1) Introduction 2) Ionization Region

Total Page:16

File Type:pdf, Size:1020Kb

1) Introduction 2) Ionization Region Anatomy of an IRMS Lecture 5 – Ionization Sources Reading: Nier (1947) 1) Introduction a) Last week we figured out how to get the sample into the vacuum system, now what? In order to manipulate (weigh) molecules, they need to be charged (ie, ions). This is universally true of mass spectrometers. Many different ways of ionizing a gas. b) Jobs of an ion source i) Get sample into gas phase ii) Ionize that gas iii) Collect and collimate ions into a focused beam, accelerated into the analyzer region c) Overview of ionization sources i) Electron impact. Beam of electrons strike gas molecules, knock of another electron to yield + ions. Very stable and highly efficient, but leads to substantial fragmentation. ii) Chemical ionization. Generally use an EI source to ionize a reagent gas (NH4 or CH4), then that can charge-transfer to sample gas. Soft method, limited fragmentation. Mainly used in molecular studies of unknowns iii) Plasma ionization. Generate an external ionized gas (plasma) that is very hot. Spray sample in to produce aerosol particles, molecules thermally loses electrons to become ionized. Most flexible approach for liquids, but downside is that it can be quite difficult to keep it stable. (1) Note conventional source is Ar plasma heated by radio-frequency induction (2) Also possible to generate plasma by microwave discharge; NOSAMS has developed He plasma that is ~20% efficient. iv) Thermal ionization. Sample is isolated in solution, dried onto a conductive filament. When filament is heated in IRMS, sample is thermally desorbed and ionized. The most stable way of continually introducing a solid sample matrix, so used for highest-precision geochronology. Can yield negative or positive ions by changing extraction polarity. v) Secondary ionization. Hit sample with primary ion beam (Cs+ or O-) which knock atoms out of sample matrix and ionize them in process. Need to collect and collimate ions, then transfer to MS. Can provide spatial resolution, such as used in SIMS. Or with a big beam can provide highly efficient ionization (10’s of percent), as in the graphite sputter source of AMS. All are relatively finicky sources. vi) Photoionization. Can use photons of proper wavelength to ionize molecules. Most common is laser desorption, which is effective for large biomolecules in the solid phase. Uses special matrix to assist in ionization of sample (MALDI). Can also use resonant-frequency ionization in gas phase to very selectively ionize certain components. This is how PAH’s are detected at absurdly low levels, for example in ALHXXX meteorite. vii) Electrospray ionization. Spray a conductive solution out of a high-voltage needle into vacuum. As solvent evaporates, charge is deposited on remaining aerosol particles. Very soft ionization technique, yields to multiple charge states. Standard approach for HPLC of large biomolecules. d) Relevant characteristics i) Efficiency (molecules/ion; a part of “useful ion yield”) ii) Selectivity (probability to ionize different kinds of molecules) iii) Fragmentation (hard vs soft), scrambling iv) Adducts (Na in electrospray, H in EI) v) Intensity (beam size) vi) Stability vii) Collimation and energy distribution of ions 2) Ionization Region 1 Anatomy of an IRMS Lecture 5 – Ionization Sources a) Use Nier-type EI source as example b) Ionization energy i) Control electron energy by adjusting potential difference between filament and trap. Energy transfer (thus efficiency) is maximized at around 70 eV, where the de Broglie wavelength of ionizing electrons approximately matches the bond length of molecules. Can adjust higher or lower to provide some selectivity in ionizing certain molecules. Typically adjusted over very narrow range. ii) Path length c) Path length i) The longer the path length of ionizing electrons, the greater the probability of interaction with gas molecules. ii) Physical size of source is limited by ion optics, typically ~1cm3. iii) Placing source in magnetic field causes electrons to follow field lines and be pushed in a spiral pattern. This greatly increases path length and thus efficiency. d) Open vs Closed source i) The longer the lifetime of gas molecules in source, the higher the probability of being ionized. Downside of longer residence time is temporal resolution of dynamic peaks (eg, chromatographic peaks), as well as greater probability of intermolecular reactions. Represents a fundamental tradeoff. IRMS instruments generally use a “tight” source. GC/MS instruments generally use an “open” source. ii) Managed by adjusting the conductance of the source. An “open” source provides short residence times and low sensitivity, “closed” source has higher gas pressure, longer residence time, higher sensitivity. (1) Some older instruments included a VISC (variable ion-source conductance, or ‘sulfur window’); essentially a window that can be manually opened or closed. 3) Extraction and collimation a) Extraction. Two fundamental approaches are to push ions out (repeller lens) versus pull them out (extraction lens). Both rely on putting the ionization region into an electrical gradient, such that positive ions are accelerated “downhill” and out some exit aperture. IRMS sources generally use extraction lens. Note that the extraction lens does not have to be at negative potential relative to ground, just lower than ionization region. Entire source is held at some positive voltage to accelerate ions towards entrance slit which is at ground. b) This process imparts the kinetic energy to the ions, determines the energy of the primary ion beam. i) Higher energy beams provide better characteristics for focusing and transmission, less scattering, as well as better detection. For us main things are higher transmission, better abundance sensitivity. Typical range for IRMS is 3-10 kV. Note that a singly charged ion would then have translational kinetic energy of 3-10 KeV. Many benchtop MS instruments are only 1-2 kV. Accelerators (like AMS) often use energies of MeV. ii) Traditional in physics to talk about instruments in terms of ion energy (as the limiting characteristic). There is still some holdover of this in IRMS, a 10KeV instrument is better than a 3 KeV… For most mass spectrometry, resolution and speed are way more important than energy. iii) Drawback of higher energies is that you have to generate and insulate higher voltages, which increases the size and cost and complexity of everything. This is already a challenge at 10KV. One thing to look at in our ion source is how components are electrically isolated. c) Second important characteristic is energy distribution of ions. Ions forming at different points in the ion source will be accelerated across a different distance in the extraction field, and so will have different kinetic energy. Typically end up with ~Gaussian energy distribution. Since analyzers separate ions based on mass + charge, a broader range of energies will lead to broader 2 Anatomy of an IRMS Lecture 5 – Ionization Sources “peaks” in the analyzer, thus a narrow range is better. Very important to both mass resolution and accuracy. Other tricks to reduce energy spread of ions. d) Extraction produces a cloud of ions moving in same general direction, but with divergent velocities. For the analyzer, we need them to all have same direction. Known as “collimation”. i) Collimation and focusing of ions is accomplished by a series of ion optical elements. Simplest one is an ‘electrostatic lens’, also called ‘Einzel lens’, which is 2 or more thin metal disks with hole in the center. Difference in voltage between lenses causes a shaped electric field that will bend the path of ions without altering their energy. Very much analogous to optical lenses. ii) Other types of lenses exist – cylindrical, quadrupole, magnetic, etc. Some appear in Ultra/Neptune, not in simple IRMS instruments. 4) Ion Beam Intensity a) We now have a collimated and focused ion beam. The flux of ions in this beam is referred to as “intensity”. Jargon is “bright” or “dim”. Since precision of isotope-ratio measurement is a function of how many ions you can count, we generally want more intense ion beams. b) Problem is that in a more intense beam, have a higher density of charged particles. Electrostatic repulsion tends to push them apart, such that there is a practical limit on how dense the ions can be. Leads to general requirement that more intense ion beams are bigger diameter, which means everything downstream must be bigger. Biggest hurdle is the size of the magnet, which gets exponentially more expensive as size increases. c) Ion flux is conveniently measured as charge/time. For singly charged ions, reduces to units of current. i) Typical range is from mA (accelerator) to nA (IRMS) to pA (typical GC/MS). 1 nA corresponds to ~109 ions/second. ii) Note that we typically refer to intensity in units of Volts, but this depends on the (arbitrary) conversion of current to voltage in the detector. Much better approach is to use units of current. Will see how to do this conversion in a later lecture. 3 .
Recommended publications
  • Physical Mechanism of Superconductivity
    Physical Mechanism of Superconductivity Part 1 – High Tc Superconductors Xue-Shu Zhao, Yu-Ru Ge, Xin Zhao, Hong Zhao ABSTRACT The physical mechanism of superconductivity is proposed on the basis of carrier-induced dynamic strain effect. By this new model, superconducting state consists of the dynamic bound state of superconducting electrons, which is formed by the high-energy nonbonding electrons through dynamic interaction with their surrounding lattice to trap themselves into the three - dimensional potential wells lying in energy at above the Fermi level of the material. The binding energy of superconducting electrons dominates the superconducting transition temperature in the corresponding material. Under an electric field, superconducting electrons move coherently with lattice distortion wave and periodically exchange their excitation energy with chain lattice, that is, the superconducting electrons transfer periodically between their dynamic bound state and conducting state, so the superconducting electrons cannot be scattered by the chain lattice, and supercurrent persists in time. Thus, the intrinsic feature of superconductivity is to generate an oscillating current under a dc voltage. The wave length of an oscillating current equals the coherence length of superconducting electrons. The coherence lengths in cuprates must have the value equal to an even number times the lattice constant. A superconducting material must simultaneously satisfy the following three criteria required by superconductivity. First, the superconducting materials must possess high – energy nonbonding electrons with the certain concentrations required by their coherence lengths. Second, there must exist three – dimensional potential wells lying in energy at above the Fermi level of the material. Finally, the band structure of a superconducting material should have a widely dispersive antibonding band, which crosses the Fermi level and runs over the height of the potential wells to ensure the normal state of the material being metallic.
    [Show full text]
  • Contents • Introduction to Proteomics and Mass Spectrometry
    Contents • Introduction to Proteomics and Mass spectrometry - What we need to know in our quest to explain life - Fundamental things you need to know about mass spectrometry • Interfaces and ion sources - Electrospray ionization (ESI) - conventional and nanospray - Heated nebulizer atmospheric pressure chemical ionization - Matrix assisted laser desorption • Types of MS analyzers - Magnetic sector - Quadrupole - Time-of-flight - Hybrid - Ion trap In the next step in our quest to explain what is life The human genome project has largely been completed and many other genomes are surrendering to the gene sequencers. However, all this knowledge does not give us the information that is needed to explain how living cells work. To do that, we need to study proteins. In 2002, mass spectrometry has developed to the point where it has the capacity to obtain the "exact" molecular weight of many macromolecules. At the present time, this includes proteins up to 150,000 Da. Proteins of higher molecular weights (up to 500,000 Da) can also be studied by mass spectrometry, but with less accuracy. The paradigm for sequencing of peptides and identification of proteins has changed – because of the availability of the human genome database, peptides can be identified merely by their masses or by partial sequence information, often in minutes, not hours. This new capacity is shifting the emphasis of biomedical research back to the functional aspects of cell biochemistry, the expression of particular sets of genes and their gene products, the proteins of the cell. These are the new goals of the biological scientist: o to know which proteins are expressed in each cell, preferably one cell at a time o to know how these proteins are modified, information that cannot necessarily be deduced from the nucleotide sequence of individual genes.
    [Show full text]
  • Electron Ionization
    Chapter 6 Chapter 6 Electron Ionization I. Introduction ......................................................................................................317 II. Ionization Process............................................................................................317 III. Strategy for Data Interpretation......................................................................321 1. Assumptions 2. The Ionization Process IV. Types of Fragmentation Pathways.................................................................328 1. Sigma-Bond Cleavage 2. Homolytic or Radical-Site-Driven Cleavage 3. Heterolytic or Charge-Site-Driven Cleavage 4. Rearrangements A. Hydrogen-Shift Rearrangements B. Hydride-Shift Rearrangements V. Representative Fragmentations (Spectra) of Classes of Compounds.......... 344 1. Hydrocarbons A. Saturated Hydrocarbons 1) Straight-Chain Hydrocarbons 2) Branched Hydrocarbons 3) Cyclic Hydrocarbons B. Unsaturated C. Aromatic 2. Alkyl Halides 3. Oxygen-Containing Compounds A. Aliphatic Alcohols B. Aliphatic Ethers C. Aromatic Alcohols D. Cyclic Ethers E. Ketones and Aldehydes F. Aliphatic Acids and Esters G. Aromatic Acids and Esters 4. Nitrogen-Containing Compounds A. Aliphatic Amines B. Aromatic Compounds Containing Atoms of Nitrogen C. Heterocyclic Nitrogen-Containing Compounds D. Nitro Compounds E. Concluding Remarks on the Mass Spectra of Nitrogen-Containing Compounds 5. Multiple Heteroatoms or Heteroatoms and a Double Bond 6. Trimethylsilyl Derivative 7. Determining the Location of Double Bonds VI. Library
    [Show full text]
  • Modern Mass Spectrometry
    Modern Mass Spectrometry MacMillan Group Meeting 2005 Sandra Lee Key References: E. Uggerud, S. Petrie, D. K. Bohme, F. Turecek, D. Schröder, H. Schwarz, D. Plattner, T. Wyttenbach, M. T. Bowers, P. B. Armentrout, S. A. Truger, T. Junker, G. Suizdak, Mark Brönstrup. Topics in Current Chemistry: Modern Mass Spectroscopy, pp. 1-302, 225. Springer-Verlag, Berlin, 2003. Current Topics in Organic Chemistry 2003, 15, 1503-1624 1 The Basics of Mass Spectroscopy ! Purpose Mass spectrometers use the difference in mass-to-charge ratio (m/z) of ionized atoms or molecules to separate them. Therefore, mass spectroscopy allows quantitation of atoms or molecules and provides structural information by the identification of distinctive fragmentation patterns. The general operation of a mass spectrometer is: "1. " create gas-phase ions "2. " separate the ions in space or time based on their mass-to-charge ratio "3. " measure the quantity of ions of each mass-to-charge ratio Ionization sources ! Instrumentation Chemical Ionisation (CI) Atmospheric Pressure CI!(APCI) Electron Impact!(EI) Electrospray Ionization!(ESI) SORTING DETECTION IONIZATION OF IONS OF IONS Fast Atom Bombardment (FAB) Field Desorption/Field Ionisation (FD/FI) Matrix Assisted Laser Desorption gaseous mass ion Ionisation!(MALDI) ion source analyzer transducer Thermospray Ionisation (TI) Analyzers quadrupoles vacuum signal Time-of-Flight (TOF) pump processor magnetic sectors 10-5– 10-8 torr Fourier transform and quadrupole ion traps inlet Detectors mass electron multiplier spectrum Faraday cup Ionization Sources: Classical Methods ! Electron Impact Ionization A beam of electrons passes through a gas-phase sample and collides with neutral analyte molcules (M) to produce a positively charged ion or a fragment ion.
    [Show full text]
  • Mass Spectrometry (Technically Not Spectroscopy)
    Mass Spectrometry (technically not Spectroscopy) So far, In mass spec, on y Populati Intensit Excitation Energy “mass” (or mass/charge ratio) Spectroscopy is about Mass spectrometry interaction of energy with matter. measures population of ions X-axis is real. with particular mass. General Characteristics of Mass Spectrometry 2. Ionization Different variants of 1-4 -e- available commercially. 4. Ion detection 1. Introduction of sample to gas phase (sometimes w/ separation) 3. Selection of one ion mass (Selection nearly always based on different flight of ion though vacuum.) General Components of a Mass Spectrometer Lots of choices, which can be mixed and matched. direct injection The Mass Spectrum fragment “daughter” ions M+ “parent” mass Sample Introduction: Direc t Inser tion Prob e If sample is a liquid, sample can also be injected directly into ionization region. If sample isn’t pure, get multiple parents (that can’t be distinguished from fragments). Capillary Column Introduction Continous source of molecules to spectrometer. detector column (including GC, LC, chiral, size exclusion) • Signal intensity depends on both amount of molecule and ionization efficiency • To use quantitatively, must calibrate peaks with respect eltilution time ttlitotal ion curren t to quantity eluted (TIC) over time Capillary Column Introduction Easy to interface with gas or liquid chromatography. TIC trace elution time time averaged time averaged mass spectrum mass spectrum Methods of Ionization: Electron Ionization (EI) 1 - + - 1 M + e (kV energy) M + 2e Fragmentation in Electron Ionization daughter ion (observed in spectrum) neutral fragment (not observed) excited parent at electron at electron energy of energy of 15 eV 70 e V Lower electron energy yields less fragmentation, but also less signal.
    [Show full text]
  • An Introduction to Mass Spectrometry
    An Introduction to Mass Spectrometry by Scott E. Van Bramer Widener University Department of Chemistry One University Place Chester, PA 19013 [email protected] http://science.widener.edu/~svanbram revised: September 2, 1998 © Copyright 1997 TABLE OF CONTENTS INTRODUCTION ........................................................... 4 SAMPLE INTRODUCTION ....................................................5 Direct Vapor Inlet .......................................................5 Gas Chromatography.....................................................5 Liquid Chromatography...................................................6 Direct Insertion Probe ....................................................6 Direct Ionization of Sample ................................................6 IONIZATION TECHNIQUES...................................................6 Electron Ionization .......................................................7 Chemical Ionization ..................................................... 9 Fast Atom Bombardment and Secondary Ion Mass Spectrometry .................10 Atmospheric Pressure Ionization and Electrospray Ionization ....................11 Matrix Assisted Laser Desorption/Ionization ................................ 13 Other Ionization Methods ................................................13 Self-Test #1 ...........................................................14 MASS ANALYZERS .........................................................14 Quadrupole ............................................................15
    [Show full text]
  • Ion-To-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization
    B American Society for Mass Spectrometry, 2015 J. Am. Soc. Mass Spectrom. (2015) 26:1242Y1251 DOI: 10.1007/s13361-015-1112-3 RESEARCH ARTICLE Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization I-Chung Lu,1 Kuan Yu Chu,1,2 Chih-Yuan Lin,1 Shang-Yun Wu,1 Yuri A. Dyakov,1 Jien-Lian Chen,1 Angus Gray-Weale,3 Yuan-Tseh Lee,1,2 Chi-Kung Ni1,4 1Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan 2Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan 3School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia 4Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan Abstract. The ion-to-neutral ratios of four commonly used solid matrices, α-cyano-4- hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ferulic acid (FA) in matrix-assisted laser desorption/ionization (MALDI) at 355 nm are reported. Ions are measured using a time-of-flight mass spectrometer combined with a time-sliced ion imaging detector. Neutrals are measured using a rotatable quadrupole mass spectrometer. The ion-to-neutral ratios of CHCA are three orders of magnitude larger than those of the other matrices at the same laser fluence. The ion-to-neutral ratios predicted using the thermal proton transfer model are similar to the experimental measurements, indicating that thermal proton transfer reactions play a major role in generating ions in ultraviolet-MALDI. Keywords: MALDI, Ionization mechanism, Thermal proton transfer, Ion-to-neutral ratio Received: 25 August 2014/Revised: 15 February 2015/Accepted: 16 February 2015/Published Online: 8 April 2015 Introduction in solid state UV-MALDI.
    [Show full text]
  • An Organic Chemist's Guide to Electrospray Mass Spectrometric
    molecules Review An Organic Chemist’s Guide to Electrospray Mass Spectrometric Structure Elucidation Arnold Steckel 1 and Gitta Schlosser 2,* 1 Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; [email protected] 2 Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary * Correspondence: [email protected] Received: 16 January 2019; Accepted: 8 February 2019; Published: 10 February 2019 Abstract: Tandem mass spectrometry is an important tool for structure elucidation of natural and synthetic organic products. Fragmentation of odd electron ions (OE+) generated by electron ionization (EI) was extensively studied in the last few decades, however there are only a few systematic reviews available concerning the fragmentation of even-electron ions (EE+/EE−) produced by the currently most common ionization techniques, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). This review summarizes the most important features of tandem mass spectra generated by collision-induced dissociation fragmentation and presents didactic examples for the unexperienced users. Keywords: tandem mass spectrometry; MS/MS fragmentation; collision-induced dissociation; CID; ESI; structure elucidation 1. Introduction Electron ionization (EI), a hard ionization technique, is the method of choice for analyses of small (<1000 Da), nonpolar, volatile compounds. As its name implies, the technique involves ionization by electrons with ~70 eV energy. This energy is high enough to yield very reproducible mass spectra with a large number of fragments. However, these spectra frequently lack the radical type molecular ions (M+) due to the high internal energy transferred to the precursors [1].
    [Show full text]
  • Itwg Guideline Thermal Ionisation Mass Spectrometry (Tims) Executive Summary
    NUCLEAR FORENSICS INTERNATIONAL TECHNICAL WORKING GROUP ITWG GUIDELINE THERMAL IONISATION MASS SPECTROMETRY (TIMS) EXECUTIVE SUMMARY Thermal Ionisation Mass Spectrometry (TIMS) is used for isotopic composition measurement of elements having relatively low ionisation potentials (e.g. Sr, Pb, actinides and rare earth elements). Also the concentration of an element can be determined by TIMS using the isotope dilution technique by adding to the sample a known amount of a “spike” [1]. TIMS is a single element analysis technique, thus it is recommended to separate all other elements from the sample before the measurement as they may cause mass interferences or affect the ionisation behaviour of the element of interest [2]. This document was designed and printed at Lawrence Livermore National Laboratory in 2017 with the permission of the Nuclear Forensics International Technical Working Group (ITWG). ITWG Guidelines are intended as consensus-driven best-practices documents. These documents are general rather than prescriptive, and they are not intended to replace any specific laboratory operating procedures. 1. INTRODUCTION The filament configuration in the ion source can be either single, double, or triple filament. In the single In TIMS, a liquid sample (typically in the diluted nitric acid filament configuration, the same filament serves both media) is deposited on a metal ribbon (called a filament for evaporation and ionisation. In the double and triple made of rhenium, tantalum, or tungsten) and dried. filament configurations, the evaporation of the sample The filament is then heated in the vacuum of the mass and the ionisation take place in separate filaments (Fig. spectrometer, causing atoms in the sample to evaporate 2).
    [Show full text]
  • Methods of Ion Generation
    Chem. Rev. 2001, 101, 361−375 361 Methods of Ion Generation Marvin L. Vestal PE Biosystems, Framingham, Massachusetts 01701 Received May 24, 2000 Contents I. Introduction 361 II. Atomic Ions 362 A. Thermal Ionization 362 B. Spark Source 362 C. Plasma Sources 362 D. Glow Discharge 362 E. Inductively Coupled Plasma (ICP) 363 III. Molecular Ions from Volatile Samples. 364 A. Electron Ionization (EI) 364 B. Chemical Ionization (CI) 365 C. Photoionization (PI) 367 D. Field Ionization (FI) 367 IV. Molecular Ions from Nonvolatile Samples 367 Marvin L. Vestal received his B.S. and M.S. degrees, 1958 and 1960, A. Spray Techniques 367 respectively, in Engineering Sciences from Purdue Univesity, Layfayette, IN. In 1975 he received his Ph.D. degree in Chemical Physics from the B. Electrospray 367 University of Utah, Salt Lake City. From 1958 to 1960 he was a Scientist C. Desorption from Surfaces 369 at Johnston Laboratories, Inc., in Layfayette, IN. From 1960 to 1967 he D. High-Energy Particle Impact 369 became Senior Scientist at Johnston Laboratories, Inc., in Baltimore, MD. E. Low-Energy Particle Impact 370 From 1960 to 1962 he was a Graduate Student in the Department of Physics at John Hopkins University. From 1967 to 1970 he was Vice F. Low-Energy Impact with Liquid Surfaces 371 President at Scientific Research Instruments, Corp. in Baltimore, MD. From G. Flow FAB 371 1970 to 1975 he was a Graduate Student and Research Instructor at the H. Laser Ionization−MALDI 371 University of Utah, Salt Lake City. From 1976 to 1981 he became I.
    [Show full text]
  • How the Saha Ionization Equation Was Discovered
    How the Saha Ionization Equation Was Discovered Arnab Rai Choudhuri Department of Physics, Indian Institute of Science, Bangalore – 560012 Introduction Most youngsters aspiring for a career in physics research would be learning the basic research tools under the guidance of a supervisor at the age of 26. It was at this tender age of 26 that Meghnad Saha, who was working at Calcutta University far away from the world’s major centres of physics research and who never had a formal training from any research supervisor, formulated the celebrated Saha ionization equation and revolutionized astrophysics by applying it to solve some long-standing astrophysical problems. The Saha ionization equation is a standard topic in statistical mechanics and is covered in many well-known textbooks of thermodynamics and statistical mechanics [1–3]. Professional physicists are expected to be familiar with it and to know how it can be derived from the fundamental principles of statistical mechanics. But most professional physicists probably would not know the exact nature of Saha’s contributions in the field. Was he the first person who derived and arrived at this equation? It may come as a surprise to many to know that Saha did not derive the equation named after him! He was not even the first person to write down this equation! The equation now called the Saha ionization equation appeared in at least two papers (by J. Eggert [4] and by F.A. Lindemann [5]) published before the first paper by Saha on this subject. The story of how the theory of thermal ionization came into being is full of many dramatic twists and turns.
    [Show full text]
  • C7895 Mass Spectrometry of Biomolecules Schedule of Lectures
    C7895 Mass Spectrometry of Biomolecules Schedule of lectures For schedule, please see a separate file with the course outline. Jan Preisler Consulting The last lecture. Please contact me in advance to make an appointment. Chemistry Dept. 312A14, tel.: 54949 6629, [email protected] This material is just an outline; students are advised to print this outline and write down notes durin the lectures. The material will be updated during The course is focused on mass spectrometry of biomolecules, i.e. ionization the semester. techniques MALDI and ESI, modern mass analyzers, such as time-of-flight MS or ion traps and bioanalytical applications. However, the course covers much broader area, including inorganic ionization techniques, virtually all Supporting study material: types of mass analyzers and hardware in mass spectrometry. • J. Gross, Mass Spectrometry, 3rd ed. Springer-Verlag, 2017 • J. Greaves, J. Roboz: Mass Spectrometry for the Novice, CRC Press, 2013 • Edmond de Hoffmann, Vincent Stroobant: Mass Spectrometry: Principles and Applications, 3rd Edition, John Wiley & Sons, 2007 Mass spectrometry of biomolecules 2018 1 Mass spectrometry of biomolecules 2018 2 1 2 Content I. Introduction 1 II. Ionization methods and sample introduction III. Mass analyzers IV. Biological applications of MS V. Example problems Introduction to Mass spectrometry. Brief History of MS. A Survey of Methods and Instrumentation. Basic Concepts in MS: Resolution, Sensitivity. Isotope patterns of organic molecules. Ionization Techniques and Sample Introductin. Electron Impact Mass spectrometry of biomolecules 2018 3 Ionization (EI). Chemical Ionization (CI) 3 4 I. Introduction Study Material • Information sources about mass spectrometry Lecture notes • Brief history of mass spectrometry, a survey of methods and Advice: please take notes, but do not copy the slides; the English slides will instrumentation be provided at the end of the semester.
    [Show full text]