempel 1 detaillierter untersucht. Beide Kometen sind Ziele von Weltraummissionen. Archivbeobachtungen des Kometen 67P/Churyumov-Gerasimenko sowie Bilder der Staubkoma wurden analysiert. Die Daten wurden verwendet, um die Langzeitaktivit¨at des Kometen zu untersuchen. Daten zur Staub- und Gasaktivit¨at wurden verwendet, um den Staubfluß in der inneren Koma abzusch¨atzen. Diese Analysen dienen der Vorbereitung der europ¨aischen Weltraummission Rosetta, die im Jahr 2014 den Kometen erreichen wird. Komet 9P/Tempel 1 war das