'Integrative Neuroscience' Perspective on ADHD

Total Page:16

File Type:pdf, Size:1020Kb

'Integrative Neuroscience' Perspective on ADHD THeMED ArTICLe y ADHD Review For reprint orders, please contact [email protected] An ‘integrative neuroscience’ perspective on ADHD: linking cognition, emotion, brain and genetic measures with implications for clinical support Expert Rev. Neurother. 10(10), 1607–1621 (2010) Leanne M Williams†1,2, There remains a translational gap between research findings and their implementation in clinical Tracey W Tsang2, practice that applies to attention-deficit/hyperactivity disorder (ADHD), as well as to other major Simon Clarke2,3 and disorders of brain health in childhood, adolescence and adulthood. Research studies have identified Michael Kohn2,3 potential ‘markers’ to support diagnostic, functional assessment and treatment decisions, but there is little consensus about these markers. Of these potential markers, cognitive measures of thinking 1BRAINnet; Brain Research and functions, such as sustaining attention and associated electrical brain activity, show promise in Integrative Neuroscience Network, CA, USA complementing the clinical management process. Emerging evidence highlights the relevance of 2Brain Dynamics Center, University of emotional, as well as thinking, functions to ADHD. Here, we outline an integrative neuroscience Sydney Medical School and Westmead framework for ADHD that offers one means to bring together cognitive measures of thinking Millennium Institute, Sydney, Australia functions with measures of emotion, and their brain and genetic correlates. Understanding these 3Center for Research into Adolescents’ Health, The Children’s Hospital at measures and the relationships between them is a first step towards the development of tools that Westmead, Sydney, Australia will help to assess the heterogeneity of ADHD, and aid in tailoring treatment choices. †Author for correspondence: Brain Dynamics Center, University of Keywords: attention-deficit/hyperactivity disorder • brain • BRAINnet • clinical decision support • cognition Sydney Medical School and Westmead • emotion • genetics • integrative neuroscience• nonstimulants • stimulants Millennium Institute, Sydney, NSW 2145, Australia [email protected] There is a ‘translational’ gap between research and chronic health condition affecting school- findings and their implementation in clinical aged children. It has been described as ‘a serious practice that applies to disorders of brain health disability with long-term consequences’. It has across the lifespan. Here, the focus is on atten- severe consequences in social, individual and tion-deficit/hyperactivity disorder (ADHD), as family settings, often resulting in financial costs the most common disorder of childhood/adoles- of treatment, psychological implications due to cence. Research studies have identified potential familial stress and breakdown, difficulties in aca- ‘markers’ for supporting diagnostic, functional demic and vocational areas, and increased risk of assessment and treatment decisions in ADHD. drug abuse [1]. Integrating findings from the current knowl- Using the Diagnostic and Statistical Manual of edge base on these markers is a first step towards Mental Disorders – Fourth Edition (DSM-IV) achieving consensus on how they are best used criteria, diagnosis of ADHD is currently founded clinically. We outline an integrative neurosci- on a classical triad of symptoms: inattention, ence framework for linking findings from cogni- hyperactivity and impulsivity [2]. �������������ADHD is typi- tive behavioral, emotion-related, brain and gene cally identified in childhood to early adolescence. measures, and their application to diagnosis, It persists into adulthood in 50–60% of cases. comorbidity and treatment in ADHD. Attention-deficit/hyperactivity disorder is a heterogeneous condition that carries a high Clinical picture of ADHD: past, present risk of comorbidity [3]. Conditions frequently & future comorbid with ADHD may be broadly classified Attention-deficit/hyperactivity disorder is consid- into three categories: learning problems, exter- ered to be the most common neuro developmental nalizing disorders (e.g., conduct disorder) and www.expert-reviews.com 10.1586/ERN.10.140 © 2010 Expert Reviews Ltd ISSN 1473-7175 1607 Review Williams, Tsang, Clarke & Kohn internalizing disorders (e.g., anxiety and depression). ADHD Ob�ective measures will enhance the reliability of clinical decisions, is more prevalent in males, although under-reporting in females and provide concrete benchmarks for monitoring progress. These may contribute to this difference [3]. benchmarks offer the additional benefit of engaging both patient and family, and providing them with explicit feedback [11]. In other The past: diagnostic origins of ADHD areas of medicine the use of quantitative measurements is already The diagnostic origin of ADHD can be traced back to the 1950s a matter of course in making diagnostic and treatment decisions. when it was termed ‘minimal brain dysfunction’. Subsequently, We expect to have stress tests to evaluate our cardiac function, the diagnostic labels of hyperactive syndrome, hyperkinesis, and high- and low-density lipoprotein cholesterol are commonly hyperactivity disorder of childhood and variations of ‘attention- used as markers for atherosclerosis treatment in cardiac disease [12]. deficit disorder’ were used. These changes reflect the evolution Towards this goal, theories of ADHD have seen an evolution in understanding the cause and defining criteria for ADHD [4]. from those focused on cognitive concepts to those focused on Despite these changes, there has been consistency in presuming brain systems or genetic susceptibility. A framework to integrate an underlying brain disturbance in this condition. these theories offers one way forward to link levels of organiza- tion – from genes to brain, cognition and clinical symptoms – in The present: DSM-IV the understanding of ADHD. The DSM-IV has based the diagnosis of ADHD on two symp- tom dimensions: inattention and hyperactivity/impulsivity. Each Exemplar approach: an ‘integrative neuroscience’ dimension is defined by nine criteria. Meeting six or more of these for ADHD criteria on either dimension is needed for a positive diagnosis of An essential commonality in theories of ADHD is the empha- ADHD ‘inattentive subtype’ or ADHD ‘hyperactive/impulsive sis on disturbances in core domains of function. The focus has subtype’. Meeting six or more on both dimensions yields a diagnosis particularly been on the domain referred to here as ‘thinking’. of ADHD with ‘combined subtype’. Symptoms must also present The term ‘thinking’ is used as a straightforward descriptive term before the age of 7 years, in two or more settings, causing social and that is an umbrella for behavioral, psychophysiological and brain academic problems without a primary cause in anxiety or stress [5]. imaging measures of general cognitive processes. More recent A generally similar pattern has been observed in adult samples [6]. evidence highlights associated disturbances in domains referred The DSM-IV has given explicit recognition to the hetero geneity to here as emotion, feeling and self-regulation. While different of symptoms. For example, the situation-specific nature of symp- terminology has been used to describe these domains in different toms is considered. However, it does have a systematic way of theories, there is a fundamental commonality in the constructs. defining ADHD as a broader spectrum with comorbid conditions For instance, the phrase ‘affect–motivation–arousal’ has been (internalizing and externalizing), within an integrative construct. used to refer to motivationally directed emotion processing and the lack of regulation of such processing in ADHD [13]. The future: beyond DSM-IV Although a consensus is emerging that ADHD is character- The DSM-IV,������������������������������������������� following its predecessors, relies on sub�ective������������� clini- ized by disturbances across the spectrum of emotion, thinking, cal assessment to classify behavior. In this regard, there may not feeling and self-regulation [14], no similar theoretical consensus always be a direct match between the ‘round hole’ of diagnos- exists regarding their cause and underlying brain–gene basis. tic signs and symptoms and the ‘square pegs’ of the brain–gene An ‘integrative neuroscience’ approach provides a framework to mechanisms underlying the pathophysiology of ADHD. draw together theories that emphasize the involvement of mul- The focus on ‘signs and symptoms’ has provided a pragmatic tiple and dynamic brain pathways in the development of ADHD. and consistent nomenclature across clinicians. Rapidly emerging Such a framework will assist in the methodological identification findings for the brain–gene basis of psychophathological features of potential brain-based markers that have utility for assessing have begun to be incorporated into the template for the next ADHD and for predicting and evaluating treatment response. version of the DSM (DSM-V), which is expected to be released An integrative neuroscience framework encompasses: in 2013. While unrealistically optimistic expectations regarding • Consolidation of integrative theoretical models that provide a single brain–gene dysfunction linkages still remain, the essen- basis for understanding the range of thinking, emotion, feeling tial plan for converging biology with ‘signs and symptoms’ into and self-regulation disturbances in ADHD, as well as the links DSM-V points a way forward for integration: “It is our goal
Recommended publications
  • Tor Wager Diana L
    Tor Wager Diana L. Taylor Distinguished Professor of Psychological and Brain Sciences Dartmouth College Email: [email protected] https://wagerlab.colorado.edu Last Updated: July, 2019 Executive summary ● Appointments: Faculty since 2004, starting as Assistant Professor at Columbia ​ University. Associate Professor in 2009, moved to University of Colorado, Boulder in 2010; Professor since 2014. 2019-Present: Diana L. Taylor Distinguished Professor of Psychological and Brain Sciences at Dartmouth College. ● Publications: 240 publications with >50,000 total citations (Google Scholar), 11 papers ​ cited over 1000 times. H-index = 79. Journals include Science, Nature, New England Journal of Medicine, Nature Neuroscience, Neuron, Nature Methods, PNAS, Psychological Science, PLoS Biology, Trends in Cognitive Sciences, Nature Reviews Neuroscience, Nature Reviews Neurology, Nature Medicine, Journal of Neuroscience. ● Funding: Currently principal investigator on 3 NIH R01s, and co-investigator on other ​ collaborative grants. Past funding sources include NIH, NSF, Army Research Institute, Templeton Foundation, DoD. P.I. on 4 R01s, 1 R21, 1 RC1, 1 NSF. ● Awards: Awards include NSF Graduate Fellowship, MacLean Award from American ​ Psychosomatic Society, Colorado Faculty Research Award, “Rising Star” from American Psychological Society, Cognitive Neuroscience Society Young Investigator Award, Web of Science “Highly Cited Researcher”, Fellow of American Psychological Society. Two patents on research products. ● Outreach: >300 invited talks at universities/international conferences since 2005. ​ Invited talks in Psychology, Neuroscience, Cognitive Science, Psychiatry, Neurology, Anesthesiology, Radiology, Medical Anthropology, Marketing, and others. Media outreach: Featured in New York Times, The Economist, NPR (Science Friday and Radiolab), CBS Evening News, PBS special on healing, BBC, BBC Horizons, Fox News, 60 Minutes, others.
    [Show full text]
  • Report to the Internal Review Committee
    Center for Neuroscience & Society University of Pennsylvania REPORT TO THE INTERNAL REVIEW COMMITTEE I. Mission …………………………………………………………………………………….…………………….. p. 2 II. History …………………………………………………………………………………………………….…….. p. 2 III. People ………………………………………………………………………………………………………….. p. 2 Faculty Staff Fellows Visiting Scholars Advisory Board IV. Funding …………………………………………………………………………………………………….…… p. 4 V. Space and Facilities ………………………………………………………………………………………… p. 4 VI. Overview .……………………………………………………………………………………………………… p. 5 VII. Research on Neuroscience and Society…………………………………………………………. P. 5 VIII. Outreach (Including K-12 Education) …………………………………………………………… p. 7 Online Public Talks Academic Outreach Within Penn Outreach Beyond Penn Conferences K-12 Education IX. Higher Education ………………………………………………………………………………………….. p. 11 Neuroscience Boot Camp Continuing Medical Education Neuroethics Learning Collaborative Penn Fellowships in Neuroscience and Society New Courses Preceptorials Graduate Certificate in Social, Cognitive and Affective Neuroscience (SCAN) X. Conclusions, Challenges for the Future …………………………………………………………… p. 15 Appendices 1-11 Submitted April 9, 2016, by Martha J. Farah, Director of the Center for Neuroscience & Society 1 I. Mission Neuroscience is giving us increasingly powerful methods for understanding, predicting and manipulating the human mind. Every sphere of life in which psychology plays a central role – from education and family life to law and politics – will be touched by these advances, and some will be profoundly transformed.
    [Show full text]
  • Stephanie Bugden Curriculum Vitae (Pdf)
    Stephanie Bugden, Ph.D. Postdoctoral Fellow email: [email protected] Department of Psychology Phone number: (919) 884-9870 The University of Pennsylvania 425 S. University Ave, Philadelphia, PA, 19104 Education and Training Postdoctoral Fellow, March 2015 – Present Duke University (Mar 2015-Aug 2015) & The University of Pennsylvania Supervisor: Dr. Elizabeth M. Brannon The University of Western Ontario, December, 2014 Ph.D., Psychology Supervisor: Dr. Daniel Ansari Thesis Title: Characterizing persistent developmental dyscalculia: A cognitive neuroscience approach The University of Western Ontario, August, 2010 M.Ed., Special Education and Educational Psychology Supervisor: Dr. Daniel Ansari The University of Western Ontario, April, 2008 B.A., Honors in Psychology, Developmental & Educational, Minor in French Publications Google Scholar Citations (as of September 10, 2018): 353, h-index: 5 (i10-index: 5) † reviews, chapters, commentaries †Dresler, T., Bugden, S., Gouet, C., Lallier, M., Oliveira, D., Pinheiro-Chagas, P., Pires, A., Want, Y., Zugarramudi, C., & Weissheimer, J. (2018). A translational framework of educational neuroscience in learning disorders. Frontiers in Integrative Neuroscience, 12:25, doi: 10.3389/fnint.2018.00025. Lyons, I.M., Bugden, S., Zhang, S., De Jesus, S., & Ansari, D. (2018). Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners. Developmental Psychology, 5(3), 440-457. †Bugden, S., DeWind, N., & Brannon, E. M. (2016). Using cognitive training to unravel the mechanistic link between the approximate number system and symbolic math skills, Current Opinions in Behavioral Sciences, 10, 73-80. doi: 10.1016/j.cobeha.2016.05.002. Bugden, S., & Ansari, D. (2016). Probing the nature of deficits in the ‘Approximate Number System’ in children with persistent Developmental Dyscalculia.
    [Show full text]
  • Blaming the Brain
    Minnesota Journal of Law, Science & Technology Volume 11 Issue 1 Article 5 2010 Blaming the Brain Steven K. Erickson Follow this and additional works at: https://scholarship.law.umn.edu/mjlst Recommended Citation Steven K. Erickson, Blaming the Brain, 11 MINN. J.L. SCI. & TECH. 27 (2010). Available at: https://scholarship.law.umn.edu/mjlst/vol11/iss1/5 The Minnesota Journal of Law, Science & Technology is published by the University of Minnesota Libraries Publishing. ERICKSON SK. Blaming the Brain. MINN. J.L. SCI. & TECH. 2010;11(1):27-77. Blaming the Brain Steven K. Erickson* I. Introduction ............................................................................ 27 II. The Birth of Neurolaw .......................................................... 34 A. Brains Without Minds ................................................ 36 B. The Way of Cognitive Neuroscience ........................... 42 1. Reduction and Deduction ..................................... 46 2. The Life of the Brain ............................................. 50 III. Neurolaw’s Secret Ambition ................................................ 55 A. Making the Criminal, Civil ......................................... 57 B. Rise of the Control Tests ............................................. 65 C. Abolition of Agency ..................................................... 73 IV. Conclusion ............................................................................ 76 I. INTRODUCTION People are more than their brains. Legal and social traditions have long held people
    [Show full text]
  • Strategic Plan 2015
    NS Strategic Plan 2015 Strategic Plan Creation of a Neuroscience Institute at UMass Amherst 1. Vision p3 2. Mission and Goals p3 3. Timelines and Deliverables for first Three Years p8 4. Stakeholders p13 5. SWOT Analysis p13 6. Differentiation Strategy p15 7. Contribution to Campus Mission p15 8. Peer and Aspirant Programs at other Institutions p16 9. Benefit of being an Institute Member to Faculty p16 10. Activities and Accomplishments to Date p16 11. Proposed Resource Needs for the Creation and Operation of INSI p16 12. Next Steps p17 Appendix A: Neuroscience Faculty (UMA and Five College Affiliates) p18 Appendix B: INSI Cluster Proposal Summaries p21 Appendix C: Full Cluster Proposals p23 INSI Steering Committee – 9/4/2015 Page 1 of 52 NS Strategic Plan 2015 Executive Summary In July 2014, the Dean of the College of Natural Sciences, in collaBoration with the VCRE, instituted a Neuroscience Strategic Planning Task Force and charged this task force with developing a strategic vision for neuroscience on the UMA campus, with Both immediate and longer-term oBjectives. MemBers of the task force represented each of the major suBstantive levels of current UMA neuroscience research (cellular/molecular; systems/circuitry; and Behavior/cognition), included assistant, associate, and full professors, and represented four departments in CNS and the School of Public Health and Health Sciences (SPHHS), as well as the Institute of Applied Life Sciences (IALS). The Neuroscience Strategic Planning Task Force has articulated a vision and operational plan for the creation and advancement of a new world-class Integrative Neuroscience Institute at UMA. The Institute will encompass research interests and eXperimental approaches contributed By a Broad range of departments and promote cross-departmental collaborations and close interactions with the Medical School (UMMS) – all leading to unique mechanistic insights into nervous system function in health and disease.
    [Show full text]
  • Proceedings of the 2018 and 2019 Summer Guest Editors: Schools on Brain and Gut Neuroscience: from Prof
    specialissue.jin.imrpress.com Proceedings of the 2018 and 2019 summer Guest Editors: schools on brain and gut neuroscience: from Prof. Massimo Cocchi molecules to mood Department of Veterinary Medical Sciences, Università di Bologna, Bologna, Italy The objective behind this collection of papers is to present an integrated view of the human brain in terms of both its hierarchical structural [email protected] organization and functional complexity. Through the contributed articles that reflect the lectures given in Turin, Italy, our objective is to develop an overview of modern neuroscience in a multi-scale approach starting with molecular aspects and ending with psychological, psychiatric and pharmacological aspects. The assumptions of cognitive neuroscience employ abstractions from the theoretical constructs of 19th century physics. Specifically, neural network models of “emergent conscious experience” rely on analogies to relations among molecules in crys- tals, fluids, and gases and employ chemical hypotheses regarding the emergence of thoughts, moods, and perceptions from chemical modu- lation of synaptic interactions among neurons. However, 20th and 21st Massimo Cocchi century science offers probabilistic perspectives from which to view the mind-brain nexus. Quantum mechanics and quantum field theory have given physicists extra “degrees of freedom”, radically multiplied beyond thermodynamics. A relatively new offshoot of quantum physics is quantum information theory, quantum cryptography and actual quantum Associate Prof. Marco De- computation. Quantum logic formally upgrades the classical concept riuc of a “bit” into the notion of a “qubit”. Quantum interference permits DIMEAS, Politecnico di vast computational parallelism. Cognitive paradigms drawing upon Torino, Turin, Italy wave-like quantum logic have recently spawned a new psychological literature.
    [Show full text]
  • The Social Neuroscience and the Theory of Integrative Levels
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW published: 29 October 2015 doi: 10.3389/fnint.2015.00054 The social neuroscience and the theory of integrative levels Raquel Bello-Morales 1* and José María Delgado-García 2 1 Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain, 2 Division of Neurosciences, Pablo de Olavide University, Seville, Spain The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels Edited by: but, in this paper, we aim to reveal the differences among both doctrines. First, Carlo Miniussi, SN asserts that combination of neural and social variables can produce emergent University of Brescia & IRCCS Centro San Giovanni di Dio Fatebenefratelli, phenomena that would not be predictable from a neuroscientific or social psychological Italy analysis alone; SN also suggests that to achieve a complete understanding of social Reviewed by: structures we should use an integrative analysis that encompasses levels of organization Alessandro E.
    [Show full text]
  • The Claustrum's Proposed Role in Consciousness Is Supported by The
    HYPOTHESIS AND THEORY ARTICLE published: 26 February 2014 doi: 10.3389/fnint.2014.00020 The claustrum’s proposed role in consciousness is supported by the effect and target localization of Salvia divinorum Klaus M. Stiefel 1*, Alistair Merrifield 2 and Alex O. Holcombe 3 1 The MARCS Institute, University of Western Sydney, Sydney, NSW, Australia 2 NPS Medicinewise, Sydney, NSW, Australia 3 School of Psychology, University of Sydney, Sydney, NSW, Australia Edited by: This article brings together three findings and ideas relevant for the understanding of John J. Foxe, Albert Einstein College human consciousness: (I) Crick’s and Koch’s theory that the claustrum is a “conductor of Medicine, USA of consciousness” crucial for subjective conscious experience. (II) Subjective reports Reviewed by: of the consciousness-altering effects the plant Salvia divinorum, whose primary active Lawrence Edelstein, Medimark Corporation, USA ingredient is salvinorin A, a κ-opioid receptor agonist. (III) The high density of κ-opioid John Smythies, University of receptors in the claustrum. Fact III suggests that the consciousness-altering effects of S. California at San Diego, USA divinorum/salvinorin A (II) are due to a κ-opioid receptor mediated inhibition of primarily Peter Addy, Yale University School of Medicine, USA the claustrum and, additionally, the deep layers of the cortex, mainly in prefrontal areas. Consistent with Crick and Koch’s theory that the claustrum plays a key role in consciousness *Correspondence: Klaus M. Stiefel, The MARCS (I), the subjective effects of S. divinorum indicate that salvia disrupts certain facets Institute, University of Western of consciousness much more than the largely serotonergic hallucinogen lysergic acid Sydney, Penrith/Kingswood Campus, diethylamide (LSD).
    [Show full text]
  • Final Congress Program
    FLUX Congress program 2013.12 copy_NCM program 2013 13-09-06 10:44 AM Page 1 The International Congress for Integrative Developmental Cognitive Neuroscience Inaugural Congress: Mechanisms of Brain Development September 19 – 21, 2013 Wyndham Grand Pittsburgh Downtown Pittsburgh PA, USA www.fluxcongress.org FLUX Congress program 2013.12 copy_NCM program 2013 13-09-06 10:44 AM Page 2 INQUISIT Precision stimulus presentation and neuropsychological tests for brain imaging, electroencephalography, and behavioral research. Streamline your research tAect Misattribution Procedure tGame of Dice Task tRunning Span Task tBalloon Analogue Risk Task tGo/No-Go Association Task tSelf-Ordered Pointing Task tBeanFest tHungry Donkey Task tSorting Paired Features Task tBlackjack tImplicit Association Task tSpatial Delayed Response Task tStroop Test tInformation Sampling Task tSternberg Memory Task tColumbia Card Task tIowa Gambling Task tStop Signal Task tContinuous Performance Test tLexical Decision Task tSubliminal Priming tCyberball tOperation Span Task tSymmetry Span Task tDelay Discounting Task tPaired Associates Learning t5FTUPG7BSJBCMFTPG"UUFOUJPO tDot Probe Task tPicture Story Exercise t7JTVBM4UBUJTUJDBM-FBSOJOH tFinger Tapping Task t3BQJE7JTVBM*OGPSNBUJPO1SPDFTTJOH tWisconsin Card Sort Task tExtrinsic Aective Simon Task tReading Span Task tmany more, or program your own InquisitInquisitit 4. NowNow supporsupportingtining MacMac and PC FFreeree trial ddodownloadwnlownloadloa aatt wwww.millisecond.comww..mmillisecond.com sales@[email protected] | 1-801-800-789-9710800-789-9710 FLUX Congress program 2013.12 copy_NCM program 2013 13-09-06 10:45 AM Page 1 Program Contents About the Flux Congress 1 About the Flux Congress The aim of the congress is to provide a forum for developmental cognitive neuroscientists to share 2 Letter from the Congress Chairs their findings on the development of brain processes that support cognition and motivation 3 Flux Leadership from an integrative neuroscience perspective.
    [Show full text]
  • Health Scientist Administrator Theoretical and Computational
    Health Scientist Administrator Theoretical and Computational Neuroscience Program National Institute of Mental Health National Institutes of Health Department of Health and Human Services Bethesda, MD The Theoretical and Computational Neuroscience Program in NIMH Program Officer Position Health Scientist Administrator GS-12/13/14 The Behavioral Science and Integrative Neuroscience Research Branch at NIMH is looking for a motivated individual to serve as Program Officer for the Theoretical and Computational Neuroscience Program. This individual will identify and formulate program needs to achieve an integrated and responsive effort in theoretical and computational neuroscience studies that combine mathematical and computational tools with empirical neuroscience techniques to decipher the mechanisms underlying neuronal and behavioral systems. As one of the program officers in this branch, the selected candidate will stimulate, plan, advise, and direct program activities for a portfolio of research projects and grant or cooperative agreement awards in the area of theoretical and computational neuroscience. The candidate will also develop collaborative activities among federal agencies to foster multi-disciplinary projects with a goal to develop new principles, models, and methods for acquisition, analysis and interpretation of neural data, and be responsible for maintaining and further developing innovative scientific directions that include computational and systems neuroscience approaches that align with the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. The successful candidate will be a U.S. citizen and possess a Ph.D. (or equivalent doctoral degree) in an academic field of the health or pertinent sciences (i.e., neuroscience, cognitive science, physiology, etc.). Degrees in fields that emphasize theoretical and computational neuroscience are preferred.
    [Show full text]
  • Next Generation Pain Solutions - a Functional Neuro-Orthopedic & Low-Level Laser Therapy Approach to Pain and Injury Rehabilitation - Instructor(S): Dr
    Next Generation Pain Solutions - A Functional Neuro-Orthopedic & Low-Level Laser Therapy Approach to Pain and Injury Rehabilitation - Instructor(s): Dr. Trevor Berry, DC, DACNB & Dr. David George, DC, DACNB, RN, FIAMA Times: Saturday 8 am - 6:45 pm, Sunday 8:00 am – 2:15pm Total CE hours: 14 Abstract Summary: The purpose of this lecture is to present the fundamentals of an integrative neuroscience-forward clinical framework for addressing pain and musculoskeletal injury presentations. The presenters will present a rational framework for approaching painful musculoskeletal conditions that is consistent with current guidelines for pain management. Specific therapeutic modalities will be presented. These include modalities including LLLT, nutrition, topical therapies, receptor-based therapy, joint mobilization. The overall intention is to offer the clinician a solid conceptual framework for therapeutic analgesia that will allow them to better organize their clinical approach and application of therapeutic modalities. Main Objectives: Understand the integrative physical rehabilitation concept Appreciate the pathophysiology associated with neurogenic inflammation. Demonstrate an integrative approach to the treatment of neurogenic inflammation. Demonstrate an approach to the management of behavioral aspects of pain pathophysiology. Deconstructing movement efficiently and easily in order to reduce pain provocation. Demonstrate rational application of key neuromodulation technologies for pain. Take Away Concepts: (The learner will be able to) ✔ Develop a rational and efficient pain management plan based on an integrative, neuro-orthopedic and Low-Level Laser paradigm. ✔ Understanding treatment paradigms that can be used immediately. ✔ Understand outcomes assessments that demonstrate the efficacy and quality improvement of therapy that is performed based upon diagnostic direction. Key Words: (Critical components and Concepts) ✔ Pain management; integrative physical rehabilitation; physical rehabilitation; neurogenic inflammation; neuropathic pain.
    [Show full text]
  • Purdue Institute for Integrative Neuroscience
    PURDUE INSTITUTE FOR INTEGRATIVE NEUROSCIENCE “The emerging trend toward technology-based neuroscience presents an unprecedented opportunity to create and exploit new synergies between science and engineering at Purdue.” — Donna Fekete, the John and Donna Krenicki Director of Integrative Neuroscience Rising numbers of people are being diagnosed with neurological disorders such as autism, Alzheimer’s disease, Parkinson’s disease and traumatic brain injury, bringing great urgency to the need for new and better treatments. Leveraging Purdue’s strengths in science and engineering, the Purdue Institute for Integrative Neuroscience (PIIN) is drawing together researchers from more than a dozen disciplines to better understand the nervous system and advance new solutions for enhancing people’s quality of life. Key research areas The institute is structured around four program areas: ► Development, Genetics and Neuropharmacology: Scientists in developmental biology, genetics, chemistry and psychology are collaborating with engineers to understand and address disorders such as autism and depression. ► Neurotrama and Neuropathology: Researchers in this area are searching for new preventive measures, diagnostics and treatments for spinal cord injuries, traumatic brain injury, brain tumors and other illnesses. ► Aging and Neurodegeneration: Life expectancy has nearly doubled over the last century, but age-related neurodegenerative diseases have dramatically increased. In this program area, scientists are studying why Alzheimer’s, Parkinson’s and other diseases occur and how to best fght them. ► Neuroengineering: In partnership with engineers, scientists in this program area are developing new implantable, prosthetic, medical devices and neuroimaging tools to treat neurological illnesses from brain injuries to epilepsy to glaucoma. Signature research PIIN member Peristera Paschou, associate professor of biological sciences, and her collaborators authored a large-scale study of Tourette Syndrome.
    [Show full text]