Kinetic and Mass-Spectrometric Studies of Atmospherically Relevant Mercury-Bromine Chemistry Elise-Andrée Guérette Department

Total Page:16

File Type:pdf, Size:1020Kb

Kinetic and Mass-Spectrometric Studies of Atmospherically Relevant Mercury-Bromine Chemistry Elise-Andrée Guérette Department Kinetic and mass-spectrometric studies of atmospherically relevant mercury-bromine chemistry Elise-Andrée Guérette Department of Chemistry McGill University Montréal, Québec, Canada October 2010 A thesis submitted to McGill University in partial fulfilment of the require­ ments of the degree of Master of Science ©Elise-Andrée Guérette, 2010. All Rights Reserved. Acknowledgements My thanks go out to Dr. Daniel Deeds for his help with everything having to do with atmospheric pressure chemical ionization mass spectrometry. Working with you was always a pleasure. Alain Tessier from CBAMS at Concordia Univer­ sity was immensely helpful and creative in his problem solving. Thanks also to Graydon Snider for helpful discussions and helping me get started with the kinetic work. Edward Hudson, Nermin Eltouny, Daniel Deeds, Graydon Snider and Ma­ hamud Subir all proofread this thesis and provided helpful comments. I would also like to extend grateful thanks to my supervisor, Parisa Ariya, for her understanding and patience, and for providing me with this opportunity. Thanks also for reading this thesis before its submission and for providing valu­ able comments. Fred Kluck, Rick Rossi and George Kopp from the Department of Chemistry deserve mention for their help building and repairing things, often at short notice. Thanks also to FQRNT, the Department of Chemistry at McGill, and the Dr. and Mrs. Milton Leong fund for providing personal financial assistance during the course of my studies. Thanks last, but perhaps most of all, to my spouse, Craig Titchener, who stood by me every step of the way. Thank you. II Abstract Bromine radicals are thought to play an important role in the chemistry of atmospheric elemental mercury, however uncertainties remain concerning the rate and the mechanism of the reaction. The products of the atmospheric reaction are thought to be mercury halides of the form HgBrX, where X = Cl, Br, I. This thesis describes the early stages of development of a methodology for the detection of atmospheric mercury halides by Atmospheric Pressure Chem­ ical Ionisation Mass Spectrometry (APCI-MS). It also reports the results of labor­ atory experiments aimed at identifying the product(s) and determining the rate coefficient of the reaction at near atmospheric conditions. The kinetics were studied using the relative rate method with 1-butene as the reference molecule and / k k − the value of the Hg Br 1 C 4 H 8 Br ratio was mapped for a wide variety of ex­ perimental conditions. The experiments confirm the lack of oxygen dependence of the mercury reaction. A rate coefficient of (3.1 ± 1.9) x 10-13 cm3 molecule-1 s-1 was obtained, which is in agreement with the most recent peer-reviewed study. Using solid- phase micro-extraction (SPME) in the gas phase, HgBr2 was confirmed as one of the end products of the mercury reaction under our laboratory conditions, and two products of the 1-butene reaction (1-bromo-2-butanone and 1-bromo-2-butanol) were also identified for the first time. III Résumé Les radicaux de brome jouent potentiellement un rôle important dans la chimie atmosphérique du mercure élémentaire, mais la vitesse ainsi que le méca­ nisme de la réaction demeurent incertains. Dans l'atmosphère, les produits de la réactions sont probablement des halogénures de mercure de la forme HgBrX (X = Cl, Br, I). Ce mémoire décrit les premiers stades de développement d'une méthode pour la détection des halogénures de mercure dans l'air par ionisation chimique à pression atmosphérique et spectrométrie de masse (APCI-MS). Les résultats d'ex­ périences de laboratoire visant l'identification du ou des produits de la réaction ainsi que la détermination de sa constante de vitesse sous des conditions quasi-at­ mosphériques sont aussi présentés. La méthode des vitesses relatives a été utilisé pour étudier la cinétique de la réaction. Le 1-butène était la molécule de référence. / k k − Le ratio des constantes de vitesse, Hg Br 1 C 4 H 8 Br , a été déterminé sous des conditions variées. Les résultats confirment que la vitesse de réaction ne dépend pas sur la pression partielle d'oxygène dans le système. Une constante de vitesse de (3.1 ± 1.9) x 10-13 cm3 molécule-1 s-1 a été obtenue. Ce résultat est comparable à ceux pu­ bliés par d'autres groupes récemment. La micro-extraction sur phase solide a per­ mis de confirmer que HgBr2 est l'un des produits finaux de la réaction sous nos conditions expérimentales. Deux produits de la réaction entre les radicaux de brome et le 1-butène, le 1-bromobutan-2-one et le 1-bromobutan-2-ol, ont aussi été identifiés pour la première fois. IV Table of Contents 1 Introduction......................................................................................................1 1.1 Background ..............................................................................................1 1.1.1 Mercury – The Element ...................................................................1 1.1.2 Mercury throughout History.............................................................2 1.1.2.1 Mercury and the Ancients ........................................................2 1.1.2.2 Alchemy....................................................................................5 1.1.2.3 Mercury in Medicine ................................................................5 1.1.2.4 Mercury in Scientific Discovery...............................................8 1.1.2.5 Mercury as a Commodity..........................................................9 1.1.2.6 Modern stance – Mercury as a global pollutant .....................11 1.2 Atmospheric chemistry of mercury .......................................................12 1.2.1 Analytical methods for the determination of atmospheric mercury14 1.2.1.1 Current methods .....................................................................14 1.2.1.2 Potential methods ...................................................................20 1.2.2 Pathways for the chemical formation of gaseous oxidized mercury (GOM)......................................................................................................22 1.2.2.1 Chemical transformation of GEM: insights from field data...22 1.2.2.2 Chemical transformation of GEM: insights from laboratory- based experiments...............................................................................23 1.2.2.3 The homogeneous gas-phase reaction of elemental mercury and bromine radicals Hg0 + Br· ↔ HgBr...........................................28 1.3 Objectives ..............................................................................................31 2 Methodology..................................................................................................32 2.1 Method development for the determination of mercury halides in ambient air through atmospheric chemical ionization mass spectrometry (APCI-MS) analysis.....................................................................................32 2.1.1 Preliminary tests .............................................................................33 2.1.2 Gold solid-phase micro-extraction (Au-SPME).............................34 V 2.1.2.1 Modification of the original APCI probe for SPME desorption .............................................................................................................35 2.1.2.2 Sampling device - Au-SPME..................................................36 2.2 Homogeneous gas-phase reaction of elemental mercury and bromine radicals: product and kinetic studies ............................................................37 2.2.1 General considerations ...................................................................37 2.2.1.1 Experimental set-up.................................................................38 2.2.1.2 Preparation of the reactant mixtures .......................................40 2.2.2 Detection of reaction products using solid-phase micro-extraction (SPME)....................................................................................................42 2.2.2.1 Solid-phase micro-extraction coupled with electron impact mass spectrometry (SPME-GC-EI-MS) .............................................42 2.2.3 Kinetics studies ..............................................................................45 2.2.3.1 Methodology – the relative rate method ...............................45 2.2.3.2 Chemical Analysis: Kinetic experiments................................46 2.2.3.3 Preliminary tests .....................................................................47 2.2.3.4 Initial slope experiments ........................................................50 2.2.3.5 Error analysis ..........................................................................50 2.3 Materials & Supplies..............................................................................52 3 Results and Discussion...................................................................................53 3.1 General considerations............................................................................53 3.2 Method development for the determination of mercury halides in ambient air through atmospheric chemical ionization mass spectrometry (APCI-MS) analysis.....................................................................................54 3.2.1 Preliminary tests..............................................................................54 3.2.2 Gold solid-phase micro-extraction (Au-SPME) results..................55 3.2.3 Reducing unfavourable ions reactions in the
Recommended publications
  • Selling Mercury Cosmetics and Pharmaceuticals (W-Hw4-22)
    www.pca.state.mn.us Selling mercury cosmetics and pharmaceuticals Mercury-containing skin lightening creams, lotions, soaps, ointments, lozenges, pharmaceuticals and antiseptics Mercury is a toxic element that was historically used in some cosmetic, pharmaceutical, and antiseptic products due to its unique properties and is now being phased out of most uses. The offer, sale, or distribution of mercury-containing products is regulated in Minnesota by the Minnesota Pollution Control Agency (MPCA). Anyone offering a mercury-containing product for sale or donation in Minnesota is subject to these requirements, whether a private citizen, collector, non-profit organization, or business. Offers and sales through any method are regulated, whether in a store or shop, classified advertisement, flea market, or online. If a mercury-containing product is located in Minnesota, it is regulated, regardless of where a purchaser is located. Note: This fact sheet discusses the requirements and restrictions of the MPCA. Cosmetics and pharmaceuticals may also be regulated for sale whether they contain mercury or not by other state or federal agencies, including the Minnesota Board of Pharmacy and the U.S. Food & Drug Administration. See More information on page 2. What are the risks of using mercury-containing products? Use of mercury-containing products can damage the brain, kidneys, and liver. Children and pregnant women are at increased risk. For more information about the risks of mercury exposure, visit the Minnesota Department of Health. See More information on the page 2. If you believe you have been exposed to a mercury-containing product, contact your health care provider or the Minnesota Poison Control Center at 1-800-222-1222.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin Et Al
    US 201201.15729A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin et al. (43) Pub. Date: May 10, 2012 (54) PROCESS FOR FORMING FILMS, FIBERS, Publication Classification AND BEADS FROM CHITNOUS BOMASS (51) Int. Cl (75) Inventors: Ying Qin, Tuscaloosa, AL (US); AOIN 25/00 (2006.01) Robin D. Rogers, Tuscaloosa, AL A6II 47/36 (2006.01) AL(US); (US) Daniel T. Daly, Tuscaloosa, tish 9.8 (2006.01)C (52) U.S. Cl. ............ 504/358:536/20: 514/777; 426/658 (73) Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF 57 ABSTRACT ALABAMA, Tuscaloosa, AL (US) (57) Disclosed is a process for forming films, fibers, and beads (21) Appl. No.: 13/375,245 comprising a chitinous mass, for example, chitin, chitosan obtained from one or more biomasses. The disclosed process (22) PCT Filed: Jun. 1, 2010 can be used to prepare films, fibers, and beads comprising only polymers, i.e., chitin, obtained from a suitable biomass, (86). PCT No.: PCT/US 10/36904 or the films, fibers, and beads can comprise a mixture of polymers obtained from a suitable biomass and a naturally S3712). (4) (c)(1), Date: Jan. 26, 2012 occurring and/or synthetic polymer. Disclosed herein are the (2), (4) Date: an. AO. films, fibers, and beads obtained from the disclosed process. O O This Abstract is presented solely to aid in searching the sub Related U.S. Application Data ject matter disclosed herein and is not intended to define, (60)60) Provisional applicationpp No. 61/182,833,sy- - - s filed on Jun.
    [Show full text]
  • A Wet Process for the Extraction of Mercury
    Scholars' Mine Professional Degree Theses Student Theses and Dissertations 1916 A wet process for the extraction of mercury Robert Glenn Sickly Follow this and additional works at: https://scholarsmine.mst.edu/professional_theses Part of the Metallurgy Commons Department: Recommended Citation Sickly, Robert Glenn, "A wet process for the extraction of mercury" (1916). Professional Degree Theses. 140. https://scholarsmine.mst.edu/professional_theses/140 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Professional Degree Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. "/389 A '.vET PROCESS FOR THE EXTRACTION OF MERCURY. ROBERT GLENN SICKLY. '~~****** A THESIS subl!li tted to the facul t Jr of the SCHOOL OF lnIN}~S AND METALI.. URGY O~' THE U:nlv~RSITY OF I~ISSOURI in partial fulfillment of the work required for the Degree of METALJJURGICAL :S:NGINEER. Cobalt, Ont. Canada. 1916. ********* Approved by Professor 0 r~· w-e-r-~r~~J#/d' £7' 11/6 TABLE OF COIrTE1:ITS. Subject. Pa.ge. Introduction ------------------------~---------- 2. The nature o~ the mercury losses --------------- 2. The chemical loss o~ mercury ------------------- 3. The mercury process ---------------------------- 5. Flow-sheet ------------------------------------- 7. Chemistry of the process ----------------------- 7. hlethod of dissolving the mercury --------------- 8: Various methods of precipitation --------------- 16. Aluminium precipitation ------------------------ 19. Curve on aluminium precipitation ----------- opp. 21. Experimental plant installation ---------------- 23. Curves on operation of experimental plant --GpP.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,753,634 Ebetino Et Al
    USOO5753634A United States Patent (19) 11 Patent Number: 5,753,634 Ebetino et al. 45 Date of Patent: May 19, 1998 54 QUATERNARY NITROGEN CONTAINING 4.011777 10/1990 Germany. PHOSPHONATE COMPOUNDS, WO 90/12017 10/1990 WIPO PHARMACEUTICAL COMPOSTIONS, AND WO 91/10646 7/1991 WIPO. METHODS FOR TREATING ABNORMAL Primary Examiner-Amelia Owens CALCUMAND PHOSPHATE METABOLISM Attorney, Agent, or Firm-Richard A. Hake; Karen F. Clark; William J. Winter 75 Inventors: Frank Hallock Ebetino; Marion David Francis, both of Cincinnati, 57 ABSTRACT Ohio; Susan Mary Kaas, Sherburne, Disclosed are quaternary nitrogen-containing, saturated or N.Y. unsaturated monocyclic and bicyclic ring-containing bis 73 Assignee: The Procter & Gamble Company, phosphonate compounds, and pharmaceutically-acceptable Cincinnati, Ohio salts and esters thereof. These compounds, which are useful for treating or preventing disorders of calcium and phos 21) Appl. No.: 52,694 phate metabolism, have the following general structure: 22) Filed: Apr. 30, 1993 (R), (CR2), (CR,): NY R Related U.S. Application Data 63 Continuation-in-part of Ser. No. 891,487, May 29, 1992, abandoned. 51 Int. Cl. ... A61K 31/675; A61K 31/66 52) U.S. Cl. ............................ 514/81: 514/91; 514/109: wherein 546/23: 548/111; 562/21 (a) each X and Y are independently selected from nil, O, 58 Field of Search ............................... 546/23: 514/80, S, NR' and N*(R); if no R' is N'(R), then at least 514/82, 91, 109; 548/111; 562/21 one of X or Y must be N(R); References Cited (b) m and n and m+n are integers from 0 to 5; p and q and 56 p+q are integers from 0 to 3; U.S.
    [Show full text]
  • Tepzz 459659B T
    (19) TZZ _T (11) EP 2 459 659 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: C09D 7/00 (2006.01) C09D 7/14 (2006.01) of the grant of the patent: C09D 5/16 (2006.01) 17.07.2013 Bulletin 2013/29 (86) International application number: (21) Application number: 10737728.5 PCT/US2010/043382 (22) Date of filing: 27.07.2010 (87) International publication number: WO 2011/017097 (10.02.2011 Gazette 2011/06) (54) REMOVABLEANTIMICROBIAL COATING COMPOSITIONS CONTAINING CATIONIC RHEOLOGY AGENT AND METHODS OF USE ABLÖSBARE ANTIMIKROBIELLE BESCHICHTUNGSZUSAMMENSETZUNGEN MIT KATIONISCHEM RHEOLOGISCHEM ADDITIV UND ANWENDUNGSVERFAHREN COMPOSITIONS DE REVÊTEMENT ANTIMICROBIENNES, APTES À ÊTRE RETIRÉES, CONTENANT UN AGENT DE RHÉOLOGIE CATIONIQUE, ET PROCÉDÉS D’UTILISATION (84) Designated Contracting States: (74) Representative: Dannenberger, Oliver Andre et al AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Abitz & Partner GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Patentanwälte PL PT RO SE SI SK SM TR Postfach 86 01 09 81628 München (DE) (30) Priority: 27.07.2009 US 228707 P 27.07.2009 US 228711 P (56) References cited: 27.07.2009 US 228715 P WO-A2-2007/100653 WO-A2-2007/100654 27.07.2009 US 228723 P 26.07.2010 US 843120 • Akzo Nobel Surface Chemistry: "Thickening with polymers"[Online] 1 January 2010 (2010-01-01), (43) Date of publication of application: XP002609717 Akzo Nobel Technical Information 06.06.2012 Bulletin 2012/23 Retrieved from the Internet: URL:http: //www.akzonobel.com/surface/syste m/images/ (73) Proprietor: E.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 100 Ol
    US 2002O102215A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 Klaveness et al. (43) Pub. Date: Aug. 1, 2002 (54) DIAGNOSTIC/THERAPEUTICAGENTS (60) Provisional application No. 60/049.264, filed on Jun. 6, 1997. Provisional application No. 60/049,265, filed (75) Inventors: Jo Klaveness, Oslo (NO); Pal on Jun. 6, 1997. Provisional application No. 60/049, Rongved, Oslo (NO); Anders Hogset, 268, filed on Jun. 7, 1997. Oslo (NO); Helge Tolleshaug, Oslo (NO); Anne Naevestad, Oslo (NO); (30) Foreign Application Priority Data Halldis Hellebust, Oslo (NO); Lars Hoff, Oslo (NO); Alan Cuthbertson, Oct. 28, 1996 (GB)......................................... 9622.366.4 Oslo (NO); Dagfinn Lovhaug, Oslo Oct. 28, 1996 (GB). ... 96223672 (NO); Magne Solbakken, Oslo (NO) Oct. 28, 1996 (GB). 9622368.0 Jan. 15, 1997 (GB). ... 97OO699.3 Correspondence Address: Apr. 24, 1997 (GB). ... 9708265.5 BACON & THOMAS, PLLC Jun. 6, 1997 (GB). ... 9711842.6 4th Floor Jun. 6, 1997 (GB)......................................... 97.11846.7 625 Slaters Lane Alexandria, VA 22314-1176 (US) Publication Classification (73) Assignee: NYCOMED IMAGING AS (51) Int. Cl." .......................... A61K 49/00; A61K 48/00 (52) U.S. Cl. ............................................. 424/9.52; 514/44 (21) Appl. No.: 09/765,614 (22) Filed: Jan. 22, 2001 (57) ABSTRACT Related U.S. Application Data Targetable diagnostic and/or therapeutically active agents, (63) Continuation of application No. 08/960,054, filed on e.g. ultrasound contrast agents, having reporters comprising Oct. 29, 1997, now patented, which is a continuation gas-filled microbubbles stabilized by monolayers of film in-part of application No. 08/958,993, filed on Oct.
    [Show full text]
  • Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act
    Updated June 07, 2021 Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act Three categories of bulk drug substances: • Category 1: Bulk Drug Substances Under Evaluation • Category 2: Bulk Drug Substances that Raise Significant Safety Risks • Category 3: Bulk Drug Substances Nominated Without Adequate Support Updates to Categories of Substances Nominated for the 503B Bulk Drug Substances List1 • Add the following entry to category 2 due to serious safety concerns of mutagenicity, cytotoxicity, and possible carcinogenicity when quinacrine hydrochloride is used for intrauterine administration for non- surgical female sterilization: 2,3 o Quinacrine Hydrochloride for intrauterine administration • Revision to category 1 for clarity: o Modify the entry for “Quinacrine Hydrochloride” to “Quinacrine Hydrochloride (except for intrauterine administration).” • Revision to category 1 to correct a substance name error: o Correct the error in the substance name “DHEA (dehydroepiandosterone)” to “DHEA (dehydroepiandrosterone).” 1 For the purposes of the substance names in the categories, hydrated forms of the substance are included in the scope of the substance name. 2 Quinacrine HCl was previously reviewed in 2016 as part of FDA’s consideration of this bulk drug substance for inclusion on the 503A Bulks List. As part of this review, the Division of Bone, Reproductive and Urologic Products (DBRUP), now the Division of Urology, Obstetrics and Gynecology (DUOG), evaluated the nomination of quinacrine for intrauterine administration for non-surgical female sterilization and recommended that quinacrine should not be included on the 503A Bulks List for this use. This recommendation was based on the lack of information on efficacy comparable to other available methods of female sterilization and serious safety concerns of mutagenicity, cytotoxicity and possible carcinogenicity in use of quinacrine for this indication and route of administration.
    [Show full text]
  • Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act
    Updated July 30, 2020 Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act Three categories of bulk drug substances: • Category 1: Bulk Drug Substances Under Evaluation • Category 2: Bulk Drug Substances that Raise Significant Safety Risks • Category 3: Bulk Drug Substances Nominated Without Adequate Support Notice of Updates to Categories of Substances Nominated for the 503B Bulk Drug Substances List • Additions to category 1: Betahistine Hydrochloride L-Proline Citrulline Papaverine Hydrochloride* Copper Gluconate Phosphatidylcholine Diiodohydroxyquinoline Podophyllum Resin Glucosamine Sulfate Potassium Chloride Sodium Molybdate Glucosamine Sulfate Sodium Chloride Sodium Nitroprusside Hydrochloric Acid* Sodium Selenite/Sodium Selenite Pentahydrate* Ibutamoren Mesylate Trichloroacetic Acid* L-Citrulline* Ubidecarenone (Coenzyme Q10)* L-Lysine * Bulk drug substance is currently in Category 3 and is being moved to Category 1. • Minor revision to entry in Category 1 to correct a misspelling: o Correct the misspelling of “cimatidine” to “cimetidine” 1 Updated July 30, 2020 503B Category 1: Bulk Drug Substances Under Evaluation • 5-Methyltetrahydrofolate Calcium • Chromic Chloride • 17-alpha-Hydroxyprogesterone • Chromium chloride/ Chromium Chloride • Acetylcysteine Hexahydrate • Acyclovir • Ciclopirox Oleate • Adapalene • Cimetidine • Adenosine • Ciprofloxacin HCl • Allantoin • Citric Acid Anhydrous • Alpha Lipoic Acid • Citrulline/L-Citrulline • Alprostadil • Clindamycin Phosphate
    [Show full text]
  • Assessment of the Antibiotic Resistance Effects of Biocides
    Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR Assessment of the Antibiotic Resistance Effects of Biocides The SCENIHR adopted this opinion at the 28th plenary on 19 January 2009 after public consultation. 1 Antibiotic Resistance Effects of Biocides About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Products (SCCP), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), and are made up of external experts. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Evaluation Agency (EMEA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCENIHR Questions concerning emerging or newly-identified risks and on broad, complex or multi- disciplinary issues requiring a comprehensive assessment of risks to consumer safety or public health and related issues not covered by other Community risk-assessment bodies. In particular, the Committee addresses questions related to potential risks associated with interaction of risk factors, synergic effects, cumulative effects, antimicrobial resistance, new technologies such as nanotechnologies, medical devices, tissue engineering, blood products, fertility reduction, cancer of endocrine organs, physical hazards such as noise and electromagnetic fields and methodologies for assessing new risks.
    [Show full text]
  • THE DETERMINATION of MERCURY SPECIES in ENVIRONMENTAL and BIOLOGICAL SAMPLES (Technical Report)
    Pure & Appl. Chem., Vol. 70, No. 8, pp. 1585-1615, 1998. Printed in Great Britain. 0 1998 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION OF MICROCHEMICAL TECHNIQUES AND TRACE ANALYSIS WORKING GROUP ON SPECIATION THE DETERMINATION OF MERCURY SPECIES IN ENVIRONMENTAL AND BIOLOGICAL SAMPLES (Technical Report) Prepared for publication by MASATOSHI MORITA", JUN YOSHINAGA" AND JOHN S. EDMONDST *NationalInstitute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305, Japan; Western Australian Marine Research Laboratories, PO Box 20, North Beach, WA 6020, Australia Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgement, with full reference to the source along with use of the copyright symbol 0,the name IUPAC and the year of publication are prominently visible. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization. 1585 1586 COMMISSION ON MICROCHEMICAL TECHNIQUES AND TRACE ANALYSIS The determination of mercury species in environmental and biological samples (Technical Report) Abstract: Mercury is released into the hydrosphere, atmosphere and biosphere as a consequence of natural and anthropogenic processes. It is cycled in the environment and undergoes transformations of its chemical forms. Although the number of chemical species encountered in environmental and biological samples is not large, the range of matrices and the toxicological significance of mercury, with a consequent need for ultra-trace determination, have resulted in a considerable analytical literature. Sensitive and selective methods for mercury determination, micro methods for the determination of mercury species, the occurrence of mercury species in the various environmental compartments, and analytical considerations, including the availability of certified reference materials, are reviewed.
    [Show full text]
  • Introduction Cover
    Introduction Cover TM Best Practices for Creating High Performance Healing Environments Version 2.2 Operations Section, 2008 Revision December 2008 Title Page Convener: Founding Sponsors: Other Sponsors: Table of Contents Overview 1 – Introduction 2 – Checklist – Operations 3 – Credit Summary – Operations Operations Credits 4 – Integrated Operations & Education 5 – Sustainable Sites Management 6 – Transportation Operations 7 – Facilities Management 8 – Chemical Management 9 – Waste Management 10 – Environmental Services 11 – Food Service 12 – Environmentally Preferable Purchasing 13 – Innovation in Operations Release for Public Use The Green Guide for Health Care (Green Guide), a project of the Center for Maximum Potential Building Systems and Practice Greenhealth, is released for public use in PDF format. All replication in whole or in part must reference the Green Guide and include the limitations on its use described herein. The Green Guide is an open source document that is provided at no charge. Material contained within the Green Guide may not be used by or as part of a for-profit enterprise (for sale or as a component of an educational program) in which attendees are charged fees without the express permission of the Green Guide for Health Care Co- Coordinators. Portions of Green Guide for Health Care-Operations Version 2.2 are borrowed, with permission, from the U.S. Green Building Council’s LEED for Existing Buildings: Operations and Maintenance, January 2008 and LEED for Healthcare public comment draft, November 2007. This 2008 second public comment draft release of Green Guide for Health Care-Operations Version 2.2 represents a major revision of the Green Guide v2.2 Operations section.
    [Show full text]
  • United States Patent Office
    Patented Mar. 15, 1949 2.464,203 UNITED STATES PATENT OFFICE 2,464,203 MANUEFACTURE OF DENOESTROL Walace Fraak Short and Gordon van Hobday, Nottingham, England, assignors to Boots Pure Frug Company inited, Nottinghain, England, a coapaay of Great Britain No Drawing. Application May 10, 1944, Serial No. 534,988. In Great Britain May 21, 1943 18 Claims. (C. 260-470) 2 This invention relates to improved processes for an amalgan in an aqueous alkaline solution. the manufacture of y8-bis-(4-hydroxyphenyl)- Preferred anaigans are sodium amalgam and hexane-y&-diol and of the dihydroxy compound potassium amalgam but other amalgams may be ?y8-bis-4-hydroxyphenyl-A56-hexadiene obtained used. from it by dehydration. 5 When the reduction is effected with the use of The latter (known as “Dienoestrol, B. M. J. an analgarin in an alkaline Solution the isolation 1942, 2, page 256) is of importance because it of the pinacol formed may be effected by known possesses oestrogenic propertie5. methods of separation but it is preferred to use It has previously been proposed to reduce the acylation in ethod previously described. p-hydroxypropiophenone to the pinacol, y?-bis O A further object of the invention is to provide (4-hydroxyphenyl)-hexane-yô-diol with the use an improved process for the production of dienoes of aluminium amalgam in moist ether (Dodds, trol from the aforesaid pinacol. Golberg, Lawson and Robinson. Proc. Roy. Hitherto, the pinaco) has been converted into Soc., 1939, B. vol. 127, 140-167) and an electro dienoestrol by treatment with a mixture of acetyl lytic reduction process has also been described in 15 chloride and acetic anhydride (Dodds et al.
    [Show full text]