In Brief in the Other Study, Jackson Et Al

Total Page:16

File Type:pdf, Size:1020Kb

In Brief in the Other Study, Jackson Et Al RESEARCH HIGHLIGHTS CLEGR2+ neurons immediately before 43% of IPSPs driven by claustrum tones considerably reduced auditory activation were probably mediated population responses. by NPY neurons, whereas 35% IN briEF In the other study, Jackson et al. were mediated by FS neurons and used a retrograde virus approach to 22% by co-innervation by FS and SPATIAL NAVIGATION specifically target claustral neurons NPY neurons. Pharmacogenetic Planning a path projecting to the prefrontal cortex silencing of PV+ neurons (including (PFC) in mice (CL PFC neurons). FS neurons) or NPY neurons greatly Spatial navigation involves co-ordination between action → planning by the prefrontal cortex and spatial representation Optogenetic stimulation of these reduced the inhibitory responses of the environment in the hippocampus. In this study, when CL → PFC afferents led to a strong of pyramidal cells to claustral rats performed an alternating arm choice task in a T maze, the overall inhibition of pyramidal stimulation. Notably, when NPY coordination of the timing of spikes between neurons in neurons and inhibitory neurons in neurons were silenced, claustral the medial prefrontal cortex (mPFC), the thalamic nucleus the PFC. In acute slices, claustrum- stimulation even led to excitation reuniens (NR) and the hippocampal CA1 was found to increase; stimulated inhibitory responses of pyramidal cells, suggesting co-ordinated firing between supramammillary nucleus (SUM) and CA1 neurons also increased. Silencing of SUM neurons of prefrontal pyramidal cells were that claustrocortical excitation of decreased spike-time coordination in the mPFC-NR-CA1 blocked by glutamate receptor pyramidal cells is usually prevented circuit and impaired representations of the trajectory of antagonists, suggesting that the by NPY cell-mediated inhibition. travel in NR and CA1, suggesting that SUM modulates the claustrum inhibits pyramidal cells Together, these studies show that communication of action planning information from the mPFC through inhibitory interneurons. the claustrum provides inhibition to downstream targets. In line with this notion, fast-spiking to the PFC and auditory cortex, ORIGINAL ArtICLE Ito, H. T. et al. Supramammillary nucleus modulates spike-time + coordination in the prefrontal-thalamo-hippocampal circuit during navigation. Neuron 99, parvalbumin- expressing (PV ) thus shedding light on how the 576–587 (2018) interneurons (FS neurons) and claustrum may regulate cortical neuropeptide Y- expressing function. TECHNIQUES interneurons (NPY neurons) were Natasha Bray strongly depolarized following Catching waves photostimulation of CL → PFC ORIGINAL ArtICLES Atlan, G. et al. The claustrum Measurement of changes in intra-axonal calcium with afferents. supports resilience to distraction. Curr. Biol. https:// high temporal and spatial resolution has been technically doi.org/10.1016/j.cub.2018.06.068 (2018) | difficult. Now, a technique has been developed that enables By analysing pyramidal cell Jackson, J. et al. Inhibitory control of prefrontal the genetically encoded calcium indicator GCaMP6 to inhibitory postsynaptic potentials cortex by the claustrum. Neuron https:// doi.org/10.1016/j.neuron.2018.07.031 (2018) be transported into axons, where calcium fluctuations can be (IPSPs), Jackson et al. deduced that monitored with high signal-to-noise ratio, brightness and stability. This approach was used to measure layer-specific axon activity in mouse cortex at deeper cortical levels than replaced by homomeric GluA1 AMPARs. effects on AMPARs by incorporating was previously possible. Sequential confocal microscopy of GluA1 homomers. Together, these ORIGINAL ArtICLE Broussard, G. J. et al. In vivo measurement of afferent activity with anti- GluA2 IgG pretreated hippocampal findings again indicate that axon- specific calcium imaging. Nat. Neurosci. 21, 1272–1280 (2018) neurons revealed decreased surface anti- GluA2 IgG treatment affects expression of GluA2, which was blocked AMPAR properties in a way that NEURODEGENERATIVE DISEASE by inhibiting endocytosis during is consistent with a decrease in Untangling tau structure pretreatment. This indicates that GluA2-containing and rise in anti-GluA2 IgG induces GluA2-containing non- GluA2-containing receptors. The human form of tau exists in isoforms that contain either three (3R) or four (4R) microtubule-binding repeats. Tau can AMPAR internalization. The authors next examined also form filamentous aggregates, which are a hallmark of The authors examined whether long- term potentiation (LTP) in the Alzheimer disease and Pick disease. In this study, cryo-electron human anti- GluA2 IgG also affected Schaffer collateral–CA1 hippocampal microscopy was used to investigate tau structure in these AMPAR signalling in brain tissue pathway after treatment, as LTP aggregates. The folded structure of tau that aggregates in by delivering this fraction into mice by is thought to be a key mechanism patients with Pick disease was found to be distinct from that intrahippocampal injection. Confocal underlying hippocampal- dependent found in patients with Alzheimer disease, which might contribute microscopy of hippocampal slices from memory. IgG fraction treatment to the distinct neuropathological phenotypes of these disorders. these animals revealed downregulation impaired a postsynaptic component ORIGINAL ArtICLE Falcon, B. et al. Structures of filaments from Pick’s disease reveal a of synaptic GluA2 after injection. of LTP. Mice that received anti-GluA2 novel tau protein fold. Nature 561, 137–140 (2018) Although the treatment did not affect IgG by passive transfer into the brain the peak amplitude of electrically also showed deficits in memory in an NEURONAL CELL BIOLOGY evoked EPSCs in granule cells of the object recognition task. Novel inhibition dentate gyrus, there was a decrease Together, these data indicate Recent technological advances have enabled ever more in the number of single channels and that autoantibodies against GluA2 detailed characterizations of neuronal subtypes. Here, a rise in the conductance of these induce changes in AMPAR subunit immunohistochemistry and unbiased single-nucleus RNA channels. In addition, when slices from composition, which may alter receptor sequencing was used to identify several human cortical injected mice were treated with a properties, and impair LTP and memory. GABAergic neuronal subtypes that possess distinct molecular non- GluA2-containing AMPAR inhibitor, Darran Yates signatures and transcriptomes. One notable subtype had there was a decrease in mEPSC ‘rosehip’-like axonal boutons and inhibited backpropagating ORIGINAL ArtICLE Haselmann, H. et al. Human amplitudes. A similar decrease was autoantibodies against the AMPA receptor action potentials in pyramidal neuron dendrites; these neurons also observed in slices from anti-GluA2 subunit GluA2 induce receptor reorganization are thus likely to be involved in local regulation of dendritic IgG- treated GluA1 knockout mice, and memory dysfunction. Neuron https://doi.org/ computation. 10.1016/j.neuron.2018.07.048 (2018) which could not compensate for any ORIGINAL ArtICLE Boldog, E. et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nat. Neurosci. 21, 1185–1195 (2018) NATURE REVIEWS | NEUROSCIENCE VOLUME 19 | OCTOBER 2018 | 581.
Recommended publications
  • Amygdaloid Projections to the Ventral Striatum in Mice: Direct and Indirect Chemosensory Inputs to the Brain Reward System
    ORIGINAL RESEARCH ARTICLE published: 22 August 2011 NEUROANATOMY doi: 10.3389/fnana.2011.00054 Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system Amparo Novejarque1†, Nicolás Gutiérrez-Castellanos2†, Enrique Lanuza2* and Fernando Martínez-García1* 1 Departament de Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain 2 Departament de Biologia Cel•lular, Facultat de Ciències Biològiques, Universitat de València, València, Spain Edited by: Rodents constitute good models for studying the neural basis of sociosexual behavior. Agustín González, Universidad Recent findings in mice have revealed the molecular identity of the some pheromonal Complutense de Madrid, Spain molecules triggering intersexual attraction. However, the neural pathways mediating this Reviewed by: Daniel W. Wesson, Case Western basic sociosexual behavior remain elusive. Since previous work indicates that the dopamin- Reserve University, USA ergic tegmento-striatal pathway is not involved in pheromone reward, the present report James L. Goodson, Indiana explores alternative pathways linking the vomeronasal system with the tegmento-striatal University, USA system (the limbic basal ganglia) by means of tract-tracing experiments studying direct *Correspondence: and indirect projections from the chemosensory amygdala to the ventral striato-pallidum. Enrique Lanuza, Departament de Biologia Cel•lular, Facultat de Amygdaloid projections to the nucleus accumbens, olfactory tubercle, and adjoining struc- Ciències Biològiques, Universitat de tures are studied by analyzing the retrograde transport in the amygdala from dextran València, C/Dr. Moliner, 50 ES-46100 amine and fluorogold injections in the ventral striatum, as well as the anterograde labeling Burjassot, València, Spain. found in the ventral striato-pallidum after dextran amine injections in the amygdala.
    [Show full text]
  • Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum Along 2 the Dorsal-Ventral Axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.14.876516; this version posted December 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distinct transcriptomic cell types and neural circuits of the subiculum and prosubiculum along 2 the dorsal-ventral axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E. Hirokawa1, Thuc Nghi Nguyen1, Lucas T. Graybuck1, Olivia 5 Fong1, Phillip Bohn1, Kiet Ngo1, Kimberly A. Smith1, Christof Koch1, John W. Phillips1, Ed S. Lein1, 6 Julie A. Harris1, Bosiljka Tasic1, Hongkui Zeng1 7 8 1Allen Institute for Brain Science, Seattle, WA 98109, USA 9 10 2Lead Contact 11 12 *Correspondence: [email protected] (SLD) 13 14 15 Highlights 16 17 1. 27 transcriptomic cell types identified in and spatially registered to “subicular” regions. 18 2. Anatomic borders of “subicular” regions reliably determined along dorsal-ventral axis. 19 3. Distinct cell types and circuits of full-length subiculum (Sub) and prosubiculum (PS). 20 4. Brain-wide cell-type specific projections of Sub and PS revealed with specific Cre-lines. 21 22 23 In Brief 24 25 Ding et al. show that mouse subiculum and prosubiculum are two distinct regions with differential 26 transcriptomic cell types, subtypes, neural circuits and functional correlation. The former has obvious 27 topographic projections to its main targets while the latter exhibits widespread projections to many 28 subcortical regions associated with reward, emotion, stress and motivation.
    [Show full text]
  • The Claustrum: Three-Dimensional Reconstruction, Photorealistic Imaging, and Stereotactic Approach
    Folia Morphol. Vol. 70, No. 4, pp. 228–234 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl The claustrum: three-dimensional reconstruction, photorealistic imaging, and stereotactic approach S. Kapakin Department of Anatomy, Faculty of Medicine, Atatürk University, Erzurum, Turkey [Received 7 July 2011; Accepted 25 September 2011] The purpose of this study was to reveal the computer-aided three-dimensional (3D) appearance, the dimensions, and neighbourly relations of the claustrum and make a stereotactic approach to it by using serial sections taken from the brain of a human cadaver. The Snake technique was used to carry out 3D reconstructions of the claustra and surrounding structures. The photorealistic imaging and stereo- tactic approach were rendered by using the Advanced Render Module in Cinema 4D software. The claustrum takes the form of the concavity of the insular cortex and the convexity of the putamen. The inferior border of the claustrum is at about the same level as the bottom edge of the insular cortex and the putamen, but the superior border of the claustrum is at a lower level than the upper edge of the insular cortex and the putamen. The volume of the right claustrum, in the dimen- sions of 35.5710 mm ¥ 1.0912 mm ¥ 16.0000 mm, was 828.8346 mm3, and the volume of the left claustrum, in the dimensions of 32.9558 mm ¥ 0.8321 mm ¥ ¥ 19.0000 mm, was 705.8160 mm3. The surface areas of the right and left claustra were calculated to be 1551.149697 mm2 and 1439.156450 mm2 by using Surf- driver software.
    [Show full text]
  • A Reliable Protocol for the Manual Segmentation of the Human Amygdala and Its Subregions Using Ultra-High Resolution MRI
    NeuroImage 60 (2012) 1226–1235 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg A reliable protocol for the manual segmentation of the human amygdala and its subregions using ultra-high resolution MRI Jonathan J. Entis a, Priya Doerga f, Lisa Feldman Barrett d,e,g,1, Bradford C. Dickerson b,c,d,g,⁎,1 a Department of Psychology, Boston College, USA b Frontotemporal Disorders Unit, Massachusetts Alzheimer's Disease Research Center, USA c Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA d Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA e Department of Psychology, Northeastern University, Boston, MA, USA f Department of Anatomy and Neuroscience, VU University Amsterdam, The Netherlands g Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA article info abstract Article history: The measurement of the volume of the human amygdala in vivo has received increasing attention over the Received 6 May 2011 past decade, but existing methods face several challenges. First, due to the amorphous appearance of the Revised 9 December 2011 amygdala and the difficulties in interpreting its boundaries, it is common for protocols to omit sizable sec- Accepted 29 December 2011 tions of the rostral and dorsal regions of the amygdala comprising parts of the basolateral complex (BL) Available online 5 January 2012 and central nucleus (Ce), respectively. Second, segmentation of the amgydaloid complex into separate sub- Keywords: divisions is challenging due to the resolution of routinely acquired images and the lack of standard protocols.
    [Show full text]
  • The Claustrum's Proposed Role in Consciousness Is Supported by The
    HYPOTHESIS AND THEORY ARTICLE published: 26 February 2014 doi: 10.3389/fnint.2014.00020 The claustrum’s proposed role in consciousness is supported by the effect and target localization of Salvia divinorum Klaus M. Stiefel 1*, Alistair Merrifield 2 and Alex O. Holcombe 3 1 The MARCS Institute, University of Western Sydney, Sydney, NSW, Australia 2 NPS Medicinewise, Sydney, NSW, Australia 3 School of Psychology, University of Sydney, Sydney, NSW, Australia Edited by: This article brings together three findings and ideas relevant for the understanding of John J. Foxe, Albert Einstein College human consciousness: (I) Crick’s and Koch’s theory that the claustrum is a “conductor of Medicine, USA of consciousness” crucial for subjective conscious experience. (II) Subjective reports Reviewed by: of the consciousness-altering effects the plant Salvia divinorum, whose primary active Lawrence Edelstein, Medimark Corporation, USA ingredient is salvinorin A, a κ-opioid receptor agonist. (III) The high density of κ-opioid John Smythies, University of receptors in the claustrum. Fact III suggests that the consciousness-altering effects of S. California at San Diego, USA divinorum/salvinorin A (II) are due to a κ-opioid receptor mediated inhibition of primarily Peter Addy, Yale University School of Medicine, USA the claustrum and, additionally, the deep layers of the cortex, mainly in prefrontal areas. Consistent with Crick and Koch’s theory that the claustrum plays a key role in consciousness *Correspondence: Klaus M. Stiefel, The MARCS (I), the subjective effects of S. divinorum indicate that salvia disrupts certain facets Institute, University of Western of consciousness much more than the largely serotonergic hallucinogen lysergic acid Sydney, Penrith/Kingswood Campus, diethylamide (LSD).
    [Show full text]
  • The External Pallidum: Think Locally, Act Globally
    The external pallidum: think locally, act globally Connor D. Courtney, Arin Pamukcu, C. Savio Chan Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA Correspondence should be addressed to C. Savio Chan, Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611. [email protected] Running title: GPe neuron diversity & function Keywords: cellular diversity, synaptic connectivity, motor control, Parkinson’s disease Main text: 5789 words Text boxes: 997 words Acknowledgments We thank past and current members of the Chan Lab for their creativity and dedication to our understanding of the pallidum. This work was supported by NIH R01 NS069777 (CSC), R01 MH112768 (CSC), R01 NS097901 (CSC), R01 MH109466 (CSC), R01 NS088528 (CSC), and T32 AG020506 (AP). Abstract (117 words) The globus pallidus (GPe), as part of the basal ganglia, was once described as a black box. As its functions were unclear, the GPe has been underappreciated for decades. The advent of molecular tools has sparked a resurgence in interest in the GPe. A recent flurry of publications has unveiled the molecular landscape, synaptic organization, and functions of the GPe. It is now clear that the GPe plays multifaceted roles in both motor and non-motor functions, and is critically implicated in several motor disorders. Accordingly, the GPe should no longer be considered as a mere homogeneous relay within the so-called ‘indirect pathway’. Here we summarize the key findings, challenges, consensuses, and disputes from the past few years. Introduction (437 words) Our ability to move is essential to survival. We and other animals produce a rich repertoire of body movements in response to internal and external cues, requiring choreographed activity across a number of brain structures.
    [Show full text]
  • New Breakthroughs in Understanding the Role of Functional Interactions Between the Neocortex and the Claustrum
    The Journal of Neuroscience, November 8, 2017 • 37(45):10877–10881 • 10877 Mini-Symposium New Breakthroughs in Understanding the Role of Functional Interactions between the Neocortex and the Claustrum X Solange P. Brown,1 Brian N. Mathur,2 Shawn R. Olsen,3 XPierre-Herve´ Luppi,4 Martha E. Bickford,5 and XAmi Citri6,7 1Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, 2Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201, 3Allen Institute for Brain Science, Seattle, Washington 98109, 4Institut National de la Sante´ et de la Recherche Me´dicale, U1028, Centre National de la Recherche Scientifique, Unite´ Mixte de Recherche 5292, University Lyon 1, Lyon Neuroscience Research Center, Team “Physiopathologie des re´seaux neuronaux responsables du cycle veille-sommeil,” Lyon 69372, France, 5Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40202, 6Edmond and Lily Safra Center for Brain Sciences and Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel, and 7Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, Ontario, Canada, M5G 1M1 Almost all areas of the neocortex are connected with the claustrum, a nucleus located between the neocortex and the striatum, yet the functions of corticoclaustral and claustrocortical connections remain largely obscure. As major efforts to model the neocortex are currently underway, it has become increasingly important to incorporate the corticoclaustral system into theories of cortical function. This Mini-Symposium was motivated by a series of recent studies which have sparked new hypotheses regarding the function of claustral circuits.
    [Show full text]
  • Thalamus and Claustrum Control Parallel Layer 1 Circuits In
    RESEARCH ARTICLE Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex Ellen KW Brennan1,2†, Izabela Jedrasiak-Cape1†, Sameer Kailasa3†, Sharena P Rice1,2, Shyam Kumar Sudhakar1, Omar J Ahmed1,2,4,5,6* 1Department of Psychology, University of Michigan, Ann Arbor, United States; 2Neuroscience Graduate Program, University of Michigan, Ann Arbor, United States; 3Department of Mathematics, University of Michigan, Ann Arbor, United States; 4Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, United States; 5Kresge Hearing Research Institute, University of Michigan, Ann Arbor, United States; 6Department of Biomedical Engineering, University of Michigan, Ann Arbor, United States Abstract The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process disparate inputs. The anterior thalamus and dorsal subiculum, sources of spatial information, strongly and selectively recruit small low-rheobase (LR) pyramidal cells in RSG. In contrast, neighboring regular-spiking (RS) cells are preferentially controlled by claustral and anterior cingulate inputs, sources of mostly non-spatial information. Precise sublaminar axonal and dendritic arborization within RSG layer 1, in particular, permits this parallel processing. Observed thalamocortical synaptic dynamics enable computational models of LR neurons to compute the speed of head rotation, despite receiving head direction inputs that do not explicitly encode speed. Thus, parallel input streams identify a distinct principal neuronal subtype ideally positioned *For correspondence: to support spatial orientation computations in the RSG.
    [Show full text]
  • A Case of Striatal Hemiplegia
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.30.2.134 on 1 April 1967. Downloaded from J. Neurol. Neurosurg. Psychiat., 1967, 30, 134 A case of striatal hemiplegia D. R. OPPENHEIMER From the Department of Neuropathology, Radcliffe Infirmary, Oxford In man, pure lesions of the striatum (putamen and were: (1) half an inch of relative shortening of the left caudate nucleus) are rare. Diseases which affect the arm, with wasting of the fingers; (2) increased resistance striatum preferentially (Huntington's chorea, to passive movement at all joints on the left and tendon the Jakob- reflexes were hard to elicit because of stiffness. The left Wilson's disease, encephalopathy of plantar response was indeterminate; (3) absence of Creutzfeldt type, some forms of arterial disease) voluntary movement ofthe left fingers and toes and at the almost always involve other basal nuclei, cerebral left ankle, the power at the more proximal joints being cortex, or white matter to some extent, and the well preserved; (4) recurrent painless 'spasms', during clinical picture is more or less complicated (Martin, which the left arm was either flexed or extended at the 1959). In experimental animals, it is very difficult to shoulder, the elbow was extended, the wrist dorsiflexed achieve extensive destruction of the striatum without and the fingers flexed into a fist; (5) slight dragging of the involving other structures, in particular the pallidum left leg in walking; (6) a bruit heard over the right and the internal capsule. common carotid artery. In the case to be described here, a vascular accident A right carotid arteriogram revealed a small angio- matous malformation, drained by an enlarged venous Protected by copyright.
    [Show full text]
  • Claustrum, Consciousness, and Time Perception
    Current Opinion in Behavioral Sciences, 2016, 8, 258-267. Claustrum, consciousness, and time perception Bin Yin1, Devin B Terhune2, John Smythies3, and Warren H Meck1 Addresses: 1Department of Psychology and Neuroscience, Duke University, Durham, NC, USA 2Department of Psychology, Goldsmiths, University of London, London, UK 3Center for Brain and Cognition, University of California, San Diego, La Jolla, CA US Corresponding author: Meck, Warren H ([email protected]) Claustrum, Consciousness, and Time Perception 2 Abstract The claustrum has been proposed as a possible neural candidate for the coordination of conscious experience due to its extensive “connectome”. Herein we propose that the claustrum contributes to consciousness by supporting the temporal integration of cortical oscillations in response to multisensory input. A close link between conscious awareness and interval timing is suggested by models of consciousness and conjunctive changes in meta-awareness and timing in multiple contexts and conditions. Using the striatal beat-frequency model of interval timing as a framework, we propose that the claustrum integrates varying frequencies of neural oscillations in different sensory cortices into a coherent pattern that binds different and overlapping temporal percepts into a unitary conscious representation. The proposed coordination of the striatum and claustrum allows for time-based dimensions of multisensory integration and decision-making to be incorporated into consciousness. Introduction Consciousness is not a unitary phenomenon, but a class of states that can be viewed as distributed along a continuum of arousal or awareness ranging from none to full awareness [1, 2, 3•]. Conscious awareness varies considerably within an individual across different contexts, such as non-conscious (or minimally-conscious) states as in non-REM sleep to fully conscious states as in normal wakefulness [4].
    [Show full text]
  • A Brain Structure Looking for a Function
    CONSCIOUSNESS REDUX HUB OF SENTIENCE A Brain Structure Looking for a Function Could a thin, enigmatic layer of nerve cells be a key component of the networks generating conscious experience? Point to any one organ in the body, and doctors can tell you something about what it does and what happens if that organ is injured by accident or disease or is removed by surgery—whether it be the pituitary gland, the kidney or the inner ear. Yet like the blank spots on maps of Central Africa from the mid-19th centu- ry, there are structures whose functions remain unknown despite whole-brain imaging, electroencephalographic re­­ cordings that monitor the brain’s ca­­ cophony of electrical signals and other advanced tools of the 21st century. Consider the claustrum. It is a thin, irregular sheet of cells, tucked below the neocortex, the gray matter that by white matter—the tracts, or wire reveal that it is a neural Grand Central allows us to see, hear, reason, think and bundles, that interconnect cortical re­­ Station. Almost every region of the cor- remember. It is surrounded on all sides gions with one another and with other tex sends fibers to the claustrum. These brain regions. The claustra—for there connections are reciprocated by other ) are two of them, one on the left side of fibers that extend back from the claus- Koch BY CHRISTOF KOCH the brain and one on the right—lie below trum to the originating cortical region. ( the general region of the insular cortex, Neuroanatomical studies in mice and CABE C M Christof Koch is chief underneath the temples, just above the rats reveal a unique asymmetry—each scientific officer at the Allen ears.
    [Show full text]
  • Susceptibility to Kindling and Neuronal Connections of the Anterior Claustrum
    The Journal of Neuroscience, May 15, 2001, 21(10):3674–3687 Susceptibility to Kindling and Neuronal Connections of the Anterior Claustrum Xia Zhang,1 Darren K. Hannesson,2 Deborah M. Saucier,2 Amy E. Wallace,2 John Howland,2 and Michael E. Corcoran1,2 1Neuropsychiatry Research Unit, Department of Psychiatry, and 2Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E4 The claustrum has been implicated in the kindling of general- In support of our hypothesis, we found significant afferent, ized seizures from limbic sites. We examined the susceptibility efferent, and often reciprocal connections between the anterior of the anterior claustrum itself to kindling and correlated this claustrum and areas that have been implicated in the genera- with an anatomical investigation of its afferent and efferent tion of generalized seizures, including frontal and motor cortex, connections. limbic cortex, amygdala, and endopiriform nucleus. Additional Electrical stimulation of the anterior claustrum resulted in a connections were found with various other structures, including pattern of rapid kindling with two distinct phases. Early kindling olfactory areas, nucleus accumbens, midline thalamus, and involved extremely rapid progression to bilaterally generalized brainstem nuclei including the substantia nigra and the dorsal seizures of short duration. With repeated daily kindling stimu- raphe nucleus. The anatomical connections of the anterior lations, early-phase generalized seizures abruptly became claustrum are consistent with its very high susceptibility to more elaborate and prolonged, resembling limbic-type seizures kindling and support the view that the claustrum is part of a as triggered from the amygdala. We suggest that the rapid rate forebrain network of structures participating in the generaliza- of kindling from the anterior claustrum is an indication that the tion of seizures.
    [Show full text]