Colloidal Dispersions

Total Page:16

File Type:pdf, Size:1020Kb

Colloidal Dispersions 0356 ch 021(293-318).ps 3/7/05 8:14 AM Page 293 CHAPTER 21 Colloidal Dispersions Bill J Bowman, PhD Clyde M Ofner III, PhD Hans Schott, PhD The British chemist Thomas Graham applied the term “colloid” An appreciable fraction of atoms, ions, or molecules of col- (derived from the Greek word for glue) ca 1850 to polypeptides loidal particles are located in the boundary layer between the such as albumin and gelatin; polysaccharides such as acacia, particle and the dispersion medium. The boundary layer be- starch, and dextrin; and inorganic compounds such as gelati- tween a particle and air is commonly referred to as a surface; nous metal hydroxides and Prussian blue (ferric ferrocyanide). whereas, the boundary layer between a particle and a liquid or Contemporary colloid and surface chemistry deals with an un- solid is commonly referred to as an interface. The ions/molecules usually wide variety of industrial and biological systems. A few within the particle and within the medium are surrounded on all examples include catalysts, lubricants, adhesives, latexes for side by similar ions/molecules and have balanced force fields; paints, rubbers and plastics, soaps and detergents, clays, ink, however, the ions/molecules at surfaces or interfaces are sub- packaging films, cigarette smoke, liquid crystals, drug delivery jected to unbalanced forces of attraction. Consequently, a surface systems, cell membranes, blood, mucous secretions, and aque- free energy component is added to the total free energy of col- ous humors.1–3 loidal particles and becomes important as the particles become smaller and a greater fraction of their atoms, ions, or molecules are located in the surface or interfacial region. As a result, the solubility of very fine solid particles and the vapor pressure of DEFINITIONS AND CLASSIFICATIONS very small liquid droplets are greater than the corresponding values for coarse particles and drops of the same materials. Colloidal Systems and Interfaces SPECIFIC SURFACE AREA—Decreasing particle size in- Except for high molecular weight polymers, most soluble sub- creases the surface-to-volume ratio, expressed as the specific surface area (Asp ). Specific surface area may expressed as the stances can be prepared as either low molecular weight solu- 2 3 tions, colloidal dispersions, or coarse suspensions depending area (A, cm ) per unit volume (V, cm ) or per unit mass (M, ϭ ␲ 2 ϭ ␲ 3 upon the choice of dispersion medium and dispersion tech- gram). For a sphere, A 4 r and V 4/3 r , then Asp is: 4 nique. Colloidal dispersions consist of at least two phases—one 2 2 A 4␲r 3 cm 3 Ϫ or more dispersed or internal phases, and a continuous or ex- A ϭ ᎏᎏ ϭ ᎏᎏ ϭ ᎏᎏ ᎏᎏ ϭ ᎏᎏ cm 1 sp ␲ 3 3 ternal phase called the dispersion medium or vehicle. Colloidal V 4/3 r r cm r dispersions are distinguished from solutions and coarse disper- For density (d) of the material expressed as g/cm3, the specific sions by the particle size of the dispersed phase, not its compo- surface area is: sition. Colloidal dispersions contain one or more substances that have at least one dimension in the range of 1–10 nm at the A A 4␲r2 3 cm2 lower end, and a few ␮m at the upper end (covering about three Asp ϭ ᎏᎏ ϭ ᎏᎏ ϭ ᎏᎏ ϭ ᎏᎏ ᎏᎏ M Vd 4/3␲r3d rd g orders of magnitude). Thus blood, cell membranes, thinner nerve fibers, milk, rubber latex, fog, and beer foam are colloidal Table 21-1 illustrates the effect of comminution on the specific systems. Some materials, such as emulsions and suspensions of surface area of a material initially consisting of one sphere hav- most organic drugs, are coarser than true colloidal systems but ing a 1-cm radius. The specific surface area increases as the ma- exhibit similar behavior. Even though serum albumin, acacia, terial is broken into a larger number of smaller and smaller and povidone form true or molecular solutions in water, the size spheres. Activated charcoal and kaolin are solid adsorbents of the individual solute molecules places such solutions in the having specific surface areas of about 6 ϫ 106 cm2/g and 104 Ͼ 1–3,5–10 colloidal range (particle size 1 nm). cm2/g, respectively. One gram of activated charcoal has a sur- Several features distinguish colloidal dispersions from face area equal to 1/6 acre because of its extensive porosity and coarse suspensions and emulsions. Colloidal particles are usu- internal voids. ally too small for visibility in a light microscope because at least one of their dimensions measures 1 ␮m or less. They are, how- ever, often visible in an ultramicroscope and almost always in Physical States of Dispersed an electron microscope. Conversely, coarse suspended particles and Continuous Phases are usually visible to the naked eye and always in a light mi- croscope. In addition, colloidal particles, as opposed to coarse A useful classification of colloidal systems is based upon the particles, pass through ordinary filter paper but are retained by state of matter of the dispersed phase and the dispersion dialysis or ultrafiltration membranes. Also, unlike coarse par- medium (ie, whether they are solid, liquid, or gaseous).2,7,8 ticles, colloidal particles diffuse very slowly and undergo little Common examples and various combinations are shown in or no sedimentation or creaming. Brownian motion maintains Table 21-2. The terms sols and gels are often applied to colloidal the dispersion of the colloidal internal phases. dispersions of a solid in a liquid or gaseous medium. Sols tend 293 0356 ch 021(293-318).ps 3/7/05 8:14 AM Page 294 294 PART 2: PHARMACEUTICS Table 21-1. Effect of Comminution on the Specific highly hydrated ions (eg, carboxylate, sulfonate, and alkylam- Surface Area of a Volume of 4␲/3 cm3, Divided into monium ions) and/or organic functional groups that bind wa- Uniform Spheres of Radius Ra ter through hydrogen bonding (eg, hydroxyl, carbonyl, amino, and imino groups). NUMBER OF SPHERES R A (cm2/cm3) sp Hydrophilic colloidal dispersions can be further subdivided 1 1 cm 3 as: 103 0.1 cm ϭ 1 mm 3 10 106 0.1 mm 3 102 True solutions: water-soluble polymers (eg, acacia and povidone). 109 0.01 mm 3 103 Gelled solutions, gels, or jellies: polymers present at sufficiently high 1012 1 ␮m3 104 concentrations and/or at temperatures where their water solubility 1015 0.1 ␮m3 105 is low. Examples include relatively concentrated solutions of gelatin 1018 0.01 ␮m3 106 and starch (which set to gels upon cooling) and methylcellulose (which gels upon heating). 1021 1 nm 3 107 23 8 Particulate dispersions: solids that do not form molecular solutions but 10 0.1 nm 3 10 remain as discrete though minute particles. Bentonite and micro- a Shaded region corresponds to colloidal particle-size range. crystalline cellulose are examples of these hydrosols. Lipophilic or oleophilic substances have a strong affinity for oils. Oils are nonpolar liquids consisting mainly of hydro- carbons having few polar groups and low dielectric constants. to have a lower viscosity and are fluid. If the solid particles form Examples include mineral oil, benzene, carbon tetrachloride, bridged structures possessing some mechanical strength, the vegetable oils (eg, cottonseed or peanut oil), and essential oils system is then called a gel. Prefixes typically designate the dis- (eg, lemon or peppermint oil). Oleophilic colloidal dispersions persion medium. For example, hydrosol (or hydrogel), alcosol include polymers such as polystyrene and unvulcanized or (or alcogel), and aerosol (or aerogel), designate water, alcohol, gum rubber dissolved in benzene, magnesium, or aluminum and air, respectively. stearate dissolved or dispersed in cottonseed oil, and activated charcoal which forms sols or particulate dispersions in all oils. Interaction Between Dispersed Phases LYOPHOBIC DISPERSIONS and Dispersion Mediums The dispersion is said to be lyophobic (solvent-hating) when Ostwald originated another useful classification of colloidal there is little attraction between the dispersed phase and the dispersions based on the affinity or interaction between the dispersion medium. Hydrophobic dispersions consist of parti- dispersed phase and the dispersion medium.2,3,8 This classi- cles that are only hydrated slightly or not at all because water fication refers mostly to solid-in-liquid dispersions. Colloidal molecules prefer to interact with one another instead of solvat- dispersions are divided into the two broad categories, lyophilic ing the particles. Therefore, such particles do not disperse or dis- and lyophobic. Some soluble, low molecular weight substances solve spontaneously in water. Examples of materials that form have molecules with both tendencies and associate in solution, hydrophobic dispersions include organic compounds consisting forming a third category called association colloids. largely of hydrocarbon portions with few, if any, hydrophilic functional groups (eg, cholesterol and other steroids); some non- ionized inorganic substances (eg, sulfur); and oleophilic materi- LYOPHILIC DISPERSIONS als such as polystyrene or gum rubber, organic lipophilic drugs, paraffin wax, magnesium stearate, and cottonseed or soybean The system is said to be lyophilic (solvent-loving) if there is oils. Materials such as sulfur, silver chloride, and gold form hy- considerable attraction between the dispersed phase and the drophobic dispersions without being lipophilic. There is no liquid vehicle (ie, extensive solvation). The system is said to be sharp dividing line between hydrophilic and hydrophobic dis- hydrophilic if the dispersion medium is water. Due to the persions. For example, gelatinous hydroxides of polyvalent met- presence of high concentrations of hydrophilic groups, solids als (eg, aluminum and magnesium hydroxide) and clays such as bentonite, starch, gelatin, acacia, and povidone swell, (eg, bentonite and kaolin) possess some characteristics of disperse, or dissolve spontaneously in water to the greatest both.2,3,6,8 Common lipophobic dispersions include water-in- degree possible without breaking covalent bonds.
Recommended publications
  • Selling Mercury Cosmetics and Pharmaceuticals (W-Hw4-22)
    www.pca.state.mn.us Selling mercury cosmetics and pharmaceuticals Mercury-containing skin lightening creams, lotions, soaps, ointments, lozenges, pharmaceuticals and antiseptics Mercury is a toxic element that was historically used in some cosmetic, pharmaceutical, and antiseptic products due to its unique properties and is now being phased out of most uses. The offer, sale, or distribution of mercury-containing products is regulated in Minnesota by the Minnesota Pollution Control Agency (MPCA). Anyone offering a mercury-containing product for sale or donation in Minnesota is subject to these requirements, whether a private citizen, collector, non-profit organization, or business. Offers and sales through any method are regulated, whether in a store or shop, classified advertisement, flea market, or online. If a mercury-containing product is located in Minnesota, it is regulated, regardless of where a purchaser is located. Note: This fact sheet discusses the requirements and restrictions of the MPCA. Cosmetics and pharmaceuticals may also be regulated for sale whether they contain mercury or not by other state or federal agencies, including the Minnesota Board of Pharmacy and the U.S. Food & Drug Administration. See More information on page 2. What are the risks of using mercury-containing products? Use of mercury-containing products can damage the brain, kidneys, and liver. Children and pregnant women are at increased risk. For more information about the risks of mercury exposure, visit the Minnesota Department of Health. See More information on the page 2. If you believe you have been exposed to a mercury-containing product, contact your health care provider or the Minnesota Poison Control Center at 1-800-222-1222.
    [Show full text]
  • Syntheses and Biological Activity of Sparsomycin and Analogs
    SYNTHESES AND BIOLOGICAL ACTIVITY OF SPARSOMYCIN AND ANALOGS THE CHEMISTRY OF CHIRAL FUNCTIONALIZED SULFOXIDES AND SULTINES DERIVED FROM CYSTEINE ROB M.J. LISKAMP SYNTHESES AND BIOLOGICAL ACTIVITY OF SPARSOMYCIN AND ANALOGS THE CHEMISTRY OF CHIRAL FUNCTIONALIZED SULFOXIDES AND SULTINES DERIVED FROM CYSTEINE Promotor : Prof. Dr. R.J.F. Nivard Co-referent : Dr. H.C.J. Ottenheijm SYNTHESES AND BIOLOGICAL ACTIVITY OF SPARSOMYCIN AND ANALOGS THE CHEMISTRY OF CHIRAL FUNCTIONALIZED SULFOXIDES AND SULTINES DERIVED FROM CYSTEINE PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE KATHOLIEKE UNIVERSITEIT VAN NIJMEGEN OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. J.H.G.I. GIESBERS VOLGENS HET BESLUIT VAN HET COLLEGE VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP VRIJDAG 10 DECEMBER 1982 DES NAMIDDAGS OM 4 UUR DOOR ROBERTUS MATTHIAS JOSEPH LISKAMP GEBOREN TE NIJMEGEN NIJMEGEN 1982 Dit proefschrift vormt de neerslag van vier jaar wetenschappelijk onderzoek. Ik wil iedereen - en dat waren er zeer velen - bedanken, die hieraan gedurende die tijd door hun stimulerende discussie of door de feitelijke uitvoering deel hadden. Zij gaven mede richting en vorm, niet alleen organisch maar ook biochemisch/biologisch en fysisch chemisch, aan het verrichte onderzoek. Daarnaast wil ik hen bedanken die een bijdrage geleverd hebben aan de onmis­ bare technische uitvoering van het in dit proefschrift beschreven onderzoek. En tenslotte wil ik ook hen bedanken die aan de vormgeving van het proef­ schrift hun medewerking hebben verleend. Tekeningen : Wim van Luijn en de afdeling illustratie Type-werk : Dorine Hesselink-Balvert Afbeelding op de omslag: Een 'stacked plot' van een 2D-spin-echo correlated spectrum van synthetisch sparsomycine verzorgd door Wim Guijt This research was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin Et Al
    US 201201.15729A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0115729 A1 Qin et al. (43) Pub. Date: May 10, 2012 (54) PROCESS FOR FORMING FILMS, FIBERS, Publication Classification AND BEADS FROM CHITNOUS BOMASS (51) Int. Cl (75) Inventors: Ying Qin, Tuscaloosa, AL (US); AOIN 25/00 (2006.01) Robin D. Rogers, Tuscaloosa, AL A6II 47/36 (2006.01) AL(US); (US) Daniel T. Daly, Tuscaloosa, tish 9.8 (2006.01)C (52) U.S. Cl. ............ 504/358:536/20: 514/777; 426/658 (73) Assignee: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF 57 ABSTRACT ALABAMA, Tuscaloosa, AL (US) (57) Disclosed is a process for forming films, fibers, and beads (21) Appl. No.: 13/375,245 comprising a chitinous mass, for example, chitin, chitosan obtained from one or more biomasses. The disclosed process (22) PCT Filed: Jun. 1, 2010 can be used to prepare films, fibers, and beads comprising only polymers, i.e., chitin, obtained from a suitable biomass, (86). PCT No.: PCT/US 10/36904 or the films, fibers, and beads can comprise a mixture of polymers obtained from a suitable biomass and a naturally S3712). (4) (c)(1), Date: Jan. 26, 2012 occurring and/or synthetic polymer. Disclosed herein are the (2), (4) Date: an. AO. films, fibers, and beads obtained from the disclosed process. O O This Abstract is presented solely to aid in searching the sub Related U.S. Application Data ject matter disclosed herein and is not intended to define, (60)60) Provisional applicationpp No. 61/182,833,sy- - - s filed on Jun.
    [Show full text]
  • Phytochem Referenzsubstanzen
    High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,753,634 Ebetino Et Al
    USOO5753634A United States Patent (19) 11 Patent Number: 5,753,634 Ebetino et al. 45 Date of Patent: May 19, 1998 54 QUATERNARY NITROGEN CONTAINING 4.011777 10/1990 Germany. PHOSPHONATE COMPOUNDS, WO 90/12017 10/1990 WIPO PHARMACEUTICAL COMPOSTIONS, AND WO 91/10646 7/1991 WIPO. METHODS FOR TREATING ABNORMAL Primary Examiner-Amelia Owens CALCUMAND PHOSPHATE METABOLISM Attorney, Agent, or Firm-Richard A. Hake; Karen F. Clark; William J. Winter 75 Inventors: Frank Hallock Ebetino; Marion David Francis, both of Cincinnati, 57 ABSTRACT Ohio; Susan Mary Kaas, Sherburne, Disclosed are quaternary nitrogen-containing, saturated or N.Y. unsaturated monocyclic and bicyclic ring-containing bis 73 Assignee: The Procter & Gamble Company, phosphonate compounds, and pharmaceutically-acceptable Cincinnati, Ohio salts and esters thereof. These compounds, which are useful for treating or preventing disorders of calcium and phos 21) Appl. No.: 52,694 phate metabolism, have the following general structure: 22) Filed: Apr. 30, 1993 (R), (CR2), (CR,): NY R Related U.S. Application Data 63 Continuation-in-part of Ser. No. 891,487, May 29, 1992, abandoned. 51 Int. Cl. ... A61K 31/675; A61K 31/66 52) U.S. Cl. ............................ 514/81: 514/91; 514/109: wherein 546/23: 548/111; 562/21 (a) each X and Y are independently selected from nil, O, 58 Field of Search ............................... 546/23: 514/80, S, NR' and N*(R); if no R' is N'(R), then at least 514/82, 91, 109; 548/111; 562/21 one of X or Y must be N(R); References Cited (b) m and n and m+n are integers from 0 to 5; p and q and 56 p+q are integers from 0 to 3; U.S.
    [Show full text]
  • Tepzz 459659B T
    (19) TZZ _T (11) EP 2 459 659 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: C09D 7/00 (2006.01) C09D 7/14 (2006.01) of the grant of the patent: C09D 5/16 (2006.01) 17.07.2013 Bulletin 2013/29 (86) International application number: (21) Application number: 10737728.5 PCT/US2010/043382 (22) Date of filing: 27.07.2010 (87) International publication number: WO 2011/017097 (10.02.2011 Gazette 2011/06) (54) REMOVABLEANTIMICROBIAL COATING COMPOSITIONS CONTAINING CATIONIC RHEOLOGY AGENT AND METHODS OF USE ABLÖSBARE ANTIMIKROBIELLE BESCHICHTUNGSZUSAMMENSETZUNGEN MIT KATIONISCHEM RHEOLOGISCHEM ADDITIV UND ANWENDUNGSVERFAHREN COMPOSITIONS DE REVÊTEMENT ANTIMICROBIENNES, APTES À ÊTRE RETIRÉES, CONTENANT UN AGENT DE RHÉOLOGIE CATIONIQUE, ET PROCÉDÉS D’UTILISATION (84) Designated Contracting States: (74) Representative: Dannenberger, Oliver Andre et al AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Abitz & Partner GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Patentanwälte PL PT RO SE SI SK SM TR Postfach 86 01 09 81628 München (DE) (30) Priority: 27.07.2009 US 228707 P 27.07.2009 US 228711 P (56) References cited: 27.07.2009 US 228715 P WO-A2-2007/100653 WO-A2-2007/100654 27.07.2009 US 228723 P 26.07.2010 US 843120 • Akzo Nobel Surface Chemistry: "Thickening with polymers"[Online] 1 January 2010 (2010-01-01), (43) Date of publication of application: XP002609717 Akzo Nobel Technical Information 06.06.2012 Bulletin 2012/23 Retrieved from the Internet: URL:http: //www.akzonobel.com/surface/syste m/images/ (73) Proprietor: E.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 100 Ol
    US 2002O102215A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0102215 A1 Klaveness et al. (43) Pub. Date: Aug. 1, 2002 (54) DIAGNOSTIC/THERAPEUTICAGENTS (60) Provisional application No. 60/049.264, filed on Jun. 6, 1997. Provisional application No. 60/049,265, filed (75) Inventors: Jo Klaveness, Oslo (NO); Pal on Jun. 6, 1997. Provisional application No. 60/049, Rongved, Oslo (NO); Anders Hogset, 268, filed on Jun. 7, 1997. Oslo (NO); Helge Tolleshaug, Oslo (NO); Anne Naevestad, Oslo (NO); (30) Foreign Application Priority Data Halldis Hellebust, Oslo (NO); Lars Hoff, Oslo (NO); Alan Cuthbertson, Oct. 28, 1996 (GB)......................................... 9622.366.4 Oslo (NO); Dagfinn Lovhaug, Oslo Oct. 28, 1996 (GB). ... 96223672 (NO); Magne Solbakken, Oslo (NO) Oct. 28, 1996 (GB). 9622368.0 Jan. 15, 1997 (GB). ... 97OO699.3 Correspondence Address: Apr. 24, 1997 (GB). ... 9708265.5 BACON & THOMAS, PLLC Jun. 6, 1997 (GB). ... 9711842.6 4th Floor Jun. 6, 1997 (GB)......................................... 97.11846.7 625 Slaters Lane Alexandria, VA 22314-1176 (US) Publication Classification (73) Assignee: NYCOMED IMAGING AS (51) Int. Cl." .......................... A61K 49/00; A61K 48/00 (52) U.S. Cl. ............................................. 424/9.52; 514/44 (21) Appl. No.: 09/765,614 (22) Filed: Jan. 22, 2001 (57) ABSTRACT Related U.S. Application Data Targetable diagnostic and/or therapeutically active agents, (63) Continuation of application No. 08/960,054, filed on e.g. ultrasound contrast agents, having reporters comprising Oct. 29, 1997, now patented, which is a continuation gas-filled microbubbles stabilized by monolayers of film in-part of application No. 08/958,993, filed on Oct.
    [Show full text]
  • Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act
    Updated June 07, 2021 Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act Three categories of bulk drug substances: • Category 1: Bulk Drug Substances Under Evaluation • Category 2: Bulk Drug Substances that Raise Significant Safety Risks • Category 3: Bulk Drug Substances Nominated Without Adequate Support Updates to Categories of Substances Nominated for the 503B Bulk Drug Substances List1 • Add the following entry to category 2 due to serious safety concerns of mutagenicity, cytotoxicity, and possible carcinogenicity when quinacrine hydrochloride is used for intrauterine administration for non- surgical female sterilization: 2,3 o Quinacrine Hydrochloride for intrauterine administration • Revision to category 1 for clarity: o Modify the entry for “Quinacrine Hydrochloride” to “Quinacrine Hydrochloride (except for intrauterine administration).” • Revision to category 1 to correct a substance name error: o Correct the error in the substance name “DHEA (dehydroepiandosterone)” to “DHEA (dehydroepiandrosterone).” 1 For the purposes of the substance names in the categories, hydrated forms of the substance are included in the scope of the substance name. 2 Quinacrine HCl was previously reviewed in 2016 as part of FDA’s consideration of this bulk drug substance for inclusion on the 503A Bulks List. As part of this review, the Division of Bone, Reproductive and Urologic Products (DBRUP), now the Division of Urology, Obstetrics and Gynecology (DUOG), evaluated the nomination of quinacrine for intrauterine administration for non-surgical female sterilization and recommended that quinacrine should not be included on the 503A Bulks List for this use. This recommendation was based on the lack of information on efficacy comparable to other available methods of female sterilization and serious safety concerns of mutagenicity, cytotoxicity and possible carcinogenicity in use of quinacrine for this indication and route of administration.
    [Show full text]
  • Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act
    Updated July 30, 2020 Bulk Drug Substances Nominated for Use in Compounding Under Section 503B of the Federal Food, Drug, and Cosmetic Act Three categories of bulk drug substances: • Category 1: Bulk Drug Substances Under Evaluation • Category 2: Bulk Drug Substances that Raise Significant Safety Risks • Category 3: Bulk Drug Substances Nominated Without Adequate Support Notice of Updates to Categories of Substances Nominated for the 503B Bulk Drug Substances List • Additions to category 1: Betahistine Hydrochloride L-Proline Citrulline Papaverine Hydrochloride* Copper Gluconate Phosphatidylcholine Diiodohydroxyquinoline Podophyllum Resin Glucosamine Sulfate Potassium Chloride Sodium Molybdate Glucosamine Sulfate Sodium Chloride Sodium Nitroprusside Hydrochloric Acid* Sodium Selenite/Sodium Selenite Pentahydrate* Ibutamoren Mesylate Trichloroacetic Acid* L-Citrulline* Ubidecarenone (Coenzyme Q10)* L-Lysine * Bulk drug substance is currently in Category 3 and is being moved to Category 1. • Minor revision to entry in Category 1 to correct a misspelling: o Correct the misspelling of “cimatidine” to “cimetidine” 1 Updated July 30, 2020 503B Category 1: Bulk Drug Substances Under Evaluation • 5-Methyltetrahydrofolate Calcium • Chromic Chloride • 17-alpha-Hydroxyprogesterone • Chromium chloride/ Chromium Chloride • Acetylcysteine Hexahydrate • Acyclovir • Ciclopirox Oleate • Adapalene • Cimetidine • Adenosine • Ciprofloxacin HCl • Allantoin • Citric Acid Anhydrous • Alpha Lipoic Acid • Citrulline/L-Citrulline • Alprostadil • Clindamycin Phosphate
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0275279 A1 Rozzell Et Al
    US 20060275279A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0275279 A1 ROZZell et al. (43) Pub. Date: Dec. 7, 2006 (54) METHODS FOR DISSOLVING CYSTINE (22) Filed: Jun. 6, 2005 STONES AND REDUCING CYSTINE IN URINE Publication Classification (76) Inventors: J. David Rozzell, Burbank, CA (US); (51) Int. Cl. Kavitha Vedha-Peters, Pasadena, CA A6II 38MSI (2006.01) (US) (52) U.S. Cl. ............................................................ 424/94.5 Correspondence Address: CHRISTIE, PARKER & HALE, LLP (57) ABSTRACT PO BOX 7O68 PASADENA, CA 91109–7068 (US) The present invention is directed to an improved method of treating cystinuria, utilizing the catalytic ability of cystinase (21) Appl. No.: 11/146,551 to increase the rate of cystine Stone dissolution. Patent Application Publication Dec. 7, 2006 Sheet 1 of 4 US 2006/0275279 A1 Hs1N1 Ncoh L-Homocysteine -- H2 O HOC n1ns 1-1N CO2H Cystathionine?3-lyase ls CO2H H2 Pyruvate L-Cystathionine H NH FIG. 1. Metabolic Reaction Catalyzed by Cystathionine-?s-Lyase Patent Application Publication Dec. 7, 2006 Sheet 2 of 4 US 2006/0275279 A1 NH2 Hs1 S Y1Ncoh L-Thiocysteine -- NH2 O Hozen-1- 1N1 no H Cystathionine e i 2 B-lyase CO2H NH2 P L-CystineA- y ruvate -- NH FIG. 2. "Un-Natural" Reaction Catalyzed by Cystathionine-?s-Lyase on L-Cystine Patent Application Publication Dec. 7, 2006 Sheet 3 of 4 US 2006/0275279 A1 Dissolution of Cystine Stones with Cystathionine beta-lyase (MetC) s -o-control (no MetC) al -H 1 mg/mL MetC g - 5 mg/mL MetC 3. -- 10 mg/mL MetC S.
    [Show full text]
  • Assessment of the Antibiotic Resistance Effects of Biocides
    Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR Assessment of the Antibiotic Resistance Effects of Biocides The SCENIHR adopted this opinion at the 28th plenary on 19 January 2009 after public consultation. 1 Antibiotic Resistance Effects of Biocides About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Products (SCCP), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), and are made up of external experts. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Evaluation Agency (EMEA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCENIHR Questions concerning emerging or newly-identified risks and on broad, complex or multi- disciplinary issues requiring a comprehensive assessment of risks to consumer safety or public health and related issues not covered by other Community risk-assessment bodies. In particular, the Committee addresses questions related to potential risks associated with interaction of risk factors, synergic effects, cumulative effects, antimicrobial resistance, new technologies such as nanotechnologies, medical devices, tissue engineering, blood products, fertility reduction, cancer of endocrine organs, physical hazards such as noise and electromagnetic fields and methodologies for assessing new risks.
    [Show full text]
  • Copyrighted Material
    Index Abhexon, 501, 565 bitter, 636 reactions, 564, 565 dimethylarsinoyl, 415 Abietadiene, 505, 506 oxocarboxylic, 550 Abietic acid, 189 phenolic, 551 Absinthin, 634 reactions, 555 Acacetin, 695 sugar, 212 Acacipetalin, 775, 776 Acidulants, 872 Acenaphthene, 919 Aconitic acid, 546 Acenaphthylene, 919 Acorin, 635 Acephate, 1010 Acrolein, 82 Aceric acid, 213, 214, 259 reactions, 180, 181, 193, 527, 538 Acesulfame K, 865, 866, 870 Acromelic acids, 829 Acetaldehyde, 72, 527 Acrylamide, 899, 900 reactions, 295, 538, 540 content in foods, 900 Acetals, 537, 541 reactions, 901, 902 reactions, 538 Acrylic acid, 1034 Acetic acid, 542, 850 Acrylonitrile, 1039 reactions, 296, 297, 543 Actin, 47 Acetoacetic acid, 551 Actinin, 47 Acetoin, 522, 536 Acylchloropropanediols, 910 reactions, 522 Acyloins, 536 Acetol, see hydroxyacetone Acylsphingosines, see ceramides Acetone, 533 Additives, 847 reactions, 540 Adenine, 396, 397 Acetophenone, 535 Adenosine diphosphate, see ADP Acetylcholine, 399 monophosphate, see AMP Acetylcysteines, see mercapturates triphosphate, see ATP Acetylfuran, 286 Adenylic acid, see AMP Acetylgalactosamine, 53, 58 Adermine, see vitamin B6 Acetylglucosamine, 58 Adhesives, 889 Acetylhistidines, 20 Adhyperflorin, 712 Acetyllactaminic acid, see acetylneuraminic acid Adipic acid, 544 Acetyllysine, 18 ADP, 18, 874 Acetylmuramic acid, 217 Adrastin, 951 Acetylneuraminic acid, 53, 58, 217 COPYRIGHTEDAdrenaline, MATERIALsee epinephrine Acetylpyridine, 590 Adriatoxin, 838 Acetylpyrroline, 18, 501 Advanced glycation end products, 319–23 Acetylpyrroline, reactions, 599 lipoxidation end products, 319 Acetyltetrahydropyridine, 18 Aflatoxicol, 946 Acetyltetrahydropyridine, reactions, 600 Aflatoxins, 942, 945–8 Acids as preservatives, 848 Aflatrem, 961 lipoamino, 129 Afzelechins, 648 aldonic, 212 Agar, 269 alicyclic, 551 Agaric acid, see agaricinic acid aromatic, 551 Agaricinic acid, 835, 865 bile, 140 Agaricone, 705 The Chemistry of Food, First Edition.
    [Show full text]