Western Limits of the Seattle Fault Zone and Its Interaction with the Olympic Peninsula, Washington

Total Page:16

File Type:pdf, Size:1020Kb

Western Limits of the Seattle Fault Zone and Its Interaction with the Olympic Peninsula, Washington Western limits of the Seattle fault zone and its interaction with the Olympic Peninsula, Washington A.P. Lamb1, L.M. Liberty1, R.J. Blakely2, T.L. Pratt3, B.L. Sherrod3, and K. van Wijk1 1Department of Geosciences, Boise State University, 1910 University Drive, Boise, Idaho 83725, USA 2U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA 3U.S. Geological Survey, School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195, USA ABSTRACT INTRODUCTION preted north-dipping backthrusts that are in part beneath the Seattle metropolitan area (Fig. 1). We present evidence that the Seattle fault Oblique subduction of the Juan de Fuca plate The shallow portion of this fault zone is com- zone of Washington State extends to the west beneath the North American continent results in posed of a monocline that bounds the southern edge of the Puget Lowland and is kinemati- northeast migration of coastal regions of Wash- margin of the Seattle Basin, and mapped faults cally linked to active faults that border the ington State relative to stable North America. and folds in the hanging wall just south of the Olympic Massif, including the Saddle Moun- This northeast motion is resisted by Mesozoic monocline. The Seattle fault zone may extend tain deformation zone. Newly acquired high- and older rocks that form the stable craton of to the east beyond the boundaries of the Seattle resolution seismic reflection and marine southwest Canada, resulting in shortening Basin to merge with the active South Whidbey magnetic data suggest that the Seattle fault of the Puget Lowland region of Washington Island fault (Fig. 1; Johnson et al., 1996; Liberty zone extends west beyond the Seattle Basin State (Wells et al., 1998; Mazzotti et al., 2002; and Pratt, 2008; Sherrod et al., 2008; Blakely to form a >100-km-long active fault zone. We McCaffrey et al., 2007). This shortening is et al., 2009). provide evidence for a strain transfer zone, expressed, in part, as a series of northwest- and The Tacoma fault on the south side of expressed as a broad set of faults and folds west-trending active faults that separate basins the Seattle uplift is less well defi ned than the connecting the Seattle and Saddle Mountain and structural uplifts beneath the Puget Low- Seattle fault. The Tacoma fault extends ~20 km deformation zones near Hood Canal. This land, within which are the Seattle and Tacoma along the southern margin of the Seattle uplift connection provides an explanation for the metropolitan areas (Fig. 1; Johnson et al., 1996; between Carr Inlet and the southeastern extent apparent synchroneity of M7 earthquakes Pratt et al., 1997). of Hood Canal (Fig. 1B). The Tacoma fault is on the two fault systems ~1100 yr ago. We The Seattle Basin and Tacoma Basin extend along strike of the White River fault (Fig. 1A), redefi ne the boundary of the Tacoma Basin eastward ~70 km from Hood Canal, beneath which extends through the Cascade Range, but to include the previously termed Dewatto the Seattle-Tacoma urban corridor, to the foot- no direct evidence links these two fault systems basin and show that the Tacoma fault, the hills of the Cascade Range (Fig. 1). The Seattle (Blakely et al., 2007, 2011). Field studies show southern part of which is a backthrust of uplift, separating the basins, is interpreted as a that the Seattle and Tacoma faults are capable the Seattle fault zone, links with a previously pop-up block above the south-dipping Seattle of causing large earthquakes (Atwater and unidentifi ed fault along the western margin thrust fault to the north and the Tacoma back- Moore, 1992; Sherrod et al., 2004), so know- of the Seattle uplift. We model this north- thrust to the south (Pratt et al., 1997; Brocher ing their overall lengths and their interactions south fault, termed the Dewatto fault, along et al., 2001, 2004). Direct geologic evidence for with neighboring faults help us to understand the western margin of the Seattle uplift as the Seattle and Tacoma fault systems is sparse, fault kinematics and earthquake hazards in this a low-angle thrust that initiated with exhu- consisting primarily of uplifted bedrock terraces area. The most recent large rupture occurred on mation of the Olympic Massif and today (Bucknam et al., 1992; Kelsey et al., 2008), topo- the Seattle fault zone in A.D. 900–930, produc- accommodates north-directed motion. The graphic scarps observed in light detection and ing a M7–7.5 earthquake that lifted the hanging Tacoma and Dewatto faults likely control ranging (Lidar) surveys that cover a large area of wall ~6.5 m and generated a local tsunami and both the southern and western boundaries of the Puget Lowland (e.g., Haugerud et al., 2003; landslides (Atwater and Moore, 1992; Bucknam the Seattle uplift. The inferred strain trans- Sherrod et al., 2004, 2008), and faults and folds et al., 1992; Jacoby et al., 1992; Atwater and fer zone linking the Seattle fault zone and found in detailed studies of trench excavations Hemphill-Haley, 1997; Sherrod et al., 2000; ten Saddle Mountain deformation zone defi nes across Lidar scarps (e.g., Nelson et al., 2003; Brink et al., 2006). Trench studies across Lidar the northern margin of the Tacoma Basin, Sherrod et al., 2004). Fault strands and underly- scarps on the Tacoma and Saddle Mountain and the Saddle Mountain deformation zone ing structures are inferred from seismicity, mag- faults (Fig. 1) suggest earthquakes with timing forms the northwestern boundary of the netic, gravity, geologic, and seismic refl ection (within the limits of radiocarbon dating) similar Tacoma Basin. Our observations and model data (e.g., Finn, 1990; Pratt et al., 1997; Brocher to that of the Seattle fault zone event 1100 yr suggest that the western portions of the et al., 2001; Blakely et al., 2002; Johnson et al., ago that may be contemporaneous (e.g., Sherrod Seattle fault zone and Tacoma fault are com- 2004; Stephenson et al., 2006; Liberty and Pratt, et al., 2004, 2008; Blakely et al., 2009). plex, require temporal variations in principal 2008; Sherrod et al., 2008). In this paper, we explore the deformation strain directions, and cannot be modeled as a The ~70-km-long Seattle fault zone is com- caused by convergence across the Seattle fault simple thrust and/or backthrust system. posed of south-dipping thrust faults and inter- zone and eastern portions of the Olympic Massif Geosphere; August 2012; v. 8; no. 4; p. 915–930; doi:10.1130/GES00780.1; 9 fi gures. Received 28 December 2011 ♦ Revision received 6 April 2012 ♦ Accepted 9 April 2012 ♦ Published online 26 June 2012 For permission to copy, contact [email protected] 915 © 2012 Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/8/4/915/3342851/915.pdf by guest on 28 September 2021 Lamb et al. 124° W 123° W 122° W 121° W A LRF DMF Figure 1. (A) Map modified from Blakely et al. (2009) show- Canada USA ing the tectonic setting of the EB Puget Lowland and Olympic SWIF Peninsula. The yellow arrow 48° shows the regional direction of Pacific Ocean KA Seattle SCF strain relative to North Amer- Olympic Massif ica (McCaffrey et al., 2007). SB Olympic This strain causes north-south Subduction Complex compression that is buttressed Z SFZ Fall City RMF (OSC) D by the stable Canadian craton M and results in 4.4 ± 0.3 mm/yr S SU SMF of permanent shortening being Region of uplift HRF TF Fig. 1B Tacoma accommodated across the Puget Basin Lowland region. FCF—Frigid CRF TB WRF Thrust fault Creek fault; HRF—Hurricane Region of uplift FCF Fig. 9 Figs 2A and 2B Ridge fault; OF—Olympia NormalBasin fault OF fault; OU—Olympia uplift; 47° Strike-slip fault OU SB—Seattle Basin; SF—Seattle 40 km fault; SMF—Saddle Mountain ′ East and Saddle Mountain 123°30′ W 123° W 122°30′ W West faults; SMDZ—Saddle B Mountain deformation zone; SU—Seattle uplift; TB— OSC LM UM Tacoma Basin; TF—Tacoma 47°45′ ' fault. Other regional faults not referred to in this research but shown in Figure 1: CRF—Can- Lake yon River fault; DMF—Devils l Seattle Fault Zone Mountain fault; EB—Everett Cushman Cana basin; KA—Kingston arch; HRF Peripheral terrane LRF—Leech River fault; HoodFig. 3 RMF—Rattlesnake Mountain ′ ' 47°30 SMDZ Dyes Inlet fault; SCF—Straight Creek Price SMF fault; SWIF—southern Whid- Lake CRF bey Island fault; WRF—White River fault. (B) Geological map Tacoma Fault modifi ed from Schuster (2005) FCF Inlet and Blakely et al. (2009). Carr Quaternary alluvium Tertiary volcanic rocks Division Between Upper Pleistocene glacial deposits Tertiary intrusive rocks and Lower Crescent Formation Tertiary marine sedimentary rocks Eocene Crescent Formation 10 km using new high-resolution seismic profi les and link between several fault systems in the Puget Puget Lowland and the Seattle fault zone (Fig. magnetic data between Hood Canal and Puget Sound region, providing a possible explanation 1A). The complex is cored by severely deformed Sound (Fig. 2). These new data cross the north- for synchronous ruptures of multiple faults dur- and metamorphosed Eocene to Miocene marine west and west fl anks of the Seattle uplift where ing large earthquakes. sedimentary rocks that have been uplifted to structures may defi ne the western limits of the form the Olympic Massif (Fig. 1A). The sedi- Seattle fault zone. We integrate results from GEOLOGICAL AND mentary strata are thrust beneath peripheral these newly acquired data with previously pub- GEOPHYSICAL SETTING rocks of the Siletz terrane, a largely volcanic ter- lished geological and geophysical data to test rane of oceanic affi nity that forms the crystalline whether there is a link between the Seattle fault The Olympic subduction complex, an basement beneath most of the Cascadia forearc zone and structures in the Olympic Massif to the exhumed part of the Cascadia accretionary and reaches thicknesses of as much as 35 km west.
Recommended publications
  • Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
    Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G.
    [Show full text]
  • Constraining the Holocene Extent of the Northwest Meers Fault, Oklahoma Using High-Resolution Topography and Paleoseismic Trenching
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 9-8-2017 Constraining the Holocene Extent of the Northwest Meers Fault, Oklahoma Using High-Resolution Topography and Paleoseismic Trenching Kristofer Tyler Hornsby Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Geomorphology Commons Let us know how access to this document benefits ou.y Recommended Citation Hornsby, Kristofer Tyler, "Constraining the Holocene Extent of the Northwest Meers Fault, Oklahoma Using High-Resolution Topography and Paleoseismic Trenching" (2017). Dissertations and Theses. Paper 3890. https://doi.org/10.15760/etd.5778 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Constraining the Holocene Extent of the Northwest Meers Fault, Oklahoma Using High-Resolution Topography and Paleoseismic Trenching by Kristofer Tyler Hornsby A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science In Geology Thesis Committee: Ashley R. Streig, Chair Scott E.K. Bennett Adam M. Booth Portland State University 2017 ABSTRACT The Meers Fault (Oklahoma) is one of few seismogenic structures with Holocene surface expression in the stable continental region of North America. Only the ~37 km- long southeastern section of the ~55 km long Meers Fault is interpreted to be Holocene- active. The ~17 km-long northwestern section is considered to be Quaternary-active (pre- Holocene); however, its low-relief geomorphic expression and anthropogenic alteration have presented difficulties in evaluating the fault length and style of Holocene deformation.
    [Show full text]
  • Diverse Rupture Modes for Surface-Deforming Upper Plate Earthquakes in the Southern Puget Lowland of Washington State
    Diverse rupture modes for surface-deforming upper plate earthquakes in the southern Puget Lowland of Washington State Alan R. Nelson1,*, Stephen F. Personius1, Brian L. Sherrod2, Harvey M. Kelsey3, Samuel Y. Johnson4, Lee-Ann Bradley1, and Ray E. Wells5 1Geologic Hazards Science Center, U.S. Geological Survey, MS 966, PO Box 25046, Denver, Colorado 80225, USA 2U.S. Geological Survey at Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, Washington 98195, USA 3Department of Geology, Humboldt State University, Arcata, California 95521, USA 4Western Coastal and Marine Geology Science Center, U.S. Geological Survey, 400 Natural Bridges Drive, Santa Cruz, California 95060, USA 5Geology, Minerals, Energy, and Geophysics Science Center, U.S. Geological Survey, 345 Middlefi eld Road, MS 973, Menlo Park, California 94025, USA ABSTRACT earthquakes. In the northeast-striking Saddle migrating forearc has deformed the Seto Inland Mountain deformation zone, along the west- Sea into a series of basins and uplifts bounded Earthquake prehistory of the southern ern limit of the Seattle and Tacoma fault by faults. One of these, the Nojima fault, pro- Puget Lowland, in the north-south com- zones, analysis of previous ages limits earth- duced the 1995 Mw6.9 Hyogoken Nanbu (Kobe) pressive regime of the migrating Cascadia quakes to 1200–310 cal yr B.P. The prehistory earthquake, which killed more than 6400 peo- forearc, refl ects diverse earthquake rupture clarifi es earthquake clustering in the central ple, destroyed the port of Kobe, and caused modes with variable recurrence. Stratigraphy Puget Lowland, but cannot resolve potential $100 billion in damage (Chang, 2010).
    [Show full text]
  • Policing Priorities Affecting Enforcement of City Noise Limit
    JUNE 2019 POLICING PRIORITIES AFFECTING ENF ORCEMENT OF CITY NOISE LIMIT By Judy Pickens Last summer, the City Council was finally able to pass a vehicle-exhaust noise ordinance - legislation that Fauntleroy and other neighborhoods had been seeking for some time. Police officers can now issue a $135 citation to drivers for muffler and engine noise that’s clearly audible by a person of normal hearing at a distance of 75 feet or more from the vehicle. Because of our ferry traffic, FCA worked with Councilwoman Lisa Herbold to add Fauntleroy to the list of neighborhoods where vehicle noise was affecting public PLANNING STARTS WITH LOOK safety and health. Forty-three percent of residents responding to FCA’s 2018 community survey mentioned AT ‘REASONABLE’ ALTERNATIVES vehicle noise as an issue. The ordinance requires the Seattle Police Department By Frank Immel to report quarterly on the location, demographics, and As outlined in Washington State Ferries’ long-range disposition of noise citations. In her first report, issued in plan, work on the “SR160/Fauntleroy Terminal - Trestle April, Chief Carmen Best emphasized that the and Transfer Span department’s initial focus was on training officers and Replacement Project” is issuing warnings. Enforcement over the winter was also under way. scant because of tasks associated with closure of the An engineering firm has Alaskan Way viaduct and the need to shift some traffic- started preliminary design enforcement resources to patrols. and environmental Best noted that training had to factor in state law assessment. This work will prohibiting officers from targeting motorcyclists without a include identifying and legal basis.
    [Show full text]
  • Quaternary Rupture of a Crustal Fault Beneath Victoria, British Columbia, Canada
    Quaternary Rupture of a Crustal Fault beneath Victoria, British Columbia, Canada Kristin D. Morell, School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada, kmorell@ uvic.ca; Christine Regalla, Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA; Lucinda J. Leonard, School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada; Colin Amos, Geology Department, Western Washington University, Bellingham, Washington 98225-9080, USA; and Vic Levson, School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada ABSTRACT detectable by seismic or geodetic monitor- US$10 billion in damage (Quigley et The seismic potential of crustal faults ing (e.g., Mosher et al., 2000; Balfour et al., al., 2012). within the forearc of the northern Cascadia 2011). This point was exemplified by the In the forearc of the Cascadia subduc- 2010 M 7.1 Darfield, New Zealand tion zone (Fig. 1), where strain accrues due subduction zone in British Columbia has W remained elusive, despite the recognition (Christchurch), earthquake and aftershocks to the combined effects of northeast- of recent seismic activity on nearby fault that ruptured the previously unidentified directed subduction and the northward systems within the Juan de Fuca Strait. In Greendale fault (Gledhill et al., 2011). This migration of the Oregon forearc block this paper, we present the first evidence for crustal fault showed little seismic activity (McCaffrey et al., 2013), microseismicity earthquake surface ruptures along the prior to 2010, but nonetheless produced a data are sparse and do not clearly elucidate Leech River fault, a prominent crustal fault 30-km-long surface rupture, caused more planar crustal faults (Cassidy et al., 2000; near Victoria, British Columbia.
    [Show full text]
  • Interpretation of the Seattle Uplift, Washington, As a Passive-Roof Duplex by Thomas M
    Bulletin of the Seismological Society of America, Vol. 94, No. 4, pp. 1379–1401, August 2004 Interpretation of the Seattle Uplift, Washington, as a Passive-Roof Duplex by Thomas M. Brocher, Richard J. Blakely, and Ray E. Wells Abstract We interpret seismic lines and a wide variety of other geological and geophysical data to suggest that the Seattle uplift is a passive-roof duplex. A passive- roof duplex is bounded top and bottom by thrust faults with opposite senses of vergence that form a triangle zone at the leading edge of the advancing thrust sheet. In passive-roof duplexes the roof thrust slips only when the floor thrust ruptures. The Seattle fault is a south-dipping reverse fault forming the leading edge of the Seattle uplift, a 40-km-wide fold-and-thrust belt. The recently discovered, north-dipping Tacoma reverse fault is interpreted as a back thrust on the trailing edge of the belt, making the belt doubly vergent. Floor thrusts in the Seattle and Tacoma fault zones, imaged as discontinuous reflections, are interpreted as blind faults that flatten updip into bedding plane thrusts. Shallow monoclines in both the Seattle and Tacoma basins are interpreted to overlie the leading edges of thrust-bounded wedge tips advancing into the basins. Across the Seattle uplift, seismic lines image several shallow, short- wavelength folds exhibiting Quaternary or late Quaternary growth. From reflector truncation, several north-dipping thrust faults (splay thrusts) are inferred to core these shallow folds and to splay upward from a shallow roof thrust. Some of these shallow splay thrusts ruptured to the surface in the late Holocene.
    [Show full text]
  • Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014
    Hanford Sitewide Probabilistic Seismic Hazard Analysis 2014 Contents 4.0 The Hanford Site Tectonic Setting ............................................................................................... 4.1 4.1 Tectonic Setting.................................................................................................................... 4.1 4.2 Contemporary Plate Motions and Tectonic Stress Regime .................................................. 4.11 4.3 Late Cenozoic and Quaternary History ................................................................................ 4.16 4.3.1 Post-CRB Regional Stratigraphy ............................................................................... 4.17 4.3.2 Summary of Late Miocene, Pliocene and Quaternary History .................................. 4.19 4.4 Seismicity in the Hanford Site Region ................................................................................. 4.21 4.4.1 Crustal Seismicity ..................................................................................................... 4.21 4.4.2 Cascadia Subduction Zone Seismicity ...................................................................... 4.26 4.5 References ............................................................................................................................ 4.28 4.i 2014 Hanford Sitewide Probabilistic Seismic Hazard Analysis Figures 4.1 Plate tectonic setting of the Hanford Site .................................................................................... 4.1 4.2 Areal extent
    [Show full text]
  • The Spatial and Temporal Evolution of the Portland and Tualatin Basins, Oregon, USA
    The Spatial and Temporal Evolution of the Portland and Tualatin Basins, Oregon, USA by Darby Patrick Scanlon A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology Thesis Committee: John Bershaw, Chair Ashley R. Streig Ray E. Wells Portland State University 2019 © 2019 Darby Patrick Scanlon ABSTRACT The Portland and Tualatin basins are part of the Puget-Willamette Lowland in the Cascadia forearc of Oregon and Washington. The Coast Range to the west has undergone Paleogene transtension and Neogene transpression, which is reflected in basin stratigraphy. To better understand the tectonic evolution of the region, I modeled three key stratigraphic horizons and their associated depocenters (areas of maximum sediment accumulation) through space and time using well log, seismic, outcrop, aeromagnetic, and gravity data. Three isochore maps were created to constrain the location of Portland and Tualatin basin depocenters during 1) Pleistocene to mid-Miocene (0-15 Ma), 2) eruption of the Columbia River Basalt Group (CRBG, 15.5-16.5 Ma), and 3) Mid- Miocene to late Eocene time (~17-35 Ma). Results show that the two basins each have distinct mid-Miocene to Pleistocene depocenters. The depth to CRBG in the Portland basin reaches a maximum of ~1,640 ft, 160 ft deeper than the Tualatin basin. Although the Portland basin is separated from the Tualatin basin by the Portland Hills, inversion of gravity data suggests that the two were connected as one continuous basin prior to CRBG deposition. Local thickening of CRBG flows over a gravity low coincident with the Portland Hills suggests that Neogene transpression in the forearc reactivated the Sylvan- Oatfield and Portland Hills faults as high angle reverse faults.
    [Show full text]
  • 2020 Annual Meeting Seismological Society of America Technical Sessions 27–30 April Albuquerque Convention Center Albuquerque, New Mexico
    Annual Meeting Announcement, 1095 2020 Annual Meeting Seismological Society of America Technical Sessions 27–30 April Albuquerque Convention Center Albuquerque, New Mexico PROGRAM COMMITTEE Tuesday, 28 April • Technical Sessions. The Co-Chairs of the 2020 SSA Annual Meeting are Rick • SSA Luncheon (open to all attendees). Awards Ceremony Aster of Colorado State University and Brandon Schmandt of to follow. Noon–1 pm, Hall 3. University of New Mexico. • Mentoring Luncheon (RSVP required with registration). Noon–1 pm, Hall 3. Meeting Contacts • SSA Awards Ceremony. 1:15–2:15 pm, Kiva Auditorium. • Lightning Talks. 6:30–7:30 pm, Kiva Auditorium (see page Technical Program Co-Chairs 1096). Rick Aster and Brandon Schmandt • Early-Career and Student Reception. 7:30–8:30 pm, [email protected] Ballroom B. Abstracts Wednesday, 29 April Rikki Anderson • Technical Sessions. 510.559.1784 • SSA Luncheon (open to all attendees). Public Policy [email protected] Lecture to follow. Noon–1 pm, Hall 3. • Women in Seismology Luncheon (RSVP required with Registration registration). Noon–1 pm, Hall 3. Mattie Adam • Public Policy Lecture. Speaker: Terry Wallace, Director 510.559.1781 Emeritus, Los Alamos National Laboratory, 1:15–2:15 pm, [email protected] Kiva Auditorium (see page 1100). • Joyner Lecture. Lecturer: Julian Bommer, Imperial Media Registration and Press Releases College of London. 6:15–7:15 pm, Kiva Auditorium (see Becky Ham page 1100). 602.300.9600 • Joyner Reception. 7:15–8:45 pm, Outdoor Plaza. [email protected] • Special Interest Group: Seismic Tomography 2020: What Comes Next? 8–9:30 pm, Room 215 + 220 (see page 1098).
    [Show full text]
  • Unreinforced Masonry Seattle Earthquake Hazard
    Seattle’s Earthquake Hazard Most earthquakes occur at tectonic plate boundaries YOU ARE HERE YOU ARE HERE JUAN DE FUCA PLATE PACIFIC PLATE ‘Subduction zone’ earthquakes are the BIG ONES, occurring where the downgoing plate is usually stuck. In a 50-year window, there’s a 10-14% chance of a M9 subduction zone earthquake. Fault dimensions M7.8 Great M9 Cascadia ‘San Francisco’ Earthquake Earthquake 1/26/1700 4/18/1906 M9.2 Sumatra Earthquake 12/26/04 20 meters (~60 feet) of motion in seconds! M7.8 Great M9 Cascadia ‘San Francisco’ Earthquake Earthquake 1/26/1700 4/18/1906 M9.2 Sumatra Earthquake 12/26/04 Mud on the sea-bottom keeps a record of many great earthquake s. ‘Intraplate’ earthquakes tend to be moderate in size & deep, occurring as the plate flexes on its way down. In a 50-year window, there’s an 84% chance of a M6.5 intraplate earthquake. ‘Crustal’ earthquakes occur because all the plate motion isn’t taken up along the subduction interface. In a 50-year window, the chances are 5% & 15% of an earthquake on the Seattle fault & of a crustal earthquake anywhere in the Puget Sound region, respectively. The Tibetan plateau is a buttress, pushing into Eurasia. The northward collision of India into Asia is occurring at ~4 cm/yr. The buttress of Tibet results in eastward displacement at ~4 mm/yr. The resulting stresses are released in crustal earthquakes. 300-500 yrs. yrs. 300-500 great earthquakes every every earthquakes great interface, until it breaks in in breaks it until interface, stuck part of the plate plate the of part stuck Stresses build along the the along build Stresses also collide at ~4 cm/yr.
    [Show full text]
  • Mean and Modal Ε in the Deaggregation of Probabilistic
    Bulletin of the Seismological Society of America, 91, 6, pp. 1537–1552, December 2001 Mean and Modal e in the Deaggregation of Probabilistic Ground Motion by Stephen C. Harmsen Abstract An important element of probabilistic seismic-hazard analysis (PSHA) is the incorporation of ground-motion uncertainty from the earthquake sources. The standard normal variate e measures the difference between any specified spectral- acceleration level, or SA0, and the estimated median spectral acceleration from each probabilistic source. In this article, mean and modal values of e for a specified SA0 are defined and computed from all sources considered in the USGS 1996 PSHA maps. Contour maps of e are presented for the conterminous United States for 1-, 0.3-, and 0.2-sec SA0 and for peak horizontal acceleration, PGA0 corresponding to a 2% prob- ability of exceedance (PE) in 50 yr, or mean annual rate of exceedance, r,of 0.000404. Mean and modal e exhibit a wide variation geographically for any specified PE. Modal e for the 2% in 50 yr PE exceeds 2 near the most active western California near some less active faults of the western United States 1מ faults, is less than (principally in the Basin and Range), and may be less than 0 in areal fault zones of the central and eastern United States (CEUS). This geographic variation is useful for comparing probabilistic ground motions with ground motions from scenario earth- quakes on dominating faults, often used in seismic-resistant provisions of building codes. An interactive seismic-hazard deaggregation menu item has been added to the USGS probabilistic seismic-hazard analysis Web site, http://geohazards.cr.usgs.gov /eq/, allowing visitors to compute mean and modal distance, magnitude, and e cor- responding to ground motions having mean return times from 250 to 5000 yr for any site in the United States.
    [Show full text]
  • Crustal Structure and Earthquake Hazards of the Subduction Zone in Southwestern British Columbia and Western Washington
    ���� Crustal Structure and Earthquake Hazards of the Subduction Zone in Southwestern British Columbia and Western Washington Professional Paper 1661-C U.S. Department of the Interior U.S. Geological Survey Earthquake Hazards of the Pacific Northwest Costal and Marine Regions Robert Kayen, Editor Crustal Structure and Earthquake Hazards of the Subduction Zone in Southwestern British Columbia and Western Washington By Michael A. Fisher, Roy D. Hyndman, Samuel Y. Johnson, Thomas M. Brocher, Robert S. Crosson, Ray E. Wells, Andrew J. Calvert, Uri S. ten Brink Earthquakes pose a serious hazard for urban areas of the Pacific Northwest. Marine geophysical data probe earthquake source regions and can help spur preparedness for possible major disasters. Professional Paper 1661-C U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy , Acting Director U.S. Geological Survey, Reston, Virginia: 2005 For sale by U.S. Geological Survey Information Services Box 25286, Denver Federal Center Denver, CO 80225 This report and any updates to it are available online at: http://pubs.usgs.gov/pp/pp1661-C For additional information write to: U.S. Geological Survey Box 25046, Mail Stop 421, Denver Federal Center Denver, CO 80225-0046 Additional USGS publications can be found at: http://geology.usgs.gov/products.html For more information about the USGS and its products: Telephone: 1–888–ASK–USGS (1–888–275–8747) World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement of the U.S.
    [Show full text]