Quick viewing(Text Mode)

Seismic Characterization of the Seattle Fault Deformation Front: Hazard Implications for Downtown Seattle, Washington

Seismic Characterization of the Seattle Fault Deformation Front: Hazard Implications for Downtown Seattle, Washington

Seismic Characterization of the Deformation Front: Hazard Implications for Downtown Seattle,

Project Award Number: # G18AP00057

Award Dates: July 2018 through September 2019

Submission date: December 31, 2019

Lee M. Liberty

Department of Geosciences

Boise State University

Boise, Idaho 83725-1536

Phone: 208-426-1419

Email: [email protected]

https://www.boisestate.edu/earth/staff-members/lee-liberty/

Stephen Sliviki (IRIS internship program)

Deptartment of Plant & Earth Science

University of Wisconsin River Falls,

email: [email protected]

Research supported by the U.S. Geological Survey (USGS), Department of the Interior, under USGS award number G18AP00057. The views and conclusions contained in this document are those of the authors and not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.

Contents Abstract ...... 2 Setting ...... 3 Tasks completed from USGS EHP award #G18AP00057 ...... 5 Total magnetic field data – evidence for the deformation front ...... 6 Seismic acquisition ...... 6 Seismic processing ...... 7 Vs derived from Rayleigh waves ...... 8 Reflection profiling ...... 8 Seismic results ...... 9 Line 1 – Duwamish River Valley ...... 9 Beacon Hill/Line 2/5 transect ...... 10 Line 3, Line 4 and Line 8 ...... 13 Line 6 and Line 7 ...... 15 Vs30 summary ...... 18 Discussion and Summary ...... 21 Data Archival ...... 21 References ...... 22 Appendix 1. Vs30 measurements by location...... 25

Abstract New seismic and a reassessment of magnetic field data constrain the location of the deformation front related to the Seattle fault. Our results suggest that the deformation front surfaces to the north of interstate 90, and within the downtown Seattle corridor. Although we did not image the axial surface of the Seattle monocline on a few key transects, we further constrain its location in the subsurface. Continued analysis from a contemporaneous Nodal seismic deployment (from a separate study) will allow further constraints on the precise location of the Seattle fault. In addition to seismic reflection and magnetic interpretations, we add more than 800 Vs30 measurements to the database. These values have been shown to directly relate to ground motions and can be used to construct hazard maps for the Puget Lowland.

2

Setting Oblique subduction of the beneath the results in northeast migration of western Washington State relative to North America (Figure 1). This northeast motion is resisted by Mesozoic and older rocks that form the stable continental craton, resulting in shortening of the Puget Lowland region (Wells et al., 1998; McCaffrey et al., 2007). This shortening is expressed as a series of northwest and east-west striking active faults that separate basins and structural uplifts beneath the Seattle and Tacoma metropolitan areas (Figure 1; Johnson et al, 1996; Pratt et al., 1997). The Seattle basin extends about 70 km, from , beneath the Seattle/Tacoma urban corridor, to the foothills of the Cascade Range (Figure 1). The Seattle uplift, separating the Seattle and Tacoma basins, represents a pop-up block above the north-directed Seattle thrust fault to the north and the Tacoma backthrust fault to the south (Pratt et al., 1997; Brocher et al, 2001 and 2004). The most recent large rupture occurred on the Seattle fault zone in A.D. 900– 930, producing a ~M7-7.5 earthquake that lifted the hanging wall ~7 m and generated a local tsunami and landslides (Atwater and Moore, 1992; Bucknam et al., 1992; Jacoby et al., 1992; Sherrod et al. 2000; ten Brink et al., 2006). Direct geologic evidence for the Seattle fault system consists primarily of topographic scarps observed in LiDAR (light detection and ranging) surveys that cover a large area of the Puget Lowland (e.g., Haugerud et al, 2003; Sherrod et al., 2004; Sherrod et al., 2008) and detailed studies of trench excavations across LiDAR scarps (e.g., Nelson et al., 2003; Sherrod et al., 2004; Nelson et al., 2008). However, no topographic or LiDAR based scarps have been identified in the downtown Seattle region (between and Lake Washington). Fault strands and underlying structures are best identified from seismic reflection and magnetic data (e.g., Pratt et al, 1997; Brocher et al., 2001, Blakely et al., 2002; Johnson et al, 2004; Stephenson et al., 2006; Liberty and Pratt, 2008; Sherrod et al., 2008; Lamb et al., 2012; Pratt et al., 2015). The (blind) frontal thrust of this fault zone is characterized by a 20-40 degree north dipping monocline that separates flat lying strata of the Seattle basin to the north from deformed Seattle uplift rocks to the south. The Seattle fault deformation front extends northward to the surface projection of the monocline’s axial surface. The overall fault length, fault segmentation, fault geometry, and fault locations are all critical to understanding kinematics and earthquake hazard estimates, as these faults are capable of supporting large . Although no direct imaging beneath the downtown region has been performed, Pratt et al. (2015) connected faults from Puget Sound and Lake Washington seismic reflection profiles, and deformation within shallow engineering borings, to conclude that the northernmost thrust fault and synclinal axial surface forming the deformation front of the Seattle fault zone projects to the surface beneath the downtown area of Seattle (Figures 1, 2 and 3). The motivation for this study is to infill the geophysical data to characterize the deformation front beneath downtown Seattle region. Additionally, we produce shallow shear wave velocity (Vs) profiles to estimate site response from earthquake ground shaking. We acquired new seismic data and we reassess total magnetic field data based on newly available information.

3

Figure 1. (a) Map modified from Blakely et al. (2009) showing the tectonic setting for the Puget lowland. The yellow arrow shows the regional direction of strain relative to North America (McCaffrey et al. 2007). OF-Olympia fault; OU-Olympia uplift; SB-Seattle basin; SFZ-Seattle fault zone; SU-Seattle uplift; TB-Tacoma basin; TF-; SWIF-southern Whidbey Island fault; WRF-White River fault. The study area in Seattle is highlighted with an arrow. (b) Map modified from Pratt et al. (2015) showing interpreted fault traces related to the Seattle fault (water is gray). Red line is the interpreted location of the synclinal axial surface (deformation front) above the blind frontal fault, with solid lines marking where it is well located and dashed lines showing inferred locations. Green dashed lines show the Seattle fault interpreted by Blakely et al. (2002) and the approximate limit of Seattle fault zone faulting in the south. DF- Deformation Front; SFZ-Seattle fault zone.

4

Tasks completed from USGS EHP award #G18AP00057 1) We collected seismic data along three transects to characterize Seattle fault deformation. Integrated with previous data, we revise previous interpretations. 2) We acquired one additional profile in the Duwamish river valley to constrain depth to a shallow hard boundary to better constrain site response estimates. 3) We reassess the interpretation of a magnetic lineation that defines the Seattle fault. 4) We derive Vs30 values, in profile, from Rayleigh wave dispersion measurements. We compare these measurements to existing data, topography, geology and surface slope to estimate high frequency site response for the Seattle metropolitan area. Ongoing tasks related to this project: 1) Analyze body wave signals from the Harvard contemoraneous Nodal deployment (Toghramadjian et al., 2019). These sensors were deployed along many of our profiles (Figure 2b) and the data were made available for analysis earlier this month. 2) Analyze surface wave signal from the Nodal deployment to densify the site response measurements. These data should provide lower frequency site response estimates.

Figure 2. (left) Total magnetic field map of Blakely et al (2002) with aerial imagery for the downtown Seattle area. New seismic profiles are numbered. Note the magnetic lineament that follows the interstate (I-90) bridge to Mercer Island (MI). Inset shows mag lineation (arrows) and shoreline without aerial background. (right) Revised total magnetic field map (Blakely, personal comm.) showing that the lineament is culturally influenced. White dashed lines=maximum horizontal gradients. Green triangles=seismic monitoring stations, green circles=2019 Nodal stations, purple lines=previous seismic profiles that are discussed in the text. Purple dots = previous Vs30 measurements (https://earthquake.usgs.gov/data/vs30/). Red line represents the Pratt et al (2015) interpretation for the Seattle fault deformation front.

5

Total magnetic field data – evidence for the deformation front Blakely et al. (2002) identified a series of lineations from a Puget Lowland airborne magnetic dataset. They identified an east-striking lineation that extended immediately south of downtown Seattle as the deformation front of the Seattle fault (Figure 2a). This lineation was interpreted as the southward termination or abrupt folding of the north-dipping Blakely Harbor strata within the upper few km. This was in contrast to the continuous and relatively flat Tertiary and younger strata in the basin north of the fault that have been identified with seismic reflection profiling (e.g., Johnson et al., 1999; ten Brink et al. 2002; Liberty and Pratt, 2008; Pratt et al., 2015). Blakely et al. (2002) recognized the coincidence of the high susceptibility lineament and possible cultural interference with the interstate (I-90) infrastructure, but noted that the lineation was consistent with seismic interpretations. To explore this coincidence, Blakely and Sherrod (personal comm) acquired a new marine magnetometer survey in Lake Washington. Although unpublished, the results of this survey confirm that cultural interference was partially or fully responsible for the I-90 magnetic lineation. Instead of identifying an east-striking lineation near I-90, this new survey identified a northwest-trending broad lineation that may be sourced at depths greater than the Blakely Harbor unit (Figure 2b). Given this trend, and the interpretations of seismic data from Lake Washington, Beacon Hill and Mercer Island (Pratt et al., 2015), we conclude that the airborne magnetometer data are not a reliable dataset to interpret the deformation front of the Seattle fault.

Seismic acquisition To explore the deformation front of the Seattle fault, we conducted a new seismic campaign. We used a 200 kg accelerated weight drop source for our seismic campaign. This source generated body wave signals up to about 200 Hz and surface wave signals down to about 4 Hz. (Figure 3). We used this source along secondary streets of Seattle with no road damage and minimal disruption of traffic (Table 1). We recorded two to four shots per location. We utilized both seismic land streamer and planted geophones to record seismic weight drop hammer hits. Our station spacing ranged from 4-5 m along profiles 2 through 8, and 1.25 m spacing for profile 1. We recorded the data using a 120 to 144 Geode recording system (one Geode failed during Line 3 data collection).

Min Max Total shots per geophone source Nearest Start Nearest End Date of Line Location Street method Channels Field ID Field ID shots station spacing (m) spacing (m) Distance (m) Direction Street/Location Street/Location Acquisition Line 1 Duwamish Colorado Ave streamer 48-72 1001 1769 769 2 1.25 2.5 481 North-south Starbucks HQ Overpass 7/13/2019 Line 2 N of I90 15th Ave geophone 144 2001 2346 346 2 4 4 692 South-north Main St Cherry St 7/14/2019 Line 3 N of I90 20th Ave geophone 120-144 3008 3195 188 2 4 4 376 South-north S. Judkins S Lane St 7/15/2019 Line 4 N of I90 18th Ave geophone 120 4001 4168 168 2 4 4 336 South-north Dearborn Main St 7/15/2019 Line 5 N of I90 15th Ave geophone 120 5001 5162 162 2 5 5 405 South-north Cherry Pike 7/16/2019 Line 6 N of I90 26th Ave geophone 120 6001 6240 240 2 5 5 600 South-north Irving St Lane 7/16/2019 Line 7 S of I90 28th Ave geophone 120 7001 7729 729 4 5 5 911 North-south I-90 S Bayview 7/17/2019 Line 8 N of I90 19th Ave geophone 120 8001 8602 602 4 5 5 753 South-north Jackson Marion St 7/18/2019 Table 1. Summary of seismic profiles. Coordinates for each location is shown in Appendix 1.

6

Figure 3. (top) Weight drop shots from Lines 7 and 2 showing reflections from Quaternary and Tertiary age strata within the Seattle Basin. These gathers are filtered to reduce surface wave signals (bottom) Example dispersion images, used to estimate Vs (these data were acquired with 10 Hz geophones). The red boxes represent 5 to 40 Hz (surface wave signal band) from 300 to 500 m/s. Note the lower phase velocities recorded on Line 7 when compared to the Line 2 shot.

Seismic processing We extract Rayleigh wave dispersion curves to obtain shear wave (Vs) seismic profiles to 20 to 30 m depth, and reflection signals to map subsurface horizons to 800 meters below land surface. We utilize a differential/kinematic GPS system to obtain accurate position measurements during data collection with decimeter-precision. We surveyed each geophone location. For the land streamer data, an odometer mounted to the source vehicle to provide accurate source positioning. These positions were independently recorded by a kinematic GPS system.

7

Vs derived from Rayleigh waves On select profiles, the Rayleigh wave signals were extracted and processed via the multichannel analysis of surface wave (MASW) approach (Park et al., 1999) using both Kansas Geological Survey Surfseis software (http://www.kgs.ku.edu/software/surfseis/) and in-house Matlab code for picking dispersion curves. The Rayleigh wave signals provide estimates of subsurface elastic (stiffness) conditions where rapid data collection is possible without compromising results when compared directly measuring shear wave velocities through head wave or downhole measurements (e.g., Stephenson et al., 2005). Frequency-phase velocity dispersion plots were generated for each (4 or 5 m spaced) shot gather and peak semblance picks from these plots were inverted to generate Vs profiles for the upper 30 m (Figure 3). Rayleigh waves typically ranged from 4-50 Hz. Once we calculated Vs profiles, we combined 1-D velocities to obtain 2-D Vs profiles with depth. Vs30 values were then calculated for each receiver spread midpoint location (e.g., Boore et al. 1993). We adopt the NEHRP soil classification to describe Vs30 (IBCO, 2000). Here, we describe E- class (less than 180 m/s) as soft soil; D-class between 180-360 m/s as stiff soil; C-class between 360-760 m/s as dense soil or soft rock; and B-class above 760 m/s as rock, locally correlated with Tertiary strata. For display, we use NEHRP sub-classifications of Wills et al (2000). Frankel et al. (2002) found a general increase in site amplification for decreasing Vs30 values during the 2001 M6.8 Nisqually earthquake. Thus, the recorded values are relevant to site response estimates for the Seattle area. Reflection profiling Because surface waves tend to dominate the recording systems dynamic range at near offsets, we extract coherent reflections between first arrival head waves and Rayleigh wave signals for reflection processing (Figure 3). This reflection window has been termed the “optimum window” (Hunter et al., 1984) and for limited aperture seismic surveys, this window contains reflection signals that are not contaminated with surface waves. In the presence of saturated unconsolidated/semiconsolidated sediments, the optimum window for our recorded offsets typically allows robust velocity analyses for the upper ~800 m depth. We processed the data using Halliburton’s ProMAX® seismic processing software with a standard processing approach outlined by Yilmaz (2001). We applied geometry to each source and receiver location from differentially corrected GPS positions and via DEM-derived elevation values (Appendix 1). Processing steps included datum statics, spiking deconvolution, bandpass filter, surface wave attenuation through a two-step singular value decomposition approach to estimate and adaptively subtract the ground roll signal, iterative velocity analyses with dip moveout corrections, amplitude gains, and a post-stack time to depth corrections. Post-stack migration is selectively applied to the data, but migration artifacts can distort key reflector geometries and are used selectively. Where surface waves dominate the gathers and signal processing steps, bottom mutes were applied to remove this signal and improve stacked reflection results. We estimate depth using 1-D averaged stacking velocity models and from earlier seismic surveys with larger source/receiver distances to improve velocity estimates (e.g., tenBrink et al., 2005; Johnson et al., 1999; Pratt et al., 2015) and borehole logs (e.g., Brocher and Ruebel, 1998).

8

Seismic results Line 1 – Duwamish River Valley We acquired seismic Line 1 using a land streamer setup. We used 48 1.25 m spaced geophones and nominally an additional 24 channels at 4 m spacing. The nearest geophone offset was 10 m. The profile extended along Colorado Avenue from South Lander Street south to the west Seattle Bridge overpass (Figure 2; Table 1). The data were acquired adjacent to a railroad yard, with mostly quiet data quality during acquisition along of the profile. However, signal quality diminished along the southern portions of the profile as we approached the West Seattle Bridge overpass and an active portion of the train yard. Topography was flat lying and a strand of the Seattle fault was mapped at position 750 m (Blakely et al., 2002; Johnson et al., 2016; Figure 2b). With this land streamer setup and measured velocities, we expect to observe reasonable reflectivity in the upper 100 m. The entire profile was acquired upon artificial fill (Liesch et al., 1963) where surface wave energy can be trapped within the low velocity sediment layers (e.g., Hartzell et al., 2000). The land elevation was approximately 4 m above sea level along the length of the profile. Due to complex near surface conditions (e.g. artificial fill), the coherence of fundamental surface wave dispersion was of poor quality (Figure 4). The interference of high coherence higher modes and body wave energy led us to not pick MASW fundamental mode dispersion along this profile. While robust Vs estimates were not measured along the profile, select measurements were mostly consistent with Williams et al. (1999). Phase velocity values from 5-30 Hz measured between 150-200 m/s (Figure 4), consistent with Vs values of 120-170 m/s (NEHRP site class E soils). P-wave velocities for Line 1 measure approximately 850 m/s for the unsaturated sediments above about 4 m depth, best observed as a direct arrival on the dispersion images (Figure 4). Saturated sediments measure a p-wave velocity of about 2,000 m/s. The cross over between slow and fast P-wave velocities was less than the minimum geophone offset of 10 m, suggesting saturated conditions lie within the upper few meters below land surface. This is consistent with the water table near sea level. We identify a near flat-lying reflector at about 25 m depth, interpreted as the base of modern alluvium from the Duwamish River. Using the observed Vs value if 140 m/s at the VMF site of Williams et al. (1999), a depth of 25 m, and the quarter wavelength criteria (Fn=Vs/4h), we expect a resonant frequency at about 1.4 Hz along this profile. This frequency is consistent with nearby Frankel et al. (2002) and Hartzell et al. (2000) measurements of site amplification from the 2001 Nisqually earthquake and aftershocks. They recognized a non-linear response at soft soil sites like the Line 1 location, perhaps adding to the complex dispersion observed at this site.

9

Figure 4. (top) Line 1 seismic reflection profile along Colorado Avenue. We identify a continuous reflector at about 25 m depth along the first 750 m of this profile. A strand of the Seattle fault is mapped at about 750 m distance (Johnson et al., 2016). (left) dispersion curve examples from positions ~300 m and ~500 m. Oval represents fundamental dispersion from 5- 30 Hz, Vp for shallow unsaturated deposits measure about 850 m/s at frequencies above about 30 Hz. Aliasing line represents one spatial wavelength.

Beacon Hill/Line 2/5 transect Our Line 2 and 5 transect is located along 15th Avenue, north of I-90, and at the same longitude as the Beacon Hill seismic profile (Pratt et al., 2015; Figure 2). The southern extent of our Line 2 is located as far south as we could permit (Main Street). The profiles were acquired at 4 and 5 m station spacing, using 144 and 120 channel systems respectively. Line 2 terminates to the north at Cherry Street and Line 5 extends from Cherry Street north to Pike Street (Table 1). Along this profile and the Line 5 extension to the north, we identify mostly flat-lying strata in the upper 500 m (Figure 5). We identify a break in reflector continuity near the center of Line 2 that may support the deformed glacial strata interpretation from borehole data (Pratt et al., 2015). The deformation front of the Seattle fault is defined by the transition from north-dipping strata to flat-lying strata. While the Beacon Hill profile shows about 14 degree north dipping Tertiary strata below relatively flat lying Quaternary strata (Figure 6), the Line 2 profile shows no steeply dipping strata to our maximum imaging depths of about 800 m. Assuming a depth of 800 m to top of Tertiary strata along Line 2 (from Puget Sound profile interpretations of Pratt et al., 2015), and extrapolating the top of Tertiary reflector of the Beacon Hill profile at a constant dip to the 10 north, we define the axial surface of the deformation front at 800 m depth near the south end of Line 2. By using a 40-degree dip for the Seattle fault, this deformation front projects to the surface to the south of Cherry Street. While the depth to Tertiary strata and the Seattle fault dip are poorly constrained, changing these variables by reasonable amounts will not significantly change the deformation front projection to the land surface. By incorporation of Nodal data into our analysis to obtain long offset receiver records, we should be able to better constrain the transition from dipping to flat-lying Tertiary strata and thus improve the location of the Seattle fault deformation front. This work is ongoing and not part of the deliverables for this report. Vs results from Lines 2 and 5 show relatively consistent Vs values for the upper 20 to 25 m depth (sensitivities at greater depths did not warrant Vs estimates to 30 m depth). We identify Vs values between 200 to 500 m/s with slower velocities observed along the southern limits of Line 2 (Figure 7). These slower velocities are consistent with lower elevations and at a transition from recessional to glacial till (Troost et al., 2005). To estimate Vs30, we use the approach of Wang and Wang (2015) to extrapolate our values to 30 m depth. We measure Vs30 values as NEHRP Class C1 and C2 dense glacial soils. Individual measurements are included in Appendix 1.

Figure 5. Modified Figure 12 from Pratt et al. (2015) showing the deformation front from interpreted deformed glacial strata along a series of boreholes. The seismic transect of Lines 2/5 show some evidence for offset strata. Shallow reflectors to the north of this location are also not flat lying, suggesting that the glacial strata were not deposited as horizontal layers.

11

Figure 6. Beacon Hill seismic profile (Pratt et al., 2015), along with Line 2/5 results. Using a 14 degree dip for the top of Tertiary strata, a 40 degree fault dip, and an 800 m depth to top of Tertiary along Line 2 suggests the deformation front surfaces near the northern portion of Line 2. The red line on the Beacon Hill profile represents the Pratt et al (2015) southern limit of the deformation front.

Figure 7. Line 2 and Line 5 Vs profiles with Vs30 above the cross section: Average Vs30 class: C1, grading in to C2 at higher elevations. Note that inversion depths are best constrained above 23 m depth. We extrapolate Vs to 30 m depth to obtain Vs30 measurements.

12

Line 3, Line 4 and Line 8 We acquired Line 3 between Judkins Park and South Lane Street along 20th Avenue using a 4-m source and receiver spacing and a 144 channel recording system (Figure 2). We acquired Line 4 between Dearborn and Main Streets along 18th Avenue at 4-m source and receiver spacing and a 120 channel recording system. We acquired Line 8 from S Jackson Street to Marion Street along 19th Avenue using a 5-m source-receiver spacing and a 120-channel recording system. For Line 3, elevation and resulting Vs values generally increase from south to north (Figure 8). Based on measured phase velocities at the lowest frequencies, Vs values were confidently inverted to about 20 m depth, and we use the interpolation approach of Wang and Wang (2015) to calculate Vs30. The Vs30 results from dispersion data suggest NEHRP site class C1 and C2 soils are present along this profile. Stiffer soils along the northern portion of this profile recorded NEHRP site class C3 soils. These values are all consistent with mapped glacial till (Troost et al., 2005) and Vs30 values within this lithology (Odum et al., 2004; Wong et al., 2011). Elevation and resulting Vs values are relatively uniform along the length of the Line 4 (Figure 9). We inverted Vs values to about 22 m depth, and interpolation to 30 m depth was obtained using the approach of Wang and Wang (2015). The Vs30 results from dispersion data suggest mostly NEHRP site class C1 dense soils along this profile, similar to Line 3. For Line 8, we observe similar velocities when compared to Lines 3 and 4 (Figure 10). Based on measured phase velocities at the lowest frequencies, we inverted to 27 m depth. Due to the limited line length for Lines 3 and 4, we show only the Vs and Vs30 plots, and no reflection results. The Line 8 reflection profile shows reflectivity to about 900 m depth (Figure 11). We interpret a high amplitude reflector at about 800 m depth as top of Tertiary, consistent with profiles in Puget Sound (Pratt et al., 2015). Ongoing analysis using a dense network of Nodes along this transect (Figure 2) will allow a more robust reflection analysis of this transect to constrain the deformation front at this longitude. This work is ongoing with Nodal data not acquired as part of this contract.

Figure 8. Line 3 from Judkins Park and to Lane Street along 20th Avenue. Average Vs30 class: Mostly C2 with a notable velocity increase to the north. 13

Figure 9. Line 4 from S Dearborn St. and to S Washington Street along 18th Avenue. Contour model depth 22m. Average Vs30 class: C1 bordering on C2.

Figure 10. Line 8 from Jackson Street to Marion Street along 19th Avenue. Depth of model was 27m. Average Vs30 class: Between C1 and C2. Features of note: Notable velocity inversion around the north end of the line. The inversion also appears in patches in the center of the line around 500-700m and the south end and results from faster phase velocities at intermediate frequencies.

14

Figure 11. Line 8 depth corrected reflection stack showing north- dipping strata along the southern portion of the profile and mostly flat lying strata to the north. Vertical exaggeration ~2:1

Line 6 and Line 7 We acquired Line 6 between Irving Street to Lane Street along 26th Avenue using a 5-m source and receiver spacing and a 120 channel recording system. We acquired Line 7 between Sam Smith Park and Bayview Street along 28th Avenue at 5-m source and receiver spacing and a 120 channel recording system. Line 6 was acquired north of I-90 and Line 7 was acquired above and to the south of I-90 (Figure 2). At this location, I-90 is located in a tunnel about 15 to 20 m below land surface. Based on measured phase velocities at the lowest frequencies, Vs values on Lines 6 and 7 were confidently inverted to about 25 m depth (Figures 12 and 13).While Vs values along Line 6 are consistent with other profiles acquired farther west (Figure 12), the measured Vs values along Line 7 were significantly slower (Figure 13; Figure 3). Line 6 shows site Class C1 and C2 dense soils and Line 7 shows mostly site Class D3 stiff soils. We note that Line 6 was acquired upon glacial till deposits while Line 7 was acquired mostly upon or near mapped outwash deposits (see Figure 15). Wong et al (2011) mapped Vs30 values within these deposits as consistently Site Class D stiff soils, slower than other glacial soils.

15

Figure 12. Line 6, Irving Street to Lane Street along 26th Avenue. Contour model depth 25m. Average Vs30 class: C1 grading in to C2 with higher elevation.

Figure 13. Line 7 from Sam Smith Park to S Bayview Street along 28th Avenue, south of I-90. Average Vs30 class: D3 with the north end values bordering on D2.

We compare the reflection results from Lines 6 and 7 to marine profiles located 2-3 km to the east in Lake Washington (Pratt et al., 2015; Figure 14). On our Line 7, we note 14 to 20 degree north dipping strata in the upper few hundred meters that is consistent with both the Beacon Hill profile to the west (Figure 2) and the Lake Washington profiles to the east. These dipping reflectors comprise the monocline and hanging wall of the Seattle fault’s deformation front. This again constrains the Seattle fault to the region to the north of I-90. Along Line 6, we note a flat lying and gently dipping strata, consistent with strata mapped to the north of the Seattle fault 16 along the Lake Washington profiles and our profiles farther to the west. Improved imaging with the incorporation of the Nodal data will improve the reflection imagery along this transect. This work in continuing and should improve our location for the Seattle fault.

Figure 14. Line 7 and Line 6 reflection profiles with Lake Washington profiles of Pratt et al (2015). Note the north-dipping strata that define the monocline of the Seattle fault. We suggest that the deformation front surfaces near the northern limits of Line 6.

17

Vs30 summary On Figure 15, we show a histogram of Vs30 values for all 814 calculated values (see Appendix 1 for values). On Figure 16, we show each Vs30 value as a color swath along each profile. We show these values upon the geologic map of Troost et al. (2005). Additionally, we show values from the Washington DNR database (2016) with the same color code. We show an average Vs30 value of 450 m/s for our dataset with the most values between 450 to 500 m/s. The measured values fall mostly upon Vashon glacial till (glacial advances from 17,400 to 16,400 years B.P.; Troost et al. 2005). We show the fastest velocities within our dataset lie at the northern end of Line 3 on 20th Avenue (see Figure 2 for line names). Immediately to the north of this profile, the Washington DNR (2016) South Weller Vs30 measurement recorded 671 m/s, slightly faster than the northern measurements of Line 3 that average about 620 m/s. Our slowest Vs30 values were recorded along Line 6, south of I-90 and along 26th Avenue. Here, Vs30 values average 350 m/s. The two closest sites in the DNR database record Vs30 values of 286 m/s and 376 m/s (Mount Baker Ridge tunnel) and 280 m/s at Franklin High School. In this vicinity, glacial outwash deposits have been mapped (Troost et al., 2005). Figure 17 shows two cross plots. Vs30 compared to elevation, and Vs30 compared to slope. We show a general trend of increasing Vs30 values with increasing elevation. We show that the Vs30/slope relationships of Wald and Allen (2007) do not hold for Seattle. This is likely due to the glacial topography that dominates the Puget Lowland. We note that we did not record many values on low slope regions.

Figure 15. Hostogram of Vs30 values (m/s) for our dataset.

18

Figure 16. Geologic map of the area to the east of downtown Seattle (from Troost et al., 2005). Superimposed on the map as points are areas of previous shear wave data database (e.g., Washington DNR). Vs30 ranges from 280-610m/s from our study, consistent with previous measurements. We note that Line 7 shows lower Vs30 values (average 350m/s) compared to the other lines (around 500m/s).

19

Figure 17. (top) Elevation/Vs30 cross plot. We observe a trend of higher Vs30 values for higher elevations. (bottom) log-log plot of slope (derived from 30 m DEM) compared to Vs30 values. The Wald and Allen (2007) global averages for both stable continent and active tectonic areas are included. We only sampled relatively steep slopes with our data, but there does not appear to be a log-log correlation between Vs30 and slope for Seattle. 20

Discussion and Summary In the upper 800 m, our seismic results show north-dipping strata to the south of I-90 and relatively flat-lying strata to the north of I-90. These seismic results are consistent with previous studies that show the deformation front of the Seattle fault surfaces to the north of I-90 (Pratt et al., 2015). This is inconsistent with the Blakely et al (2002) results from the interpretation of magnetometer data that showed a lineation related to the Seattle fault beneath I-90. Acquisition of a new magnetic dataset from Lake Washington (Blakely, personal comm; Figure 2) confirm that the magnetic lineation is related to cultural infrastructure. While we did not clearly image Tertiary strata to the north of I-90, we still have not resolved the northernmost position of the monocline related to the Seattle fault. Because Nodal data recorded our active source signals, and these data are now available for analysis, we will further constrain the northern limits of the Seattle fault to obtain a robust assessment to the downtown Seattle area. We acquired 814 new Vs30 values as part of this study. The Vs30 values are consistent with previous studies in the area. Our study offers a robust statistical dataset to assess the variability of Vs30 values within the study area. We show that some areas (e.g., Line 6) show very slow velocities that may amplify seismic waves. We show other regions (e.g., northern portions of Line 3) that record relatively high Vs30 values, possibly reducing site amplification effects from earthquake ground motions.

Data Archival Seismic data are available immediately upon request from [email protected]. Seismic field records will be archived at the Incorporated Research Institutions for Seismology (IRIS) as an assembled dataset (http://ds.iris.edu/ds/nodes/dmc/forms/assembled-id/). Archival will be submitted within one year of project completion (Dec 31, 2020).

21

References Blakely, R.J., Wells, R.E., Weaver, C.S., and Johnson, S.Y., (2002), Location, structure, and seismicity of the Seattle fault zone, Washington: Evidence from aeromagnetic anomalies, geologic mapping, and seismic reflection data, Geol Soc Am Bull, 114 (2), 169-177. Boore, D. M. (1993). Some notes concerning the determination of shear-wave velocity and attenuation. Proceedings of geophysical techniques for site and material characterization, 129-34. Brocher, T.M., Parsons, T., Richard, J.B., Christensen, N.I., Fisher, M.A., and Wells, R.E., (2001), Upper crustal structure in Puget Lowland, Washington: Results from the 1998 seismic hazards investigation in Puget sound, Journal of Geophysical Research, 106 (B7), 13,541-13,564. Brocher, T. M., & Ruebel, A. L. (1998). Compilation of 29 sonic and density logs from 23 oil test wells in western Washington State (pp. 1-60). US Department of the Interior, US Geological Survey. Cakir, R., and T. J. Walsh (2011) Shallow seismic site characterizations at 23 strong-motion station sites in and near Washington State, NEHRP Tech Reprt G10AP00027, 103 pp. Frankel, A. D., Carver, D. L., & Williams, R. A. (2002). Nonlinear and linear site response and basin effects in Seattle for the M 6.8 Nisqually, Washington, earthquake. Bulletin of the Seismological Society of America, 92(6), 2090-2109. Hartzell, S., Carver, D., Cranswick, E., & Frankel, A. (2000). Variability of site response in Seattle, Washington. Bulletin of the Seismological Society of America, 90(5), 1237-1250. Haugerud, R.A., Harding, D.J., Johnson, S.Y., Harless, J.L., Weaver, C.S., and Sherrod, B.L., (2003), High-resolution LiDAR topography of the Puget Lowland, Washington, GSA Today, 13, 4-10. Hunter, J. A., Pullan, S. E., Burns, R. A., Gagne, R. M., & Good, R. L. (1984). Shallow seismic reflection mapping of the overburden-bedrock interface with the engineering seismograph—Some simple techniques. Geophysics, 49(8), 1381-1385. International Council of Building Officials (ICBO), 2000. International Building Code, Falls Church, VA Johnson, S.Y., Potter, C.J., Armentrout, J.M., Miller, J.J., Finn, C.A., and Weaver, C.S., (1996), The southern Whidbey island fault; an active structure in the Puget Lowland, Washington, Geol Soc Am Bull, 108 (3), 334-354. Johnson, S.Y., Blakely, R.J., Brocher, T.M., Haller, K.M., Barnett, E.A., Bucknam, R.C., Haeussler, P.J., Pratt, T.L., Nelson, A.R., Sherrod, B.L., Wells, R.E., Lidke, D.J., Harding, D.J., and Kelsey, H.M., compilers, 2016, Fault number 570, Seattle fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults Johnson, S.Y., Blakely, R.J., Stephenson, W.J., Dadisman, S.V., and Fisher, M.A., (2004), Active shortening of the Cascadia Forearc and implications for seismic hazards of the Puget Lowland, Tectonics, 23 (TC1011), 27. 22

Lamb, A. P., Liberty, L. M., Blakely, R. J., Pratt, T. L., Sherrod, B. L., & van Wijk, K. (2012). Western limits of the Seattle fault zone and its interaction with the Olympic Peninsula, Washington. Geosphere, 8(4), 915-930. Liberty, L.M., and Pratt, T.L., (2008), Structure of the eastern Seattle fault zone, Washington State: New insights from seismic reflection data, Bulletin of the Seismological Society of America, 98(4), 1681-1695. Liesch, B. A., C. E. Price, and K. L. Walters (1963). Geology and groundwater resources of northwestern King County, Washington, State of Washington Department of Conservation, Division of Water Resources, Water Supply Bulletin No. 20, 241 pp. McCaffrey, R., Qamar, A.I., King, R.W., Wells, R.E., Khazaradze, G., Williams, C.A., Stevens, C.W., Vollick, J.J., and Zwick, P.C., (2007), Fault locking, block rotation and crustal deformation in the Pacific Northwest, Geophysical Journal International, 169, 1315-1340. Nelson, A.R., Johnson, S.Y., Kelsey, H.M., Wells, R.E., Sherrod, B.L., Pezzopane, S.K., Bradley, A., Koehler, R.D., III, and Bucknam, R.C., (2003), Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington: Geological Society of America Bulletin, v. 115, p. 1388–1403. Nelson, A.R., Personius, S.F., Sherrod, B.L., Buck, J., Bradley, L.A., Henley II, G., Liberty, L.M., Kelsey, H.M., Witter, R.C., Koehler, R.D. and Schermer, E.R. (2008). Field and laboratory data from an earthquake history study of scarps in the hanging wall of the Tacoma fault, Mason and Pierce Counties, Washington. SIF 3060 US Geological Survey. Odum, J. K., Stephenson, W. J., Goetz-Troost, K., Worley, D. M., Frankel, A. D., Williams, R. A., & Fryer, J. (2004). Shear-and compressional-wave velocity measurements from two 150-m-deep boreholes in Seattle, Washington, USA. US Geol. Surv. Open-File Rept, 1419, 36. Park, C.B., Miller, R.D., and Xia, J., 1999, Multichannel analysis of surface waves, Geophysics, 64, 800–808. Pratt, T. L., Johnson, S., Potter, C., Stephenson, W., & Finn, C. (1997). Seismic reflection images beneath Puget Sound, western Washington State: the Puget Lowland thrust sheet hypothesis. Journal of Geophysical Research: Solid Earth, 102(B12), 27469-27489. Pratt, T. L., Troost, K. G., Odum, J. K., & Stephenson, W. J. (2015). Kinematics of shallow backthrusts in the Seattle fault zone, Washington State. Geosphere, 11(6), 1948-1974. Sherrod, B. L., Blakely, R. J., Weaver, C. S., Kelsey, H. M., Barnett, E., Liberty, L., & Pape, K. (2008). Finding concealed active faults: Extending the southern Whidbey Island fault across the Puget Lowland, Washington. Journal of Geophysical Research: Solid Earth, 113(B5). Sherrod, B.L., Brocher, T.M., Weaver, C.S., Bucknam, R.C., Blakely, R.J., Kelsey, H.M., Nelson, A.R., and Haugerud, R., (2004), Holocene fault scarps near Tacoma, Washington, USA: Geology, v. 32, p. 9–12. Stephenson, W. J., Frankel, A. D., Odum, J. K., Williams, R. A., & Pratt, T. L. (2006). Toward resolving an earthquake ground motion mystery in west Seattle, Washington State: Shallow seismic focusing may cause anomalous chimney damage. Geophysical research 23

letters, 33(6). Stephenson, W.J., Louie, J.N., Pullammanappallil, S., Williams, R.A., and Odum, J.K., 2005, Blind shear-wave velocity comparison of ReMi, and MASW results with boreholes to 200 m in the Santa Clara Valley: Implications for Earthquake Ground Motion Assessment, Bulletin Seismological Society of America, 95(6), 2506-2516. Stephenson, W.J., Hartzell, S., Frankel, A.D., Asten, M., Carver, D.L. and Kim, W.Y., 2009, Site characterization for urban seismic hazards in lower Manhattan, New York City, from microtremor array analysis, Geophysical Research Letters, 36, L03301, doi:10.1029/2008GL036444. ten Brink, U. T., Molzer, P. C., Fisher, M. A., Blakely, R. J., Bucknam, R. C., Parsons, T., ... & Creager, K. C. (2002). Subsurface geometry and evolution of the Seattle fault zone and the Seattle basin, Washington. Bulletin of the Seismological Society of America, 92(5), 1737-1753. Toghramadjian, N.E., Jiang, C, and Denolle, M. (2019). Virtual Propagation of Seismic Waves in the Seattle Basin, Fall Meeting of the American Geophysical Union, S23C-0634. Troost, K. G., Booth, D. B., Wisher, A. P., & Shimel, S. A. (2005). The geologic map of Seattle- A progress report (No. 2005-1252), http://pubs.usgs.gov/of/2005/1252. Wald, D. J., & Allen, T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 97(5), 1379-1395. Wang, H. Y., & Wang, S. Y. (2015). A new method for estimating VS (30) from a shallow shear‐wave velocity profile (depth< 30 m). Bulletin of the Seismological Society of America, 105(3), 1359-1370. Washington Division of Geology and Earth Resources, 2016, Shear wave database--GIS data: Washington Division of Geology and Earth Resources Digital Data Series DS-17, version 1.0. [http://file.dnr.wa.gov/publications/ger_portal_shear_wave_database.zip] Wells, R.E., Weaver, C.S., and Blakely, R.J., (1998), Forearc migration in Cascadia and its neotectonic significance, Geology, 26, 759. Williams, R., A., Stephenson, W.J. Frankel, A.D., and Odum, J.K. (1999). Surface Seismic Measurements of Near-Surface P- and S-Wave Seismic Velocities at Earthquake Recording Stations, Seattle, Washington, Earthquake Spectra, 15, 3, 565-584. Wills, C. J., Petersen, M., Bryant, W. A., Reichle, M., Saucedo, G. J., Tan, S., ... & Treiman, J. (2000). A site-conditions map for California based on geology and shear-wave velocity. Bulletin of the Seismological Society of America, 90(6B), S187-S208. Wong, I. G., Stokoe, K. H., Cox, B. R., Lin, Y. C., & Menq, F. Y. (2011). Shear-wave velocity profiling of strong motion sites that recorded the 2001 Nisqually, Washington, earthquake. Earthquake Spectra, 27(1), 183-212. Yilmaz, Ö. (2001). Seismic data analysis: Processing, inversion, and interpretation of seismic data. Society of exploration geophysicists.

24

Appendix 1. Vs30 measurements by location

Line Northing Easting Midpoint Elevation Slope Vs30 line2 5272151 551653.9 -23.045 63.497 2.701 388.206 line2 5272155 551654.3 -19.045 63.671 2.543 408.047 line2 5272159 551654.3 -15.045 63.761 2.532 390.858 line2 5272163 551654.5 -11.045 63.608 2.532 394.778 line2 5272167 551654.4 -7.045 63.691 2.395 396.701 line2 5272171 551655.1 -3.045 63.829 2.357 396.146 line2 5272175 551654.5 0.955 63.819 2.462 395.128 line2 5272179 551653.9 4.955 63.861 2.512 400.735 line2 5272183 551653.6 8.955 63.927 2.512 403.691 line2 5272187 551653.2 12.955 64.105 3.323 400.231 line2 5272191 551653.5 16.955 64.321 3.618 401.182 line2 5272195 551653.6 20.955 64.473 3.944 398.877 line2 5272199 551653.7 24.955 64.499 4.053 404.932 line2 5272203 551653.9 28.955 64.806 4.053 412.219 line2 5272207 551654 32.955 64.918 3.448 401.62 line2 5272211 551653.9 36.955 65.019 3.289 412.6 line2 5272215 551652.5 40.955 65.241 3.323 392.519 line2 5272219 551653.2 44.955 65.35 3.332 402.725 line2 5272223 551653.1 48.955 65.432 3.332 379.956 line2 5272227 551653.5 52.955 65.445 3.464 418.616 line2 5272231 551653.6 56.955 65.735 3.496 407.595 line2 5272235 551653.7 60.955 65.794 3.496 389.156 line2 5272239 551653.8 64.955 65.845 3.437 411.655 line2 5272243 551653.9 68.955 66.001 3.421 432.376 line2 5272247 551654.1 72.955 66.189 3.645 364.646 line2 5272251 551654.5 76.955 66.467 3.72 372.166 line2 5272255 551654.4 80.955 66.521 3.886 367.422 line2 5272295 551652 120.955 66.849 4.849 391.29 line2 5272299 551652.2 124.955 66.884 4.432 404.933 line2 5272315 551651.7 140.955 67.334 4.033 392.092 line2 5272319 551651.7 144.955 67.419 3.807 393.496 line2 5272323 551651.6 148.955 67.529 3.777 405.136 line2 5272327 551651.6 152.955 67.669 3.777 393.199 line2 5272331 551651.6 156.955 67.756 3.612 404.361 line2 5272335 551651.6 160.955 67.891 3.583 395.484 line2 5272343 551651.5 168.955 68.142 3.478 416.174 line2 5272347 551651.5 172.955 68.219 3.478 399.736 line2 5272351 551651.5 176.955 68.308 3.303 408.466 line2 5272355 551651.4 180.955 68.414 3.247 409.698 line2 5272359 551651.4 184.955 68.534 2.897 413.358

25 line2 5272363 551651.9 188.955 68.574 2.783 416.968 line2 5272367 551652.7 192.955 68.67 2.783 406.442 line2 5272371 551652.8 196.955 68.895 3.039 423.35 line2 5272375 551652.3 200.955 68.94 3.798 426.946 line2 5272379 551651.3 204.955 68.965 4.212 416.811 line2 5272383 551651.3 208.955 69.173 5.366 423.181 line2 5272387 551651.3 212.955 69.299 5.366 429.151 line2 5272391 551651.2 216.955 69.419 5.288 423.629 line2 5272395 551651.2 220.955 69.552 5.039 417.048 line2 5272399 551651 224.955 69.702 4.803 442.898 line2 5272403 551651 228.955 69.838 4.205 433.427 line2 5272407 551651.1 232.955 69.98 4.205 444.483 line2 5272411 551651.2 236.955 70.145 4.077 447.951 line2 5272431 551651 256.955 70.853 3.418 472.607 line2 5272435 551651 260.955 71.013 3.323 477.792 line2 5272439 551650.9 264.955 71.358 3.283 480.732 line2 5272443 551650.9 268.955 71.425 3.017 481.456 line2 5272447 551650.7 272.955 71.559 3.017 482.65 line2 5272451 551650.7 276.955 71.578 3.011 483.304 line2 5272455 551650.8 280.955 71.729 2.811 485.084 line2 5272459 551652 284.955 71.794 2.809 483.238 line2 5272463 551649 288.955 72.112 2.799 482.718 line2 5272467 551650.8 292.955 72.175 2.798 481.168 line2 5272471 551651.7 296.955 72.234 2.798 477.071 line2 5272475 551651.1 300.955 72.314 2.999 472.857 line2 5272479 551650.8 304.955 72.922 3.029 472.176 line2 5272483 551651.2 308.955 73.591 3.049 463.638 line2 5272487 551651 312.955 73.062 3.803 445.736 line2 5272491 551650.9 316.955 73.521 3.803 450.758 line2 5272495 551651 320.955 73.481 4.719 436.802 line2 5272499 551651 324.955 73.719 4.745 450.573 line2 5272503 551650.9 328.955 73.997 4.838 434.92 line2 5272507 551651 332.955 74.099 5.051 442.662 line2 5272511 551650.9 336.955 74.345 5.051 426.883 line2 5272515 551650.9 340.955 74.453 4.538 437.344 line2 5272519 551650.9 344.955 74.757 4.294 428.187 line2 5272523 551651 348.955 74.993 3.823 430.654 line2 5272527 551651.3 352.955 75.24 3.426 416.816 line2 5272531 551651.2 356.955 75.636 3.426 418.865 line2 5272535 551650.7 360.955 76.002 3.29 416.204 line2 5272539 551650.8 364.955 76.097 3.09 417.266 line2 5272543 551650.7 368.955 76.085 3.11 424.171 line2 5272547 551651.2 372.955 76.269 3.138 434.477 26 line2 5272551 551650.2 376.955 76.283 3.138 443.915 line2 5272555 551647.6 380.955 76.447 3.155 449.803 line2 5272559 551650.4 384.955 76.571 3.169 460.213 line2 5272563 551650.7 388.955 76.487 3.169 440.029 line2 5272567 551650.4 392.955 76.744 2.978 465.48 line2 5272571 551650.4 396.955 76.976 2.971 435.561 line2 5272575 551650.6 400.955 77.164 2.97 418.646 line2 5272579 551650.5 404.955 77.397 2.777 450.731 line2 5272587 551650.4 412.955 77.822 3.2 429.569 line2 5272591 551650.5 416.955 78.042 3.319 313.775 line2 5272595 551650.4 420.955 78.356 3.319 409.909 line2 5272599 551650.4 424.955 78.688 5.633 398.291 line2 5272603 551650.2 428.955 78.988 6.034 438.286 line2 5272607 551650 432.955 79.446 7.368 465.734 line2 5272611 551650.1 436.955 79.514 8.144 471.178 line2 5272615 551650.3 440.955 79.476 7.483 438.537 line2 5272619 551650.2 444.955 79.687 6.17 492.633 line2 5272623 551650.1 448.955 79.779 5.993 477.132 line2 5272627 551650.1 452.955 80.044 4.093 500.69 line2 5272631 551650 456.955 80.303 3.803 499.899 line2 5272635 551650.1 460.955 80.516 3.451 551.133 line2 5272639 551650.2 464.955 80.742 3.134 558.98 line2 5272643 551650.2 468.955 81.025 3.134 573.36 line2 5272647 551650.4 472.955 81.416 3.099 581.691 line2 5272763 551650.4 588.955 87.16 3.519 414.134 line2 5272767 551650.7 592.955 87.052 3.892 411.899 line2 5272771 551650.4 596.955 87.15 3.892 420.861 line2 5272775 551649.6 600.955 87.163 4.788 414.59 line2 5272779 551649.5 604.955 87.293 4.788 413.746 line2 5272811 551649.3 636.955 88.105 6.627 432.455 line2 5272815 551649.1 640.955 88.213 6.114 456.835 line2 5272819 551649.1 644.955 88.316 6.097 463.284 line2 5272823 551649.2 648.955 88.421 6.25 482.792 line2 5272827 551649.2 652.955 88.5 6.294 451.945 line2 5272831 551649.1 656.955 88.598 6.294 446.692 line2 5272835 551649.1 660.955 88.712 6.143 416.131 line2 5272839 551649.1 664.955 88.84 6.084 451.481 line2 5272843 551649 668.955 88.879 4.568 431.686 line2 5272847 551649.1 672.955 89.048 3.724 445.92 line2 5272851 551649.3 676.955 89.235 3.724 432.964 line2 5272855 551649.3 680.955 89.372 3.548 442.868 line2 5272859 551649.3 684.955 89.484 3.249 416.563 line2 5272863 551649.6 688.955 89.519 3.388 430.75 27 line2 5272867 551649.8 692.955 89.58 4.015 426.45 line2 5272871 551649.7 696.955 89.685 4.015 445.113 line2 5272875 551649.7 700.955 89.862 4.492 448.157 line2 5272879 551649.7 704.955 89.952 4.625 439.265 line2 5272883 551649.7 708.955 90.05 4.625 416.216 line2 5272887 551649.8 712.955 90.147 4.738 427.764 line2 5272891 551649.8 716.955 90.292 4.823 432.822 line2 5272895 551649.5 720.955 90.43 4.807 424.829 line2 5272899 551649.2 724.955 90.442 4.758 428.585 line2 5272903 551649.3 728.955 90.628 4.758 438.33 line2 5272907 551649.3 732.955 90.677 4.615 432.358 line2 5272911 551649.2 736.955 90.727 4.564 411.622 line2 5272915 551649 740.955 90.855 4.47 434.788 Line Northing Easting Midpoint Elevation Slope Vs30 line3 5271212 552158.7 31.456 41.649 6.01 443.483 line3 5271216 552156.4 35.456 40.753 6.181 458.561 line3 5271219 552154.7 39.456 40.578 6.181 501.887 line3 5271223 552153.5 43.456 40.589 7.987 458.333 line3 5271227 552152.5 47.456 40.994 9.119 527.128 line3 5271231 552151.4 51.456 41.099 10.681 498.305 line3 5271235 552150.7 55.456 41.151 12.272 516.203 line3 5271239 552150 59.456 42.252 12.272 534.569 line3 5271243 552150.3 63.456 43.391 10.701 517.371 line3 5271247 552149.8 67.456 43.369 10.457 533.916 line3 5271251 552149.5 71.456 43.392 10.457 543.474 line3 5271295 552148.9 115.456 48.52 7.404 501.066 line3 5271299 552148.1 119.456 49.118 7.07 502.08 line3 5271303 552147.4 123.456 49.536 7.154 499.762 line3 5271307 552147.7 127.456 50.03 7.298 499.185 line3 5271311 552147.9 131.456 50.525 7.441 505.223 line3 5271315 552148.5 135.456 50.943 8.082 505.535 line3 5271319 552148.6 139.456 51.39 8.169 517.582 line3 5271323 552148.5 143.456 51.583 8.169 513.786 line3 5271328 552148.3 147.456 52.297 8.997 493.33 line3 5271332 552148.4 151.456 52.83 9.116 505.167 line3 5271336 552148.7 155.456 53.202 9.09 505.682 line3 5271340 552148.6 159.456 53.626 9.088 520.17 line3 5271344 552148.2 163.456 54.032 9.088 523.762 line3 5271348 552148.8 167.456 54.507 6.376 531.217 line3 5271352 552148.8 171.456 54.869 6.376 494.341 line3 5271356 552148.8 175.456 55.339 6.32 499.821 line3 5271364 552148.8 183.456 55.599 4.572 502.656 line3 5271368 552148.7 187.456 56.509 4.692 494.706 28 line3 5271372 552147 191.456 55.922 4.716 484.639 line3 5271376 552149.1 195.456 56.045 4.725 469.758 line3 5271380 552149.2 199.456 57.343 5.512 458.112 line3 5271384 552148.7 203.456 56.479 5.517 460.796 line3 5271388 552148.3 207.456 57.923 5.912 483.235 line3 5271392 552148.7 211.456 58.522 5.912 495.617 line3 5271396 552148.9 215.456 59.037 5.912 460.067 line3 5271400 552149 219.456 58.645 4.972 485.432 line3 5271404 552148.7 223.456 58.821 4.919 483.496 line3 5271408 552147.8 227.456 59.085 3.405 496.83 line3 5271412 552147.9 231.456 59.23 3.405 471.674 line3 5271416 552147.8 235.456 59.496 3.399 506.079 line3 5271420 552148 239.456 59.954 2.576 428.851 line3 5271424 552148.1 243.456 60.519 2.576 501.494 line3 5271428 552148 247.456 60.764 2.526 481.416 line3 5271432 552148 251.456 60.901 2.522 496.899 line3 5271436 552148.1 255.456 61.33 2.522 520.493 line3 5271440 552147.9 259.456 61.741 2.415 468.977 line3 5271444 552147.6 263.456 61.564 2.47 519.776 line3 5271449 552147.8 267.456 61.957 3.298 608.807 line3 5271453 552148.7 271.456 62.622 3.419 575.635 line3 5271457 552148.8 275.456 62.072 3.419 578.379 line3 5271461 552147.8 279.456 62.112 4.975 565.363 line3 5271465 552147.1 283.456 62.115 4.975 569.432 line3 5271469 552147.1 287.456 62.208 5.347 579.113 line3 5271473 552147.9 291.456 62.492 5.535 570.591 line3 5271477 552148.1 295.456 62.814 5.535 569.267 line3 5271481 552148.1 299.456 63.035 5.479 576.068 line3 5271485 552147.3 303.456 62.632 5.475 571.345 line3 5271489 552147.9 307.456 62.581 5.475 562.708 line3 5271493 552148.2 311.456 63.191 5.339 563.386 line3 5271497 552147.6 315.456 63.285 5.259 552.436 line3 5271501 552147.8 319.456 63.34 4.608 560.701 line3 5271505 552148.5 323.456 63.913 4.49 566.035 line3 5271509 552147.9 327.456 63.48 4.49 551.703 line3 5271513 552148.1 331.456 64.519 3.027 583.219 line3 5271517 552148.2 335.456 64.815 2.97 594.434 line3 5271521 552148.9 339.456 65.373 1.895 577.287 line3 5271525 552149.4 343.456 66.298 1.878 579.747 line3 5271530 552150.2 347.456 66.135 1.866 606.828 line3 5271534 552150 351.456 65.796 1.691 620.013 line3 5271538 552150.2 355.456 66.11 1.704 605.014 line3 5271542 552150 359.456 65.927 1.863 645.83 29 line3 5271546 552150.1 363.456 66.06 1.863 631.659 line3 5271550 552149.9 367.456 66.217 1.916 644.123 line3 5271554 552150.2 371.456 66.586 2.164 654.431 line3 5271558 552150.2 375.456 66.483 2.164 622.059 line3 5271562 552150.2 379.456 66.702 2.164 613.836 line3 5271566 552150.3 383.456 66.879 2.392 610.105 line3 5271570 552149.9 387.456 66.766 2.39 591.713 line3 5271574 552149.6 391.456 68.112 2.057 584.687 line3 5271578 552148.5 395.456 68.422 2.057 600.325 line3 5271582 552148.5 399.456 69.092 2.089 596.024 line3 5271586 552149.5 403.456 69.714 2.753 621.406 line3 5271590 552149.6 407.456 69.98 2.891 627.744 line3 5271594 552149.2 411.456 70.123 3.639 636.075 line3 5271598 552148.2 415.456 70.234 3.827 619.862 line3 5271602 552147.5 419.456 69.914 3.827 595.373 line3 5271606 552147.6 423.456 69.969 3.207 577.897 line3 5271610 552149.5 427.456 69.906 3.086 552.795 Line Northing Easting Midpoint Elevation Slope Vs30 Line4 5271666 551952.8 -52.502 53.563 29.094 456.509 Line4 5271670 551951.9 -48.502 53.422 28.577 471.358 Line4 5271674 551953 -44.502 53.579 29.163 476.737 Line4 5271682 551951.8 -36.502 54.389 28.226 448.921 Line4 5271686 551951.9 -32.502 55.083 25.976 458.868 Line4 5271690 551952.6 -28.503 55.99 23.015 463.855 Line4 5271694 551952.6 -24.503 56.22 13.154 462.619 Line4 5271698 551953.6 -20.503 56.6 7.379 462.772 Line4 5271702 551953.9 -16.503 56.31 8.047 463.546 Line4 5271706 551954.3 -12.502 57.475 14.158 464.359 Line4 5271710 551953.8 -8.502 58.707 17.482 462.301 Line4 5271714 551953.8 -4.503 58.677 22.795 454.338 Line4 5271718 551953.8 -0.502 59.271 25.732 455.253 Line4 5271722 551953.9 3.498 59.457 25.896 462.261 Line4 5271726 551953.8 7.497 59.75 26.102 465.306 Line4 5271730 551953.9 11.498 59.654 22.755 443.743 Line4 5271734 551952.5 15.498 60.553 27.373 458.6 Line4 5271738 551953.2 19.497 61.025 22.943 446.691 Line4 5271742 551953.3 23.497 60.693 24.794 432.686 Line4 5271746 551953.7 27.497 60.131 19.467 430.371 Line4 5271750 551955.5 31.497 60.399 21.248 424.022 Line4 5271754 551954.3 35.498 62.014 23.855 429.082 Line4 5271758 551953.6 39.498 62.285 23.931 409.463 Line4 5271762 551953.6 43.498 62.658 23.991 421.839 Line4 5271766 551953.1 47.498 64.325 23.276 365.949 30

Line4 5271770 551953.1 51.498 65.266 21.88 363.033 Line4 5271774 551953.4 55.498 65.135 21.752 412.643 Line4 5271778 551953 59.498 65.737 23.692 384.137 Line4 5271782 551953.2 63.498 65.915 25.243 402.625 Line4 5271786 551953.4 67.498 65.566 8.878 419.65 Line4 5271790 551954.9 71.498 66.366 9.111 448.252 Line4 5271794 551954.3 75.498 65.523 7.914 480.701 Line4 5271798 551954.3 79.498 65.464 9.421 488.635 Line4 5271802 551954.8 83.498 66.192 12.977 490.46 Line4 5271806 551953.2 87.498 66.865 11.286 494.501 Line4 5271810 551953.5 91.498 67.215 13.13 477.775 Line4 5271814 551953.7 95.498 67.209 9.549 487.841 Line4 5271818 551953.7 99.498 66.567 11.29 474.836 Line4 5271822 551953.6 103.498 66.772 8.851 488.34 Line4 5271826 551953.6 107.498 66.978 10.987 489.226 Line4 5271830 551953.3 111.498 67.194 9.082 497.475 Line4 5271834 551953.1 115.498 67.397 9.491 496.248 Line4 5271838 551953.3 119.498 67.679 9.321 485.784 Line4 5271842 551953.4 123.498 67.838 14.105 482.481 Line4 5271846 551953.1 127.498 68.027 12.845 484.972 Line4 5271850 551953.1 131.498 68.184 12.012 489.686 Line4 5271854 551953.2 135.498 68.446 13.571 498.329 Line4 5271858 551953.3 139.498 68.63 8.27 486.874 Line4 5271862 551953.1 143.498 68.81 7.548 486.558 Line4 5271866 551953.1 147.498 69.023 12.25 478.128 Line4 5271870 551952.9 151.498 69.192 10.754 483.193 Line4 5271874 551953 155.498 69.376 9.827 468.894 Line4 5271878 551953.5 159.498 69.571 8.095 463.336 Line4 5271882 551954.8 163.498 69.625 6.77 377.812 Line4 5271886 551954.6 167.498 69.708 7.258 371.721 Line4 5271890 551954.2 171.498 69.812 4.948 374.398 Line4 5271894 551955 175.498 69.887 6.898 370.439 Line4 5271898 551955.2 179.498 70.622 14.249 360.379 Line4 5271902 551953.1 183.498 69.923 11.006 358.947 Line4 5271906 551952.8 187.498 70.314 11.962 369.456 Line4 5271910 551952.8 191.498 70.417 12.396 365.612 Line4 5271914 551953.4 195.498 70.521 7.172 371.726 Line4 5271918 551953.4 199.498 70.678 7.55 356.946 Line4 5271922 551953.3 203.498 70.886 11.239 379.938 Line4 5271926 551953.5 207.498 71.084 9.481 360.057 Line4 5271930 551953.5 211.498 71.236 10.255 380.744 Line4 5271934 551953.3 215.498 71.426 12.153 420.571 Line4 5271938 551953.2 219.498 71.634 11.149 447.417 31

Line4 5271942 551953.1 223.498 71.684 15.198 463.521 Line4 5271946 551953.1 227.498 71.859 15.308 492.668 Line4 5271950 551953.3 231.498 72.023 9.419 490.289 Line4 5271974 551952.5 255.498 74.064 14.028 395.416 Line4 5271978 551952.5 259.498 74.098 14.176 355.859 Line4 5271982 551952.5 263.498 73.627 10.047 407.826 Line4 5271986 551952.4 267.498 73.743 13.277 430.007 Line4 5271990 551952.3 271.498 73.912 17.144 418.723 Line4 5271994 551952.2 275.498 74.081 21.01 341.868 Line4 5271998 551952.2 279.498 74.236 23.149 421.733 Line4 5272002 551953 283.498 74.279 11.406 421.017 Line4 5272006 551950.6 287.498 75.077 15.43 388.305 Line4 5272022 551951.9 303.498 77.98 17.317 413.856 Line4 5272038 551952.4 319.498 75.366 16.221 504.472 Line4 5272042 551953 323.498 75.719 16.402 472.525 Line4 5272046 551951.5 327.498 77.666 15.602 505.645 Line4 5272050 551949.8 331.498 79.459 12.926 474.135 Line4 5272054 551949.8 335.498 81.373 15.198 472.9 Line4 5272058 551950.2 339.498 82.122 12.809 471.65 Line4 5272062 551949.5 343.498 83.744 12.154 507.952 Line4 5272066 551949.5 347.498 82.417 9.123 509.558 Line4 5272070 551949.4 351.498 81.418 6.702 511.183 Line4 5272074 551951.5 355.498 80.501 9.96 488.919 Line4 5272078 551952.4 359.498 80.664 12.256 474.145 Line4 5272082 551952.2 363.498 79.613 16.355 469.16 Line4 5272086 551952.7 367.498 79.284 11.265 471.475 Line4 5272090 551952.4 371.498 78.778 11.796 473.498 Line Northing Easting Midpoint Elevation Slope Vs30 line5a 5272967 551651.8 -8.509 92.461 3.6 448.058 line5a 5272972 551651.9 -3.509 92.312 3.545 439.885 line5a 5272977 551651.4 1.491 92.376 3.534 479.386 line5a 5273017 551651.4 41.491 94.13 6.5 474.451 line5a 5273022 551651.3 46.491 94.192 8.219 442.389 line5a 5273027 551651.5 51.491 94.141 8.366 455.542 line5a 5273032 551651.6 56.491 94.907 7.027 456.641 line5a 5273037 551651.7 61.491 101.024 6.15 456 line5a 5273042 551649.5 66.491 103.899 4.254 460.087 line5a 5273047 551651.1 71.491 97.528 4.831 457.328 line5a 5273052 551651 76.491 96.398 4.043 457.469 line5a 5273057 551651.1 81.491 96.509 4 458.136 line5a 5273062 551651.3 86.491 95.965 3.597 458.034 line5a 5273067 551651.2 91.491 95.795 3.577 459.967 line5a 5273072 551651.7 96.491 93.454 3.317 462.574 32 line5a 5273077 551650.8 101.491 97.312 3.284 447.332 line5a 5273082 551651 106.491 97.066 3.048 459.861 line5a 5273087 551650.8 111.491 97.285 3.027 457.634 line5a 5273092 551650.9 116.491 97.214 2.733 463.703 line5a 5273097 551651.2 121.491 97.288 2.723 468.127 line5a 5273102 551651.1 126.491 97.412 2.643 458.281 line5a 5273107 551650.3 131.491 97.378 2.643 472.276 line5a 5273112 551650.3 136.491 97.204 2.69 472.719 line5a 5273117 551650.4 141.491 97.795 3.08 473.663 line5a 5273122 551650.4 146.491 97.96 3.268 478.587 line5a 5273127 551650.3 151.491 97.886 4.47 484.598 line5a 5273132 551650.4 156.491 98.008 4.601 480.346 line5a 5273137 551650.3 161.491 98.773 5.294 481.835 line5a 5273142 551650.2 166.491 99.432 4.672 487.479 line5a 5273147 551649.9 171.491 99.118 4.443 464.12 line5a 5273152 551649.7 176.491 100.414 3.976 509.036 line5a 5273157 551649.9 181.491 100.751 3.791 474.035 line5a 5273162 551650 186.491 96.99 3.791 511.596 line5a 5273167 551649.9 191.491 96.663 3.843 505.917 line5a 5273172 551650 196.491 98.82 3.93 507.387 line5a 5273177 551650.4 201.491 98.806 3.967 507.601 line5a 5273182 551650.2 206.491 99.306 3.936 505.432 line5a 5273187 551649.9 211.491 100.624 3.914 513.115 line5a 5273192 551649.8 216.491 100.988 3.914 519.607 line5a 5273197 551649.8 221.491 101.219 3.861 524.425 line5a 5273202 551649.7 226.491 101.43 3.732 524.72 line5a 5273207 551649.8 231.491 101.706 3.663 528.042 line5a 5273212 551649.8 236.491 101.898 3.663 524.311 line5a 5273217 551649.8 241.491 101.978 3.528 525.99 line5a 5273222 551650.1 246.491 101.879 3.491 528.712 line5a 5273227 551650.5 251.491 101.936 3.546 530.722 line5a 5273232 551649.9 256.491 102.363 3.587 529.317 line5a 5273237 551649.7 261.491 102.178 3.866 530.371 line5a 5273242 551649.7 266.491 102.216 3.971 532.908 line5a 5273247 551649.9 271.491 102.443 4.074 527.095 line5a 5273252 551650 276.491 102.279 4.116 541.641 line5a 5273257 551650 281.491 102.25 4.011 538.061 line5a 5273262 551649.6 286.491 103.813 3.945 538.257 line5a 5273267 551649.8 291.491 103.294 3.803 545.842 line5a 5273272 551649.3 296.491 102.953 3.746 536.58 line5a 5273277 551649.6 301.491 102.67 3.603 538.926 line5a 5273282 551650.1 306.491 102.232 3.563 541.518 line5a 5273287 551650.1 311.491 103.998 3.31 543.15 33 line5a 5273292 551650 316.491 104.263 3.206 535.192 line5a 5273297 551650 321.491 103.976 3.318 537.057 line5a 5273302 551650.1 326.491 103.984 3.382 522.346 line5a 5273307 551650.1 331.491 104.084 4.006 529.46 Line Num Northing Easting Midpoint Elevation Slope Line5b 5273196 551649.8 -20.999 101.134 15.932 490.018 Line5b 5273201 551649.8 -15.999 101.379 13.382 501.261 Line5b 5273206 551649.7 -10.999 101.597 14.704 518.676 Line5b 5273211 551649.9 -5.999 101.87 17.996 521.472 Line5b 5273216 551649.8 -0.999 101.956 20.129 525.802 Line5b 5273221 551650 4.001 101.919 10.788 528.561 Line5b 5273226 551650.3 9.001 101.886 8.283 529.674 Line5b 5273231 551650.3 14.001 102.162 10.34 533.49 Line5b 5273236 551649.7 19.001 102.271 7.991 541.263 Line5b 5273241 551649.7 24.001 102.153 12.088 543.008 Line5b 5273246 551649.8 29.001 102.373 12.1 525.527 Line5b 5273251 551650 34.001 102.375 8.122 523.9 Line5b 5273256 551650 39.001 102.208 7.164 526.476 Line5b 5273261 551649.8 44.001 103.069 11.756 514.243 Line5b 5273266 551649.6 49.001 103.835 17.705 501.983 Line5b 5273271 551649.6 54.001 102.885 16.299 519.531 Line5b 5273276 551649.4 59.001 102.795 15.959 506.581 Line5b 5273281 551650 64.001 102.365 13.544 517.489 Line5b 5273286 551650.2 69.001 103.226 11.591 507.894 Line5b 5273291 551650 74.001 104.481 14.662 514.749 Line5b 5273296 551650 79.001 103.991 16.06 507.094 Line5b 5273301 551650.1 84.001 103.971 14.919 521.302 Line5b 5273306 551650.1 89.001 104.045 12.573 499.752 Line5b 5273311 551650.1 94.001 104.207 16.638 497.157 Line5b 5273341 551650.2 124.001 104.967 11.112 494.557 Line5b 5273346 551650.3 129.001 105.072 9.887 450.267 Line5b 5273351 551650.5 134.001 105.118 7.309 471.557 Line5b 5273356 551650.8 139.001 105.098 5.267 479.679 Line5b 5273361 551650.9 144.001 105.086 5.467 467.311 Line5b 5273366 551650.8 149.001 105.126 11.202 415.838 Line5b 5273371 551649.9 154.001 104.611 11.702 418.927 Line5b 5273376 551649.5 159.001 103.282 10.878 442.603 Line5b 5273381 551650.3 164.001 104.943 11.886 419.309 Line5b 5273386 551650.1 169.001 106.424 12.691 440.252 Line5b 5273391 551649.6 174.001 104.233 21.587 427.621 Line5b 5273396 551650.6 179.001 106.135 13.532 469.793 Line5b 5273401 551650.4 184.001 106.749 16.685 453.257 Line5b 5273406 551650.4 189.001 107.152 14.865 473.815 34

Line5b 5273411 551650.8 194.001 106.626 12.399 436.682 Line5b 5273416 551651 199.001 107.389 12.755 458.35 Line5b 5273421 551651.3 204.001 108.168 13.296 449.305 Line5b 5273426 551650.8 209.001 107.021 13.253 442.512 Line5b 5273431 551650.7 214.001 107.195 10.985 441.199 Line5b 5273436 551650.5 219.001 107.686 11.932 446.301 Line5b 5273441 551650.4 224.001 108.274 14.059 437.659 Line5b 5273446 551650.5 229.001 108.637 16.909 459.329 Line5b 5273451 551650.5 234.001 108.844 20.98 450.46 Line5b 5273496 551650.7 279.001 109.612 20.181 458.281 Line5b 5273501 551650.7 284.001 109.537 19.235 495.722 Line5b 5273506 551650.8 289.001 109.463 18.289 471.221 Line5b 5273511 551650.9 294.001 109.389 17.343 488.087 Line5b 5273516 551651 299.001 109.315 16.397 491.581 Line5b 5273556 551651.6 339.001 117.561 11.891 484.766 Line5b 5273561 551650.1 344.001 112.299 22.013 481.59 Line5b 5273566 551650.3 349.001 111.787 16.025 534.337 Line5b 5273571 551649.5 354.001 113.929 14.131 569.114 Line5b 5273576 551649.5 359.001 117.889 10.728 480.978 Line Northing Easting Midpoint Elevation Slope Vs30 Line6 5271175 552733.1 62.624 52.456 18.31 433.311 Line6 5271180 552733.2 67.624 52.995 18.795 430.706 Line6 5271185 552733.1 72.624 53.575 23.545 431.148 Line6 5271190 552732 77.624 53.738 21.24 432.571 Line6 5271195 552725.4 82.624 54.519 16.967 424.577 Line6 5271200 552720.1 87.624 54.773 15.833 428.895 Line6 5271204 552715.6 92.624 55.213 14.303 430.744 Line6 5271209 552710.1 97.624 55.668 20.562 455.472 Line6 5271214 552705.6 102.624 56.311 19.157 463.437 Line6 5271219 552704.4 107.624 56.601 20.722 459.782 Line6 5271224 552704.4 112.624 57.044 21.192 466.955 Line6 5271229 552703.4 117.624 57.345 15.03 472.061 Line6 5271234 552702.3 122.624 57.42 15.099 476.392 Line6 5271239 552703.6 127.624 57.736 17.728 479.956 Line6 5271244 552704.4 132.624 58.035 12.393 476.432 Line6 5271249 552704 137.624 58.565 15.025 481.551 Line6 5271254 552703.2 142.624 58.919 13.063 470.151 Line6 5271259 552703.5 147.624 59.17 18.431 471.373 Line6 5271264 552703.4 152.624 59.51 16.075 487.87 Line6 5271269 552703.5 157.624 59.571 16.331 488.122 Line6 5271274 552703.4 162.624 60.171 21.789 485.841 Line6 5271279 552702.4 167.624 60.804 26.595 482.275 Line6 5271284 552703.5 172.624 60.614 11.012 475.538 35

Line6 5271289 552704.7 177.624 60.096 2.922 481.141 Line6 5271294 552703.2 182.624 60.083 8.798 463.745 Line6 5271299 552703.2 187.624 60.515 7.077 472.67 Line6 5271304 552703.5 192.624 60.838 2.414 475.892 Line6 5271309 552702.3 197.624 60.953 10.688 464.518 Line6 5271314 552702.7 202.624 60.854 9.886 451.418 Line6 5271319 552702.6 207.624 61.029 10.589 452.523 Line6 5271324 552702.5 212.624 61.198 10.161 430.526 Line6 5271329 552703.4 217.624 61.433 4.642 421.856 Line6 5271334 552703.3 222.624 61.692 9.965 442.247 Line6 5271339 552702.4 227.624 61.862 18.066 425.035 Line6 5271344 552702.4 232.624 61.957 20.226 420.208 Line6 5271349 552702.4 237.624 62.093 14.641 417.764 Line6 5271359 552702.2 247.624 62.686 17.124 355.744 Line6 5271364 552702.3 252.624 62.938 15.737 406.824 Line6 5271369 552702.4 257.624 63.131 17.317 407.302 Line6 5271374 552701.9 262.624 63.212 15.997 416.425 Line6 5271379 552701.9 267.624 63.461 13.68 427.044 Line6 5271384 552702.1 272.624 63.919 12.266 491.658 Line6 5271389 552702.1 277.624 63.944 16.796 460.654 Line6 5271394 552701.8 282.624 64.079 9.493 495.515 Line6 5271399 552702 287.624 64.138 10.501 497.368 Line6 5271494 552700.7 382.624 66.51 10.496 567.498 Line6 5271499 552700.8 387.624 66.713 12.749 576.84 Line6 5271504 552701.1 392.624 67.014 15.921 552.937 Line6 5271509 552700.6 397.624 67.393 19.396 556.206 Line6 5271514 552702.3 402.624 67.628 7.368 553.445 Line6 5271519 552700.5 407.624 67.257 10.92 544.29 Line6 5271524 552700.4 412.624 67.344 13.892 459.142 Line6 5271529 552700.4 417.624 67.472 15.167 551.845 Line6 5271534 552700.2 422.624 67.509 25.077 554.454 Line6 5271539 552700 427.624 67.915 8.912 564.078 Line6 5271544 552699.8 432.624 68.109 9.733 524.339 Line6 5271549 552700.1 437.624 68.374 12.719 530.631 Line6 5271554 552700.3 442.624 68.627 14.707 540.228 Line6 5271559 552700.6 447.624 68.606 10.274 501.633 Line6 5271564 552700 452.624 68.509 8.782 505.37 Line6 5271569 552701 457.624 68.69 14.152 500.609 Line6 5271574 552702.1 462.624 68.841 5.403 501.469 Line6 5271579 552704.2 467.624 69.008 12.161 491.334 Line6 5271584 552704.1 472.624 68.77 20.023 494.647 Line6 5271589 552704.5 477.624 68.76 12.405 491.089 Line6 5271599 552706.9 487.624 69.146 8.338 487.768 36

Line6 5271604 552707.8 492.624 69.483 7.637 508.947 Line6 5271609 552707.8 497.624 69.707 16.235 509.204 Line6 5271614 552708.5 502.624 70.159 16.78 543.219 Line Northing Easting Midpoint Elevation Slope Vs30 Line7 5270853 552861.9 52.386 38.579 4.768 257.217 Line7 5270848 552863.3 57.386 38.603 18.099 267.92 Line7 5270843 552863.3 62.386 38.938 18.954 261.379 Line7 5270839 552864 67.386 39.104 7.87 245.083 Line7 5270828 552863.7 77.386 39.293 11.996 289.887 Line7 5270823 552863.8 82.386 39.912 14.917 297.686 Line7 5270818 552863.5 87.386 40.439 15.14 297.652 Line7 5270813 552863 92.386 40.758 15.62 307.36 Line7 5270808 552863.4 97.386 41.175 14.859 299.267 Line7 5270803 552863.4 102.386 41.577 14.266 314.965 Line7 5270798 552862.9 107.386 42.089 14.292 316.489 Line7 5270793 552862.4 112.386 42.257 15.173 314.655 Line7 5270788 552860.8 117.386 36.173 12.852 313.014 Line7 5270783 552860 122.386 30.328 8.683 299.768 Line7 5270778 552859.6 127.386 35.971 6.633 305.638 Line7 5270773 552859.5 132.386 42.737 8.922 319.382 Line7 5270768 552859.6 137.386 42.838 12.022 313.657 Line7 5270763 552859.7 142.386 43.015 10.33 316.177 Line7 5270758 552859.8 147.386 43.171 8.565 307.732 Line7 5270753 552859.8 152.386 43.324 9.479 315.421 Line7 5270748 552859.7 157.386 43.513 8.715 328.487 Line7 5270743 552859.1 162.386 43.715 8.984 325.175 Line7 5270738 552858.5 167.386 43.899 8.859 324.523 Line7 5270733 552859 172.386 44.131 18.329 310.297 Line7 5270728 552859.6 177.386 44.306 23.782 320.426 Line7 5270723 552859.5 182.386 44.419 14.306 317.683 Line7 5270718 552859.5 187.386 44.63 10.581 297.988 Line7 5270713 552859.6 192.386 44.68 9.352 298.915 Line7 5270708 552859.3 197.386 44.823 8.555 293.91 Line7 5270703 552859.1 202.386 45.043 7.698 277.198 Line7 5270698 552859 207.386 45.441 9.696 232.183 Line7 5270693 552858.8 212.386 45.582 6.627 320.335 Line7 5270688 552859.5 217.386 45.808 9.957 240.874 Line7 5270683 552859.5 222.386 45.667 10.154 279.076 Line7 5270678 552859.3 227.386 45.935 8.463 346.294 Line7 5270668 552859.6 237.386 46.74 14.378 292.334 Line7 5270663 552859.2 242.386 47.015 14.631 346.451 Line7 5270658 552859.7 247.386 46.785 15.511 374.889 Line7 5270653 552859.9 252.386 46.678 17.488 401.67 37

Line7 5270643 552860.1 262.386 47.426 17.438 306.557 Line7 5270638 552860.3 267.386 47.567 18.024 316.626 Line7 5270633 552860.9 272.386 47.789 19.733 283.677 Line7 5270628 552862.5 277.386 45.212 18.235 300.05 Line7 5270623 552862.7 282.386 30.39 12.498 310.951 Line7 5270618 552864.1 287.386 32.813 13.104 304.496 Line7 5270613 552866 292.386 47.93 25.874 304.714 Line7 5270608 552866.2 297.386 47.928 16.099 313.998 Line7 5270603 552866.7 302.386 47.899 20.776 306.439 Line7 5270598 552866.4 307.386 47.824 10.23 305.976 Line7 5270593 552866.6 312.386 47.702 12.259 317.378 Line7 5270588 552866.8 317.386 47.517 8.045 311.057 Line7 5270583 552867.5 322.386 47.437 9.107 316.613 Line7 5270579 552868.8 327.386 47.418 7.23 329.144 Line7 5270574 552870.4 332.386 47.426 15.922 325.061 Line7 5270569 552874.8 337.386 47.784 15.553 325.485 Line7 5270564 552878.2 342.386 32.462 13.851 330.725 Line7 5270559 552882.6 347.386 48.362 13.573 338.906 Line7 5270554 552887.6 352.386 49.162 19.843 328.994 Line7 5270549 552891.3 357.386 49.522 47.145 336.181 Line7 5270544 552893.5 362.386 49.477 43.874 339.995 Line7 5270539 552894.8 367.386 49.427 8.949 365.688 Line7 5270534 552895.5 372.386 49.34 11.677 360.185 Line7 5270529 552896 377.386 49.22 15.464 368.038 Line7 5270524 552895.7 382.386 49.18 10.547 383.337 Line7 5270519 552895.6 387.386 49.115 3.924 380.253 Line7 5270509 552895.3 397.386 48.912 21.953 373.781 Line7 5270504 552895 402.386 48.913 49.169 389.204 Line7 5270499 552895 407.386 48.924 50.932 366.649 Line7 5270494 552895.1 412.386 48.948 46.88 379.722 Line7 5270489 552895.1 417.386 48.836 36.952 377.03 Line7 5270484 552895.2 422.386 48.724 18.273 366.616 Line7 5270479 552895.2 427.386 48.659 8.468 377.484 Line7 5270474 552895.8 432.386 48.637 10.385 403.108 Line7 5270469 552896.1 437.386 48.522 12.905 392.695 Line7 5270464 552896.1 442.386 48.351 7.577 402.042 Line7 5270459 552896.1 447.386 48.298 7.527 395.055 Line7 5270454 552896 452.386 48.211 6.691 421.777 Line7 5270449 552896 457.386 48.097 10.925 375.919 Line7 5270444 552896.2 462.386 47.938 9.801 377.106 Line7 5270439 552896.1 467.386 47.842 2.465 364.795 Line7 5270429 552896.4 477.386 47.616 12.211 360.275 Line7 5270424 552896.7 482.386 47.597 4.085 360.235 38

Line7 5270419 552896.6 487.386 47.505 5.568 364.625 Line7 5270414 552896.2 492.386 47.508 5.733 361.957 Line7 5270409 552896 497.386 47.44 4.492 368.813 Line7 5270404 552895.8 502.386 47.337 5.142 368.351 Line7 5270399 552896.1 507.386 47.283 3.182 363.211 Line7 5270394 552896.2 512.386 47.185 2.968 365.048 Line7 5270389 552896.1 517.386 47.051 6.049 367.804 Line7 5270384 552895.9 522.386 46.933 6.771 355.338 Line7 5270379 552896.1 527.386 46.84 10.629 312.448 Line7 5270374 552896.1 532.386 46.859 9.839 323.875 Line7 5270369 552896.3 537.386 46.708 13.254 352.259 Line7 5270364 552896.2 542.386 46.641 9.964 331.617 Line7 5270359 552896 547.386 46.495 10.235 342.918 Line7 5270354 552895.9 552.386 46.42 21.307 359.793 Line7 5270349 552896 557.386 46.4 17.148 344.09 Line7 5270344 552895.8 562.386 46.24 11.593 351.362 Line7 5270339 552895.8 567.386 46.09 13.806 355.824 Line7 5270329 552895.8 577.386 45.915 25.06 357.624 Line7 5270324 552895.8 582.386 45.778 20.54 356.149 Line7 5270319 552895.8 587.386 45.666 11.699 358.251 Line7 5270314 552895.9 592.386 45.481 9.212 364.524 Line7 5270309 552896.1 597.386 45.308 7.639 356.064 Line7 5270304 552896.1 602.386 45.185 5.315 357.772 Line7 5270299 552896.4 607.386 45.125 2.534 362.469 Line7 5270294 552897.2 612.386 45.017 5.331 364.03 Line7 5270289 552897.8 617.386 40.772 11.94 361.824 Line7 5270284 552898 622.386 33.972 9.204 366.146 Line7 5270279 552898 627.386 44.611 7.862 365.093 Line7 5270274 552898 632.386 44.407 12.917 365.496 Line7 5270269 552898 637.386 39.498 18.864 368.598 Line7 5270264 552897.6 642.386 34.177 25.33 373.429 Line7 5270259 552897.6 647.386 44.056 21.586 371.832 Line7 5270254 552897.6 652.386 44.084 17.286 364.486 Line7 5270249 552897.3 657.386 44.032 19.53 373.604 Line7 5270244 552897.3 662.386 44.043 11.625 376.698 Line7 5270239 552897.4 667.386 43.949 3.822 376.033 Line7 5270234 552897.2 672.386 43.884 10.6 370.161 Line7 5270229 552896.9 677.386 43.854 17.56 368.852 Line7 5270224 552897 682.386 43.822 15.534 370.599 Line7 5270219 552896.9 687.386 43.77 22.814 364.217 Line7 5270214 552896.8 692.386 43.641 33.473 362.21 Line7 5270209 552897.4 697.386 43.5 34.932 364.529 Line7 5270204 552897.6 702.386 43.42 33.467 365.443 39

Line7 5270199 552896.6 707.386 43.269 37.35 339.247 Line7 5270194 552896.4 712.386 43.063 45.306 350.762 Line7 5270184 552897.4 722.386 42.786 13.87 336.643 Line7 5270179 552897 727.386 42.652 20.232 320.161 Line7 5270174 552896.7 732.386 42.299 21.407 333.149 Line7 5270169 552896.4 737.386 41.984 16.951 331.727 Line7 5270164 552896.2 742.386 41.722 10.573 340.887 Line7 5270159 552896.6 747.386 41.389 12.795 323.024 Line7 5270154 552897.1 752.386 41.131 15.879 333.207 Line7 5270149 552897.1 757.386 40.794 20.559 335.05 Line7 5270144 552897 762.386 40.39 20.438 313.875 Line7 5270139 552896.9 767.386 40.052 16.352 310.106 Line7 5270134 552896.8 772.386 39.766 11.201 312.045 Line7 5270129 552896.5 777.386 39.507 12.882 296.088 Line7 5270124 552896.1 782.386 39.217 15.968 365.388 Line7 5270119 552895.7 787.386 38.964 11.252 334.795 Line7 5270114 552895 792.386 38.703 14.085 353.742 Line7 5270109 552894.5 797.386 38.436 22.863 315.48 Line Northing Easting Midpoint Elevation Slope Vs30 Line8 5272086 552036.9 63.47 81.965 17.263 474.989 Line8 5272091 552036.8 68.47 83.062 12.372 479.018 Line8 5272096 552037.2 73.47 83.232 18.142 479.749 Line8 5272101 552037 78.47 82.721 8.205 481.64 Line8 5272106 552037 83.47 82.678 7.652 477.811 Line8 5272111 552037 88.47 82.655 10.258 485.673 Line8 5272116 552037.1 93.47 83.25 9.174 491.471 Line8 5272121 552037.4 98.47 83.081 12.869 523.973 Line8 5272126 552038.3 103.47 83.35 12.984 485.177 Line8 5272131 552039.5 108.47 84.271 19.998 519.357 Line8 5272136 552040.3 113.47 84.563 9.808 526.169 Line8 5272141 552042.8 118.47 84.773 6.606 522.268 Line8 5272146 552044.3 123.47 84.957 9.091 504.992 Line8 5272151 552045.7 128.47 85.508 13.799 508.705 Line8 5272154 552045.8 131.47 85.241 11.737 495.547 Line8 5272156 552046 133.47 85.267 9.113 483.094 Line8 5272158 552046.4 135.47 85.349 6.146 498.595 Line8 5272161 552046.8 138.47 85.432 4.272 494.269 Line8 5272162 552046.9 139.47 85.445 4.606 500.341 Line8 5272166 552047.3 143.47 85.5 7.579 502.981 Line8 5272171 552047.9 148.47 85.636 11.476 498.944 Line8 5272246 552051.5 223.47 88.419 15.044 445.691 Line8 5272250 552051 227.47 88.536 14.829 461.112 Line8 5272251 552050.9 228.47 88.566 14.775 435.411 40

Line8 5272256 552050.3 233.47 88.713 14.507 425.102 Line8 5272266 552049.1 243.47 89.008 13.971 424.111 Line8 5272316 552048.1 293.47 90.568 9.169 437.997 Line8 5272321 552048.1 298.47 90.691 9.644 456.512 Line8 5272326 552047.9 303.47 90.806 8.753 466.544 Line8 5272331 552047.8 308.47 91.061 9.749 457.163 Line8 5272336 552047.8 313.47 91.214 9.977 442.689 Line8 5272341 552047.7 318.47 91.479 8.144 450.067 Line8 5272346 552047.6 323.47 91.6 8.103 449.063 Line8 5272351 552047.5 328.47 91.782 7.735 447.216 Line8 5272356 552047.3 333.47 91.957 8.391 448.687 Line8 5272361 552047.4 338.47 92.166 8.474 441.349 Line8 5272366 552047.6 343.47 92.273 4.902 442.208 Line8 5272371 552047.5 348.47 92.308 2.948 449.267 Line8 5272376 552047.4 353.47 92.35 6.716 447.693 Line8 5272381 552047.4 358.47 92.44 7.451 453.508 Line8 5272386 552047.3 363.47 92.612 5.721 456.498 Line8 5272391 552047.3 368.47 92.703 6.126 453.987 Line8 5272396 552047.3 373.47 92.91 6.168 452.335 Line8 5272401 552047.4 378.47 93.29 7.298 457.351 Line8 5272406 552047.2 383.47 93.117 8.538 453.456 Line8 5272411 552047.2 388.47 93.226 7.567 458.976 Line8 5272416 552047.1 393.47 93.373 6.362 458.667 Line8 5272421 552046.9 398.47 93.486 8.353 470.871 Line8 5272426 552046.9 403.47 93.565 10.115 475.978 Line8 5272431 552047 408.47 93.762 7.394 452.689 Line8 5272436 552046.9 413.47 93.882 9.159 463.267 Line8 5272441 552046.8 418.47 94.009 11.941 472.68 Line8 5272451 552046.8 428.47 94.6 5.06 449.318 Line8 5272456 552046.7 433.47 94.322 7.228 464.373 Line8 5272461 552046.6 438.47 94.407 9.611 468.688 Line8 5272466 552047 443.47 94.398 5.388 462.029 Line8 5272471 552047 448.47 94.488 6.854 453.656 Line8 5272476 552046.8 453.47 94.612 16.171 457.813 Line8 5272481 552046.4 458.47 94.868 14.231 455.932 Line8 5272486 552046.2 463.47 95.037 9.878 439.414 Line8 5272491 552046.4 468.47 95.109 4.394 461.547 Line8 5272501 552046.4 478.47 95.415 4.391 468.918 Line8 5272506 552046.6 483.47 95.316 7.756 482.182 Line8 5272511 552046.6 488.47 95.375 8.948 475.555 Line8 5272516 552046.5 493.47 95.548 7.24 474.675 Line8 5272521 552046.4 498.47 95.823 5.31 483.276 Line8 5272526 552046.3 503.47 96.022 4.983 509.294 41

Line8 5272531 552046.2 508.47 96.064 8.048 472.067 Line8 5272546 552046.2 523.47 96.315 10.464 534.342 Line8 5272556 552046.6 533.47 96.339 5.353 483.582 Line8 5272571 552046.6 548.47 96.651 5.093 471.233 Line8 5272576 552046.5 553.47 96.605 2.43 479.659 Line8 5272581 552046.3 558.47 96.679 5.239 478.028 Line8 5272586 552045.9 563.47 96.817 13.212 478.467 Line8 5272591 552046 568.47 96.878 11.108 476.435 Line8 5272596 552046.2 573.47 96.786 8.176 481.028 Line8 5272601 552046.2 578.47 96.78 7.983 481.443 Line8 5272606 552046 583.47 96.717 8.644 483.273 Line8 5272611 552046.4 588.47 96.84 6.302 483.592 Line8 5272616 552046.3 593.47 96.933 7.026 480.336 Line8 5272621 552046.3 598.47 96.972 10.301 500.716 Line8 5272626 552046.1 603.47 96.944 12.224 495.52 Line8 5272631 552046 608.47 96.997 8.592 486.529 Line8 5272636 552046.1 613.47 97.068 13.125 500.19 Line8 5272641 552045.9 618.47 97.146 15.511 501.919 Line8 5272646 552046 623.47 97.169 13.365 492.209 Line8 5272651 552046.2 628.47 97.273 8.623 488.289 Line8 5272656 552046.1 633.47 97.266 7.392 494.847 Line8 5272661 552045.9 638.47 97.131 9.457 496.081 Line8 5272666 552045.8 643.47 97.185 7.184 512.845 Line8 5272671 552045.9 648.47 97.217 7.573 488.616 Line8 5272676 552045.8 653.47 97.327 11.787 482.265 Line8 5272681 552045.8 658.47 97.333 9.974 483.286 Line8 5272686 552045.8 663.47 97.259 8.128 484.412 Line8 5272691 552045.7 668.47 97.305 6.32 477.994 Line8 5272696 552045.7 673.47 97.392 6.231 491.129 Line8 5272701 552045.7 678.47 97.438 7.929 517.682 Line8 5272746 552044.5 723.47 97.803 14.168 457.038 Line8 5272750 552044.1 727.47 97.791 16.562 414.183 Line8 5272751 552044.2 728.47 97.792 16.147 423.552 Line8 5272756 552044.5 733.47 97.796 14.075 431.555 Line8 5272761 552044.8 738.47 97.801 12.002 427.777 Line8 5272766 552045.2 743.47 97.805 9.93 428.559 Line8 5272771 552045.3 748.47 98.029 7.701 433.894 Line8 5272818 552045.3 795.47 99.327 6.761 446.019 Line8 5272822 552045.3 799.47 99.18 4.546 452.198 Line8 5272826 552045.2 803.47 99.076 4.689 456.938 Line8 5272830 552045.1 807.47 99.272 10.055 454.221 Line8 5272834 552045 811.47 99.439 10.031 463.786 Line8 5272838 552045.2 815.47 99.493 5.917 474.577 42

Line8 5272842 552045.2 819.47 99.534 7.887 461.473 Line8 5272850 552045.2 827.47 99.765 10.636 488.183 Line8 5272854 552045.1 831.47 99.93 3.846 476.642 Line8 5272856 552045.1 833.47 99.889 3.763 484.204 Line8 5272858 552045.1 835.47 99.847 3.681 468.958 Line8 5272866 552045 843.47 100.483 6.774 474.891 Line8 5272871 552045 848.47 100.174 6.823 447.705 Line8 5272876 552045 853.47 100.359 9.737 466.894 Line8 5272881 552045.5 858.47 101.521 11.193 469.127 Line8 5272886 552045.2 863.47 101.157 4.78 468.96 Line8 5272891 552045.2 868.47 100.707 8.523 460.259 Line8 5272896 552045 873.47 100.957 10.164 471.11 Line8 5272901 552045 878.47 101.016 9.709 467.649 Line8 5272906 552045 883.47 101.276 5.074 465.1 Line8 5272911 552044.9 888.47 101.664 9.932 457.53 Line8 5272916 552045.1 893.47 101.935 6.537 463.533 Line8 5272921 552045.3 898.47 102.304 2.561 474.448 Line8 5272926 552045.5 903.47 102.247 3.848 482.151 Line8 5272931 552045.9 908.47 102.491 5.37 480.999 Line8 5272936 552045 913.47 102.762 6.526 477.669 Line8 5272941 552044.6 918.47 102.275 6.975 480.716 Line8 5272946 552044.6 923.47 102.104 6.72 484.747 Line8 5272951 552044.6 928.47 102.214 4.877 477.903 Line8 5272956 552044.5 933.47 102.211 3.663 474.661 Line8 5272961 552045.1 938.47 102.179 8.129 484.959 Line8 5272966 552045.5 943.47 102.206 10.934 482.844 Line8 5272971 552046.1 948.47 102.21 13.649 480.915 Line8 5272976 552045 953.47 102.484 9.762 485.025 Line8 5272981 552044.2 958.47 103.14 9.006 472.492 Line8 5272986 552044.6 963.47 102.901 13.038 492.467 Line8 5272991 552044.2 968.47 102.85 15.08 479.17 Line8 5272996 552044.6 973.47 103.282 12.841 481.048 Line8 5273001 552045.3 978.47 103.649 8.687 477.834 Line8 5273006 552044.5 983.47 103.675 8.745 480.259 Line8 5273011 552045.5 988.47 104.066 8.515 480.271 Line8 5273016 552045.6 993.47 104.777 6.659 483.298 Line8 5273021 552044.2 998.47 104.746 7.503 479.951 Line8 5273026 552044.2 1003.47 104.665 9.796 512.82 Line8 5273031 552044.1 1008.47 104.839 8.109 493.826 Line8 5273036 552044.3 1013.47 104.961 8.78 476.979 Line8 5273041 552044.3 1018.47 104.478 9.992 526.19 Line8 5273046 552044.2 1023.47 105.242 8.839 516.745 Line8 5273051 552043.4 1028.47 106.407 11.279 499.725 43

Line8 5273056 552043.6 1033.47 106.781 10.156 553.133 Line8 5273061 552043.8 1038.47 106.055 8.291 567.055 Line8 5273066 552043.7 1043.47 105.897 8.842 521.789 Line8 5273071 552043.8 1048.47 106.091 8.848 537.976 Line8 5273076 552046 1053.47 107.229 7.562 533.499 Line8 5273081 552044.8 1058.47 107.052 8.334 553.845 Line8 5273086 552044.1 1063.47 106.907 4.021 539.245

44