The Claustrum's Proposed Role in Consciousness Is Supported by The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tor Wager Diana L
Tor Wager Diana L. Taylor Distinguished Professor of Psychological and Brain Sciences Dartmouth College Email: [email protected] https://wagerlab.colorado.edu Last Updated: July, 2019 Executive summary ● Appointments: Faculty since 2004, starting as Assistant Professor at Columbia University. Associate Professor in 2009, moved to University of Colorado, Boulder in 2010; Professor since 2014. 2019-Present: Diana L. Taylor Distinguished Professor of Psychological and Brain Sciences at Dartmouth College. ● Publications: 240 publications with >50,000 total citations (Google Scholar), 11 papers cited over 1000 times. H-index = 79. Journals include Science, Nature, New England Journal of Medicine, Nature Neuroscience, Neuron, Nature Methods, PNAS, Psychological Science, PLoS Biology, Trends in Cognitive Sciences, Nature Reviews Neuroscience, Nature Reviews Neurology, Nature Medicine, Journal of Neuroscience. ● Funding: Currently principal investigator on 3 NIH R01s, and co-investigator on other collaborative grants. Past funding sources include NIH, NSF, Army Research Institute, Templeton Foundation, DoD. P.I. on 4 R01s, 1 R21, 1 RC1, 1 NSF. ● Awards: Awards include NSF Graduate Fellowship, MacLean Award from American Psychosomatic Society, Colorado Faculty Research Award, “Rising Star” from American Psychological Society, Cognitive Neuroscience Society Young Investigator Award, Web of Science “Highly Cited Researcher”, Fellow of American Psychological Society. Two patents on research products. ● Outreach: >300 invited talks at universities/international conferences since 2005. Invited talks in Psychology, Neuroscience, Cognitive Science, Psychiatry, Neurology, Anesthesiology, Radiology, Medical Anthropology, Marketing, and others. Media outreach: Featured in New York Times, The Economist, NPR (Science Friday and Radiolab), CBS Evening News, PBS special on healing, BBC, BBC Horizons, Fox News, 60 Minutes, others. -
Amygdaloid Projections to the Ventral Striatum in Mice: Direct and Indirect Chemosensory Inputs to the Brain Reward System
ORIGINAL RESEARCH ARTICLE published: 22 August 2011 NEUROANATOMY doi: 10.3389/fnana.2011.00054 Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system Amparo Novejarque1†, Nicolás Gutiérrez-Castellanos2†, Enrique Lanuza2* and Fernando Martínez-García1* 1 Departament de Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain 2 Departament de Biologia Cel•lular, Facultat de Ciències Biològiques, Universitat de València, València, Spain Edited by: Rodents constitute good models for studying the neural basis of sociosexual behavior. Agustín González, Universidad Recent findings in mice have revealed the molecular identity of the some pheromonal Complutense de Madrid, Spain molecules triggering intersexual attraction. However, the neural pathways mediating this Reviewed by: Daniel W. Wesson, Case Western basic sociosexual behavior remain elusive. Since previous work indicates that the dopamin- Reserve University, USA ergic tegmento-striatal pathway is not involved in pheromone reward, the present report James L. Goodson, Indiana explores alternative pathways linking the vomeronasal system with the tegmento-striatal University, USA system (the limbic basal ganglia) by means of tract-tracing experiments studying direct *Correspondence: and indirect projections from the chemosensory amygdala to the ventral striato-pallidum. Enrique Lanuza, Departament de Biologia Cel•lular, Facultat de Amygdaloid projections to the nucleus accumbens, olfactory tubercle, and adjoining struc- Ciències Biològiques, Universitat de tures are studied by analyzing the retrograde transport in the amygdala from dextran València, C/Dr. Moliner, 50 ES-46100 amine and fluorogold injections in the ventral striatum, as well as the anterograde labeling Burjassot, València, Spain. found in the ventral striato-pallidum after dextran amine injections in the amygdala. -
Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum Along 2 the Dorsal-Ventral Axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.14.876516; this version posted December 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distinct transcriptomic cell types and neural circuits of the subiculum and prosubiculum along 2 the dorsal-ventral axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E. Hirokawa1, Thuc Nghi Nguyen1, Lucas T. Graybuck1, Olivia 5 Fong1, Phillip Bohn1, Kiet Ngo1, Kimberly A. Smith1, Christof Koch1, John W. Phillips1, Ed S. Lein1, 6 Julie A. Harris1, Bosiljka Tasic1, Hongkui Zeng1 7 8 1Allen Institute for Brain Science, Seattle, WA 98109, USA 9 10 2Lead Contact 11 12 *Correspondence: [email protected] (SLD) 13 14 15 Highlights 16 17 1. 27 transcriptomic cell types identified in and spatially registered to “subicular” regions. 18 2. Anatomic borders of “subicular” regions reliably determined along dorsal-ventral axis. 19 3. Distinct cell types and circuits of full-length subiculum (Sub) and prosubiculum (PS). 20 4. Brain-wide cell-type specific projections of Sub and PS revealed with specific Cre-lines. 21 22 23 In Brief 24 25 Ding et al. show that mouse subiculum and prosubiculum are two distinct regions with differential 26 transcriptomic cell types, subtypes, neural circuits and functional correlation. The former has obvious 27 topographic projections to its main targets while the latter exhibits widespread projections to many 28 subcortical regions associated with reward, emotion, stress and motivation. -
In Brief in the Other Study, Jackson Et Al
RESEARCH HIGHLIGHTS CLEGR2+ neurons immediately before 43% of IPSPs driven by claustrum tones considerably reduced auditory activation were probably mediated population responses. by NPY neurons, whereas 35% IN briEF In the other study, Jackson et al. were mediated by FS neurons and used a retrograde virus approach to 22% by co-innervation by FS and SPATIAL NAVIGATION specifically target claustral neurons NPY neurons. Pharmacogenetic Planning a path projecting to the prefrontal cortex silencing of PV+ neurons (including (PFC) in mice (CL PFC neurons). FS neurons) or NPY neurons greatly Spatial navigation involves co-ordination between action → planning by the prefrontal cortex and spatial representation Optogenetic stimulation of these reduced the inhibitory responses of the environment in the hippocampus. In this study, when CL → PFC afferents led to a strong of pyramidal cells to claustral rats performed an alternating arm choice task in a T maze, the overall inhibition of pyramidal stimulation. Notably, when NPY coordination of the timing of spikes between neurons in neurons and inhibitory neurons in neurons were silenced, claustral the medial prefrontal cortex (mPFC), the thalamic nucleus the PFC. In acute slices, claustrum- stimulation even led to excitation reuniens (NR) and the hippocampal CA1 was found to increase; stimulated inhibitory responses of pyramidal cells, suggesting co-ordinated firing between supramammillary nucleus (SUM) and CA1 neurons also increased. Silencing of SUM neurons of prefrontal pyramidal cells were that claustrocortical excitation of decreased spike-time coordination in the mPFC-NR-CA1 blocked by glutamate receptor pyramidal cells is usually prevented circuit and impaired representations of the trajectory of antagonists, suggesting that the by NPY cell-mediated inhibition. -
The Claustrum: Three-Dimensional Reconstruction, Photorealistic Imaging, and Stereotactic Approach
Folia Morphol. Vol. 70, No. 4, pp. 228–234 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The claustrum: three-dimensional reconstruction, photorealistic imaging, and stereotactic approach S. Kapakin Department of Anatomy, Faculty of Medicine, Atatürk University, Erzurum, Turkey [Received 7 July 2011; Accepted 25 September 2011] The purpose of this study was to reveal the computer-aided three-dimensional (3D) appearance, the dimensions, and neighbourly relations of the claustrum and make a stereotactic approach to it by using serial sections taken from the brain of a human cadaver. The Snake technique was used to carry out 3D reconstructions of the claustra and surrounding structures. The photorealistic imaging and stereo- tactic approach were rendered by using the Advanced Render Module in Cinema 4D software. The claustrum takes the form of the concavity of the insular cortex and the convexity of the putamen. The inferior border of the claustrum is at about the same level as the bottom edge of the insular cortex and the putamen, but the superior border of the claustrum is at a lower level than the upper edge of the insular cortex and the putamen. The volume of the right claustrum, in the dimen- sions of 35.5710 mm ¥ 1.0912 mm ¥ 16.0000 mm, was 828.8346 mm3, and the volume of the left claustrum, in the dimensions of 32.9558 mm ¥ 0.8321 mm ¥ ¥ 19.0000 mm, was 705.8160 mm3. The surface areas of the right and left claustra were calculated to be 1551.149697 mm2 and 1439.156450 mm2 by using Surf- driver software. -
Report to the Internal Review Committee
Center for Neuroscience & Society University of Pennsylvania REPORT TO THE INTERNAL REVIEW COMMITTEE I. Mission …………………………………………………………………………………….…………………….. p. 2 II. History …………………………………………………………………………………………………….…….. p. 2 III. People ………………………………………………………………………………………………………….. p. 2 Faculty Staff Fellows Visiting Scholars Advisory Board IV. Funding …………………………………………………………………………………………………….…… p. 4 V. Space and Facilities ………………………………………………………………………………………… p. 4 VI. Overview .……………………………………………………………………………………………………… p. 5 VII. Research on Neuroscience and Society…………………………………………………………. P. 5 VIII. Outreach (Including K-12 Education) …………………………………………………………… p. 7 Online Public Talks Academic Outreach Within Penn Outreach Beyond Penn Conferences K-12 Education IX. Higher Education ………………………………………………………………………………………….. p. 11 Neuroscience Boot Camp Continuing Medical Education Neuroethics Learning Collaborative Penn Fellowships in Neuroscience and Society New Courses Preceptorials Graduate Certificate in Social, Cognitive and Affective Neuroscience (SCAN) X. Conclusions, Challenges for the Future …………………………………………………………… p. 15 Appendices 1-11 Submitted April 9, 2016, by Martha J. Farah, Director of the Center for Neuroscience & Society 1 I. Mission Neuroscience is giving us increasingly powerful methods for understanding, predicting and manipulating the human mind. Every sphere of life in which psychology plays a central role – from education and family life to law and politics – will be touched by these advances, and some will be profoundly transformed. -
Stephanie Bugden Curriculum Vitae (Pdf)
Stephanie Bugden, Ph.D. Postdoctoral Fellow email: [email protected] Department of Psychology Phone number: (919) 884-9870 The University of Pennsylvania 425 S. University Ave, Philadelphia, PA, 19104 Education and Training Postdoctoral Fellow, March 2015 – Present Duke University (Mar 2015-Aug 2015) & The University of Pennsylvania Supervisor: Dr. Elizabeth M. Brannon The University of Western Ontario, December, 2014 Ph.D., Psychology Supervisor: Dr. Daniel Ansari Thesis Title: Characterizing persistent developmental dyscalculia: A cognitive neuroscience approach The University of Western Ontario, August, 2010 M.Ed., Special Education and Educational Psychology Supervisor: Dr. Daniel Ansari The University of Western Ontario, April, 2008 B.A., Honors in Psychology, Developmental & Educational, Minor in French Publications Google Scholar Citations (as of September 10, 2018): 353, h-index: 5 (i10-index: 5) † reviews, chapters, commentaries †Dresler, T., Bugden, S., Gouet, C., Lallier, M., Oliveira, D., Pinheiro-Chagas, P., Pires, A., Want, Y., Zugarramudi, C., & Weissheimer, J. (2018). A translational framework of educational neuroscience in learning disorders. Frontiers in Integrative Neuroscience, 12:25, doi: 10.3389/fnint.2018.00025. Lyons, I.M., Bugden, S., Zhang, S., De Jesus, S., & Ansari, D. (2018). Symbolic number skills predict growth in nonsymbolic number skills in kindergarteners. Developmental Psychology, 5(3), 440-457. †Bugden, S., DeWind, N., & Brannon, E. M. (2016). Using cognitive training to unravel the mechanistic link between the approximate number system and symbolic math skills, Current Opinions in Behavioral Sciences, 10, 73-80. doi: 10.1016/j.cobeha.2016.05.002. Bugden, S., & Ansari, D. (2016). Probing the nature of deficits in the ‘Approximate Number System’ in children with persistent Developmental Dyscalculia. -
Blaming the Brain
Minnesota Journal of Law, Science & Technology Volume 11 Issue 1 Article 5 2010 Blaming the Brain Steven K. Erickson Follow this and additional works at: https://scholarship.law.umn.edu/mjlst Recommended Citation Steven K. Erickson, Blaming the Brain, 11 MINN. J.L. SCI. & TECH. 27 (2010). Available at: https://scholarship.law.umn.edu/mjlst/vol11/iss1/5 The Minnesota Journal of Law, Science & Technology is published by the University of Minnesota Libraries Publishing. ERICKSON SK. Blaming the Brain. MINN. J.L. SCI. & TECH. 2010;11(1):27-77. Blaming the Brain Steven K. Erickson* I. Introduction ............................................................................ 27 II. The Birth of Neurolaw .......................................................... 34 A. Brains Without Minds ................................................ 36 B. The Way of Cognitive Neuroscience ........................... 42 1. Reduction and Deduction ..................................... 46 2. The Life of the Brain ............................................. 50 III. Neurolaw’s Secret Ambition ................................................ 55 A. Making the Criminal, Civil ......................................... 57 B. Rise of the Control Tests ............................................. 65 C. Abolition of Agency ..................................................... 73 IV. Conclusion ............................................................................ 76 I. INTRODUCTION People are more than their brains. Legal and social traditions have long held people -
Strategic Plan 2015
NS Strategic Plan 2015 Strategic Plan Creation of a Neuroscience Institute at UMass Amherst 1. Vision p3 2. Mission and Goals p3 3. Timelines and Deliverables for first Three Years p8 4. Stakeholders p13 5. SWOT Analysis p13 6. Differentiation Strategy p15 7. Contribution to Campus Mission p15 8. Peer and Aspirant Programs at other Institutions p16 9. Benefit of being an Institute Member to Faculty p16 10. Activities and Accomplishments to Date p16 11. Proposed Resource Needs for the Creation and Operation of INSI p16 12. Next Steps p17 Appendix A: Neuroscience Faculty (UMA and Five College Affiliates) p18 Appendix B: INSI Cluster Proposal Summaries p21 Appendix C: Full Cluster Proposals p23 INSI Steering Committee – 9/4/2015 Page 1 of 52 NS Strategic Plan 2015 Executive Summary In July 2014, the Dean of the College of Natural Sciences, in collaBoration with the VCRE, instituted a Neuroscience Strategic Planning Task Force and charged this task force with developing a strategic vision for neuroscience on the UMA campus, with Both immediate and longer-term oBjectives. MemBers of the task force represented each of the major suBstantive levels of current UMA neuroscience research (cellular/molecular; systems/circuitry; and Behavior/cognition), included assistant, associate, and full professors, and represented four departments in CNS and the School of Public Health and Health Sciences (SPHHS), as well as the Institute of Applied Life Sciences (IALS). The Neuroscience Strategic Planning Task Force has articulated a vision and operational plan for the creation and advancement of a new world-class Integrative Neuroscience Institute at UMA. The Institute will encompass research interests and eXperimental approaches contributed By a Broad range of departments and promote cross-departmental collaborations and close interactions with the Medical School (UMMS) – all leading to unique mechanistic insights into nervous system function in health and disease. -
A Reliable Protocol for the Manual Segmentation of the Human Amygdala and Its Subregions Using Ultra-High Resolution MRI
NeuroImage 60 (2012) 1226–1235 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg A reliable protocol for the manual segmentation of the human amygdala and its subregions using ultra-high resolution MRI Jonathan J. Entis a, Priya Doerga f, Lisa Feldman Barrett d,e,g,1, Bradford C. Dickerson b,c,d,g,⁎,1 a Department of Psychology, Boston College, USA b Frontotemporal Disorders Unit, Massachusetts Alzheimer's Disease Research Center, USA c Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA d Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA e Department of Psychology, Northeastern University, Boston, MA, USA f Department of Anatomy and Neuroscience, VU University Amsterdam, The Netherlands g Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA article info abstract Article history: The measurement of the volume of the human amygdala in vivo has received increasing attention over the Received 6 May 2011 past decade, but existing methods face several challenges. First, due to the amorphous appearance of the Revised 9 December 2011 amygdala and the difficulties in interpreting its boundaries, it is common for protocols to omit sizable sec- Accepted 29 December 2011 tions of the rostral and dorsal regions of the amygdala comprising parts of the basolateral complex (BL) Available online 5 January 2012 and central nucleus (Ce), respectively. Second, segmentation of the amgydaloid complex into separate sub- Keywords: divisions is challenging due to the resolution of routinely acquired images and the lack of standard protocols. -
Proceedings of the 2018 and 2019 Summer Guest Editors: Schools on Brain and Gut Neuroscience: from Prof
specialissue.jin.imrpress.com Proceedings of the 2018 and 2019 summer Guest Editors: schools on brain and gut neuroscience: from Prof. Massimo Cocchi molecules to mood Department of Veterinary Medical Sciences, Università di Bologna, Bologna, Italy The objective behind this collection of papers is to present an integrated view of the human brain in terms of both its hierarchical structural [email protected] organization and functional complexity. Through the contributed articles that reflect the lectures given in Turin, Italy, our objective is to develop an overview of modern neuroscience in a multi-scale approach starting with molecular aspects and ending with psychological, psychiatric and pharmacological aspects. The assumptions of cognitive neuroscience employ abstractions from the theoretical constructs of 19th century physics. Specifically, neural network models of “emergent conscious experience” rely on analogies to relations among molecules in crys- tals, fluids, and gases and employ chemical hypotheses regarding the emergence of thoughts, moods, and perceptions from chemical modu- lation of synaptic interactions among neurons. However, 20th and 21st Massimo Cocchi century science offers probabilistic perspectives from which to view the mind-brain nexus. Quantum mechanics and quantum field theory have given physicists extra “degrees of freedom”, radically multiplied beyond thermodynamics. A relatively new offshoot of quantum physics is quantum information theory, quantum cryptography and actual quantum Associate Prof. Marco De- computation. Quantum logic formally upgrades the classical concept riuc of a “bit” into the notion of a “qubit”. Quantum interference permits DIMEAS, Politecnico di vast computational parallelism. Cognitive paradigms drawing upon Torino, Turin, Italy wave-like quantum logic have recently spawned a new psychological literature. -
The Social Neuroscience and the Theory of Integrative Levels
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW published: 29 October 2015 doi: 10.3389/fnint.2015.00054 The social neuroscience and the theory of integrative levels Raquel Bello-Morales 1* and José María Delgado-García 2 1 Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain, 2 Division of Neurosciences, Pablo de Olavide University, Seville, Spain The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels Edited by: but, in this paper, we aim to reveal the differences among both doctrines. First, Carlo Miniussi, SN asserts that combination of neural and social variables can produce emergent University of Brescia & IRCCS Centro San Giovanni di Dio Fatebenefratelli, phenomena that would not be predictable from a neuroscientific or social psychological Italy analysis alone; SN also suggests that to achieve a complete understanding of social Reviewed by: structures we should use an integrative analysis that encompasses levels of organization Alessandro E.