RIPARIAN INVASION by LONICERA MAACKII DRIVES SHIFTS in AQUATIC BIOTA and ECOSYSTEM PROCESSES Di

Total Page:16

File Type:pdf, Size:1020Kb

RIPARIAN INVASION by LONICERA MAACKII DRIVES SHIFTS in AQUATIC BIOTA and ECOSYSTEM PROCESSES Di TERRESTRIAL-AQUATIC CONNECTIONS: RIPARIAN INVASION BY LONICERA MAACKII DRIVES SHIFTS IN AQUATIC BIOTA AND ECOSYSTEM PROCESSES Dissertation Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Doctor of Philosophy in Biology By Rachel Elizabeth McNeish, M.S. Dayton, Ohio May, 2016 TERRESTRIAL-AQUATIC CONNECTIONS: RIPARIAN INVASION BY LONICERA MAACKII DRIVES SHIFTS IN AQUATIC BIOTA AND ECOSYSTEM PROCESSES Name: McNeish, Rachel Elizabeth APPROVED BY: ________________________________________ Ryan W. McEwan, Ph.D. Faculty Advisor _______________________________________ M. Eric Benbow, Ph.D. Committee Member ______________________________________ Alburt J. Burky, Ph.D. Committee Member ________________________________________ P. Kelly Williams, Ph.D. Committee Member ________________________________________ Margaret Carreiro, Ph.D. Committee Member ________________________________________ Karolyn M. Hansen, Ph.D. Committee Member ii ABSTRACT TERRESTRIAL-AQUATIC CONNECTIONS: RIPARIAN INVASION BY LONICERA MAACKII DRIVES SHIFTS IN AQUATIC BIOTA AND ECOSYSTEM PROCESSES Name: McNeish, Rachel Elizabeth University of Dayton Advisor: Dr. Ryan W. McEwan Invasive species are of global importance due to their impacts on ecological communities, habitat structure, native community dynamics, and ecosystem processes. Scientists and conservation managers are increasingly focusing on the biological impacts of invasive species and devising management practices that emphasize the health of ecosystems based on measured biological processes. Lonicera maackii is a highly successful invasive shrub in forests of eastern and Midwestern North America. We investigated how riparian invasion of L. maackii influenced (1) the availability of in- stream leaf litter resources, algal growth, above stream canopy cover, and light available to the stream, (2) the functional and taxonomic diversity and community composition of aquatic macroinvertebrate communities, (3) the effects of L. maackii on throughfall chemistry. In summary, the removal of an invasive riparian shrub influenced the timing, deposition, quality, and abundance of leaf litter habitat into a headwater stream, ostensibly driving bottom-up effects on aquatic primary producer biomass and the macroinvertebrate community. Patterns in macroinvertebrate community and functional iii trait dynamics were influenced by seasons and the L. maackii riparian forest. These findings suggest that functional traits were driven by life history strategies linked with seasonal patterns in temperature and food resources that are also influenced by L. maackii riparian forests. In addition, riparian L. maackii has the potential to alter nutrient subsidies during rain events that enter aquatic systems as throughfall, and suppress stream algal growth early in the growth season, impacting nutrient cross-system subsidies and one of the basal food resources in aquatic systems. Based on these findings we have developed a predictive framework for understanding how this terrestrial invasive shrub influences aquatic ecosystems. iv ACKNOWLEDGEMENTS Special thanks to Dr. Ryan McEwan for his commitment as my advisor and mentor during my dissertation. Additional thanks to all the University of Dayton Biology graduate students, undergraduate community, and the University of Dayton Graduate School for their support. I would like to further express my appreciate to the Centerville- Washington Park District, the Bellbrook-Sugarcreek Park District, and the Dayton Five Rivers MetroParks for allowing me to conduct my research in their park and stream sites. v TABLE OF CONTENTS ABSTRACT ....................................................................................................................... iii ACKNOWLEDGEMENTS ................................................................................................ v LIST OF ILLUSTRATIONS .............................................................................................. x LIST OF TABLES ............................................................................................................ xii LIST OF ABBREVIATIONS AND NOTATIONS ........................................................ xiii CHAPTER 1: A REVIEW ON THE INVASION ECOLOGY .......................................... 1 ABSTRACT ....................................................................................................................... 1 INTRODUCTION ................................................................................................................ 2 LONICERA MAACKII ADVANTAGEOUS LIFE HISTORY TRAITS ............................................ 4 Dispersal Mechanisms ................................................................................................ 4 Rapid Growth and Environmental Plasticity .............................................................. 5 Phenology ................................................................................................................... 7 Allelopathy and Resistance to Herbivory ................................................................... 8 LONICERA MAACKII INVASION IMPACTS AT VARYING ECOLOGICAL SCALES................... 11 Community-Scale Impacts ........................................................................................ 11 LONICERA MAACKII INVASION AND LANDSCAPE ECOLOGY ............................................. 18 LONICERA MAACKII IMPACTS ON ECOSYSTEM PROCESSES .............................................. 20 MANAGEMENT AND RESTORATION OF LONICERA MAACKII INVADED HABITATS............. 22 Detection and Management ...................................................................................... 22 Lonicera maackii management impacts on flora and fauna ..................................... 25 CONNECTIONS TO INVASION THEORY ............................................................................ 26 FUTURE DIRECTIONS AND CONSIDERATIONS ................................................................. 29 ACKNOWLEDGEMENTS ................................................................................................... 31 LITERATURE CITED ........................................................................................................ 32 FIGURE LEGENDS ........................................................................................................... 54 vi FIGURES ......................................................................................................................... 55 CHAPTER 2: REMOVAL OF THE INVASIVE SHRUB LONICERA MACKII ......... 58 ABSTRACT ..................................................................................................................... 58 INTRODUCTION .............................................................................................................. 59 METHODS ...................................................................................................................... 61 Study Site ................................................................................................................... 61 Experimental Lonicera maackii Removal ................................................................. 62 Leaf Litter Accumulation .......................................................................................... 62 Benthic Algal Biomass and Above Stream Canopy Cover ........................................ 63 Macroinvertebrate Community ................................................................................. 63 Statistical Analyses ................................................................................................... 64 RESULTS ........................................................................................................................ 65 In-stream Leaf Material ............................................................................................ 65 Canopy Cover and Benthic Algal Biomass ............................................................... 66 Macroinvertebrate Density ....................................................................................... 66 DISCUSSION ................................................................................................................... 67 In-stream Organic Matter ......................................................................................... 67 Macroinvertebrate Density and Benthic Algal Biomass ........................................... 68 ACKNOWLEDGMENTS .................................................................................................... 70 REFERENCES .................................................................................................................. 71 TABLES .......................................................................................................................... 80 FIGURE LEGENDS ........................................................................................................... 83 FIGURES ......................................................................................................................... 85 SUPPLEMENTAL MATERIALS .......................................................................................... 91 CHAPTER 3: TERRESTRIAL-AQUATIC LINKAGES INFLUENC BENTHIC ......... 92 ABSTRACT ..................................................................................................................... 92 INTRODUCTION .............................................................................................................
Recommended publications
  • A Synopsis of Aquatic Fireflies with Description of a New Species (Coleoptera) 539-562 © Wiener Coleopterologenverein, Zool.-Bot
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Water Beetles of China Jahr/Year: 2003 Band/Volume: 3 Autor(en)/Author(s): Jeng Ming-Luen, Lai Jennifer, Yang Ping-Shih Artikel/Article: Lampyridae: A synopsis of aquatic fireflies with description of a new species (Coleoptera) 539-562 © Wiener Coleopterologenverein, Zool.-Bot. Ges. Österreich, Austria; download unter www.biologiezentrum.at JÄcil & Jl (eels.): Water Hectics of China Vol.111 539 - 562 Wien, April 2003 LAMPYRIDAE: A synopsis of aquatic fireflies with description of a new species (Coleoptera) M.-L. JENG, J. LAI & P.-S. YANG Abstract A synopsis of the Lampyridae (Coleoptera) hitherto reported to be aquatic is given. The authors could confirm aquatic larval stages for five out of the fifteen reported cases: Luciola cruciata MOTSCHULSKY (Japan), L. ficta OLIVIER (China, incl. Taiwan), L. latcralis MOTSCHULSKY (Japan, Korea, China and Russia), L. owadai SATO & KlMURA (Japan) and L. substriata Gorham (= L. fonnosana PIC syn.n.) (Taiwan, Myanmar and India). A sixth species, L. hyclrophila sp.n. (Taiwan), is described. The larvae of all but L. substriata have lateral tracheal gills on abdominal segments 1-8; L. substriata has a metapneustic larval stage with a pair of functional spiracles on the eighth abdominal segment. It is suggested that the aquatic habits in Luciola LAPORTE have evolved at least twice. The species with facultatively aquatic larvae are summarized also. A lectotype is designated for L.ficta. Key words: Coleoptera, Lampyridae, Luciola, aquatic, new species. Introduction Lampyridae, or fireflies, belong to the superfamily Cantharoidea (sensu CROWSON 1972) or Elatcroidea (sensu LAWRENCE & NEWTON 1995).
    [Show full text]
  • Planorbidae) from New Mexico
    FRONT COVER—See Fig. 2B, p. 7. Circular 194 New Mexico Bureau of Mines & Mineral Resources A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY Pecosorbis, a new genus of fresh-water snails (Planorbidae) from New Mexico Dwight W. Taylor 98 Main St., #308, Tiburon, California 94920 SOCORRO 1985 iii Contents ABSTRACT 5 INTRODUCTION 5 MATERIALS AND METHODS 5 DESCRIPTION OF PECOSORBIS 5 PECOSORBIS. NEW GENUS 5 PECOSORBIS KANSASENSIS (Berry) 6 LOCALITIES AND MATERIAL EXAMINED 9 Habitat 12 CLASSIFICATION AND RELATIONSHIPS 12 DESCRIPTION OF MENETUS 14 GENUS MENETUS H. AND A. ADAMS 14 DESCRIPTION OF MENETUS CALLIOGLYPTUS 14 REFERENCES 17 Figures 1—Pecosorbis kansasensis, shell 6 2—Pecosorbis kansasensis, shell removed 7 3—Pecosorbis kansasensis, penial complex 8 4—Pecosorbis kansasensis, reproductive system 8 5—Pecosorbis kansasensis, penial complex 9 6—Pecosorbis kansasensis, ovotestis and seminal vesicle 10 7—Pecosorbis kansasensis, prostate 10 8—Pecosorbis kansasensis, penial complex 10 9—Pecosorbis kansaensis, composite diagram of penial complex 10 10—Pecosorbis kansasensis, distribution map 11 11—Menetus callioglyptus, reproductive system 15 12—Menetus callioglyptus, penial complex 15 13—Menetus callioglyptus, penial complex 16 14—Planorbella trivolvis lenta, reproductive system 16 Tables 1—Comparison of Menetus and Pecosorbis 13 5 Abstract Pecosorbis, new genus of Planorbidae, subfamily Planorbulinae, is established for Biomphalaria kansasensis Berry. The species has previously been known only as a Pliocene fossil, but now is recognized in the Quaternary of the southwest United States, and living in the Pecos Valley of New Mexico. Pecosorbis is unusual because of its restricted distribution and habitat in seasonal rock pools. Most similar to Menetus, it differs in having a preputial organ with an external duct, no spermatheca, and a penial sac that is mostly eversible.
    [Show full text]
  • The Freshwater Snails (Mollusca: Gastropoda) of Mexico: Updated Checklist, Endemicity Hotspots, Threats and Conservation Status
    Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 91 (2020): e912909 Taxonomy and systematics The freshwater snails (Mollusca: Gastropoda) of Mexico: updated checklist, endemicity hotspots, threats and conservation status Los caracoles dulceacuícolas (Mollusca: Gastropoda) de México: listado actualizado, hotspots de endemicidad, amenazas y estado de conservación Alexander Czaja a, *, Iris Gabriela Meza-Sánchez a, José Luis Estrada-Rodríguez a, Ulises Romero-Méndez a, Jorge Sáenz-Mata a, Verónica Ávila-Rodríguez a, Jorge Luis Becerra-López a, Josué Raymundo Estrada-Arellano a, Gabriel Fernando Cardoza-Martínez a, David Ramiro Aguillón-Gutiérrez a, Diana Gabriela Cordero-Torres a, Alan P. Covich b a Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av.Universidad s/n, Fraccionamiento Filadelfia, 35010 Gómez Palacio, Durango, Mexico b Institute of Ecology, Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602-2202, USA *Corresponding author: [email protected] (A. Czaja) Received: 14 April 2019; accepted: 6 November 2019 Abstract We present an updated checklist of native Mexican freshwater gastropods with data on their general distribution, hotspots of endemicity, threats, and for the first time, their estimated conservation status. The list contains 193 species, representing 13 families and 61 genera. Of these, 103 species (53.4%) and 12 genera are endemic to Mexico, and 75 species are considered local endemics because of their restricted distribution to very small areas. Using NatureServe Ranking, 9 species (4.7%) are considered possibly or presumably extinct, 40 (20.7%) are critically imperiled, 30 (15.5%) are imperiled, 15 (7.8%) are vulnerable and only 64 (33.2%) are currently stable.
    [Show full text]
  • Aquatic Snails of the Snake and Green River Basins of Wyoming
    Aquatic snails of the Snake and Green River Basins of Wyoming Lusha Tronstad Invertebrate Zoologist Wyoming Natural Diversity Database University of Wyoming 307-766-3115 [email protected] Mark Andersen Information Systems and Services Coordinator Wyoming Natural Diversity Database University of Wyoming 307-766-3036 [email protected] Suggested citation: Tronstad, L.M. and M. D. Andersen. 2018. Aquatic snails of the Snake and Green River Basins of Wyoming. Report prepared by the Wyoming Natural Diversity Database for the Wyoming Fish and Wildlife Department. 1 Abstract Freshwater snails are a diverse group of mollusks that live in a variety of aquatic ecosystems. Many snail species are of conservation concern around the globe. About 37-39 species of aquatic snails likely live in Wyoming. The current study surveyed the Snake and Green River basins in Wyoming and identified 22 species and possibly discovered a new operculate snail. We surveyed streams, wetlands, lakes and springs throughout the basins at randomly selected locations. We measured habitat characteristics and basic water quality at each site. Snails were usually most abundant in ecosystems with higher standing stocks of algae, on solid substrate (e.g., wood or aquatic vegetation) and in habitats with slower water velocity (e.g., backwater and margins of streams). We created an aquatic snail key for identifying species in Wyoming. The key is a work in progress that will be continually updated to reflect changes in taxonomy and new knowledge. We hope the snail key will be used throughout the state to unify snail identification and create better data on Wyoming snails.
    [Show full text]
  • Coleoptera: Lampyridae)
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2020-03-23 Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae) Gavin Jon Martin Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Martin, Gavin Jon, "Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae)" (2020). Theses and Dissertations. 8895. https://scholarsarchive.byu.edu/etd/8895 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected]. Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae) Gavin Jon Martin A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Seth M. Bybee, Chair Marc A. Branham Jamie L. Jensen Kathrin F. Stanger-Hall Michael F. Whiting Department of Biology Brigham Young University Copyright © 2020 Gavin Jon Martin All Rights Reserved ABSTRACT Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae) Gavin Jon Martin Department of Biology, BYU Doctor of Philosophy Fireflies are a cosmopolitan group of bioluminescent beetles classified in the family Lampyridae. The first catalogue of Lampyridae was published in 1907 and since that time, the classification and systematics of fireflies have been in flux. Several more recent catalogues and classification schemes have been published, but rarely have they taken phylogenetic history into account. Here I infer the first large scale anchored hybrid enrichment phylogeny for the fireflies and use this phylogeny as a backbone to inform classification.
    [Show full text]
  • (Mollusca) of the Slovak Republic
    Vol. 15(2): 49–58 CHECKLIST OF THE MOLLUSCS (MOLLUSCA) OF THE SLOVAK REPUBLIC TOMÁŠ ÈEJKA*, LIBOR DVOØÁK, MICHAL HORSÁK, JOZEF ŠTEFFEK *Correspondence: Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84506 Bratislava, Slovak Republic (e-mail: [email protected]) ABSTRACT: The checklist of 245 mollusc species known so far from the Slovak Republic is presented, plus 11 species limited to greenhouses or thermal waters. Critical comments on species erroneously mentioned in re- cent publications from Slovakia are included. KEY WORDS: Mollusca, checklist, Slovak Republic INTRODUCTION Research of Slovak molluscs started at the begin- cal evaluation of the previously published checklists ning of the 20th century (CSIKI 1918). In the first half (BANK et al. 2001, ŠTEFFEK &GREGO 2002). We deci- of the 20th century J. F. BABOR and later also his col- ded to use the monograph Molluscs of Slovakia (LI- league J. PETRBOK worked on the Slovak malaco- SICKÝ 1991) as the most suitable baseline because it fauna. Unfortunately their publications were not sys- contains the most recent reliable list of Slovak tematic and especially not critical enough, resulting molluscs. Therefore the original literature sources in erroneous records of some mollusc species in Slo- are given for all the species first recorded in the Slo- vakia (LISICKÝ 1991). The situation changed after vak Republic after 1982. World War II. The work of the new generation of The checklist of Slovak molluscs published by ŠTEF- malacologists resulted in a reliable knowledge about FEK &GREGO (2002) has several shortcomings. The the fauna. The entire research was dominated by the authors uncritically adopted many taxa from the work of V.
    [Show full text]
  • ชีววิทยาและการเพาะเลี้ยงหิ่งห้อยชนิด Pteroptyx Malaccae Gorham
    Research Article / 35 THE BIOLOGY AND REARING OF FIREFLY Pteroptyx malaccae Gorham. ชีววิทยาและการเพาะเลี้ยงหิ่งห้อยชนิด Pteroptyx malaccae Gorham. สุทิศา ลุ่มบุตร, สุรเชษฐ จามรมาน, เกษม จันทร์แก้ว วิทยาลัยสิ่งแวดล้อม มหาวิทยาลัยเกษตรศาสตร์ เขตจตุจักร กรุงเทพฯ 10900 วิบูลย์ จงรัตนเมธีกุล ภาควิชากีฏวิทยา คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ เขตจตุจักร กรุงเทพฯ 10900 Pteroptyx malaccae Gorham เป็นหิ่งห้อยชนิดที่พบได้ตามพื้นที่น้้ากร่อยและป่าชายเลน ปัจจุบันหิ่งห้อยชนิดนี้มีจ้านวนลดลง มากเนื่องจากการเปลี่ยนแปลงและถูกท้าลายของแหล่งอาศัยโดยเฉพาะอย่างยิ่งพื้นที่ป่าชายเลน งานนี้จึง มีเป้าหมายที่จะศึกษา วิธีการเพาะเลี้ยงและชีววิทยาของหิ่งห้อย เพื่อ เป็นการสร้างความรู้พื้นฐานในการอนุรักษ์สายพันธุ์หิ่งห้อย โดยเฉพาะ การอนุรักษ์ หิ่งห้อยชนิด P. malaccae ซึ่งเป็นชนิดที่ได้รับความสนใจในด้านการท่องเที่ยวเชิงอนุรักษ์ นอกจากนั้นยังสามารถใช้เป็นแนวทาง ในการเพิ่มปริมาณเพื่ออนุรักษ์หิ่งห้อยในธรรมชาติใด้อยู่อย่างยั่งยืน ทั้งนี้ โดยการศึกษาชีววิทยาและวงจรชีวิต ซึ่งประกอบด้วย ภาชนะและวัสดุที่เป็นแหล่งอาศัยของหิ่งห้อย ได้แก่ ดิน กิ่งและใบล้าพู น้้า และอาหาร โดย ใช้แอปเปิ้ลเป็นอาหารในระยะตัวเต็ม วัย และหอยชนิด Assiminea sp. เป็นอาหารในระยะตัวหนอน วงจรชีวิตของหิ่งห้อยในห้องปฏิบัติการประกอบด้วย 4 ระยะ ได้แก่ ไข่ ตัวหนอน ดักแด้ และตัวเต็มวัย ใช้เวลาตลอดทั้งวงจรเฉลี่ย 122.90 วัน แต่ละระยะใช้เวลา 12.15, 97.83, 9.83 และ 12.33 วัน ตามล้าดับ และเมื่อเป็นตัวเต็มวัยจะมีสัดส่วนเพศผู้ต่อเพศเมียเท่ากับ 4 : 1 ค้าส้าคัญ : หิ่งห้อย /Pteroptyx malaccae / วงจรชีวิต Pteroptyx malaccae Gorham (Coleoptera: Lampyridae) is a semiaquatic firefly found in a brackish and mangrove ecosystem.
    [Show full text]
  • Distribution of the Alien Freshwater Snail Ferrissia Fragilis (Tryon, 1863) (Gastropoda: Planorbidae) in the Czech Republic
    Aquatic Invasions (2007) Volume 2, Issue 1: 45-54 Open Access doi: http://dx.doi.org/10.3391/ai.2007.2.1.5 © 2007 The Author(s). Journal compilation © 2007 REABIC Research Article Distribution of the alien freshwater snail Ferrissia fragilis (Tryon, 1863) (Gastropoda: Planorbidae) in the Czech Republic Luboš Beran1* and Michal Horsák2 1Kokořínsko Protected Landscape Area Administration, Česká 149, CZ–276 01 Mělník, Czech Republic 2Institute of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ–611 37 Brno, Czech Republic E-mail: [email protected] (LB), [email protected] (MH) *Corresponding author Received: 22 November 2006 / Accepted: 17 January 2007 Abstract We summarize and analyze all known records of the freshwater snail, Ferrissia fragilis (Tryon, 1863) in the Czech Republic. In 1942 this species was found in the Czech Republic for the first time and a total of 155 species records were obtained by the end of 2005. Based on distribution data, we observed the gradual expansion of this gastropod not only in the Elbe Lowland, where its occurrence is concentrated, but also in other regions of the Czech Republic particularly between 2001 and 2005. Information on habitat, altitude and co-occurrence with other molluscs are presented. Key words: alien species, Czech Republic, distribution, Ferrissia fragilis, habitats Introduction used for all specimens of the genus Ferrissia found in the Czech Republic. Probably only one species of the genus Ferrissia Records of the genus Ferrissia exist from all (Walker, 1903) occurs in Europe. Different Czech neighbouring countries (Frank et al. 1990, theories exist, about whether it is an indigenous Lisický 1991, Frank 1995, Strzelec and Lewin and overlooked taxon or rather a recently 1996, Glöer and Meier-Brook 2003) and also introduced species in Europe (Falkner and from other European countries, e.g.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • New Substitute Names for Two Preoccupied Tachinid Genera Paragonia Mesnil, 1950 and Menetus Aldrich, 1926 (Diptera)
    _____________Mun. Ent. Zool. Vol. 1, No. 2, June 2006__________ 270 NEW SUBSTITUTE NAMES FOR TWO PREOCCUPIED TACHINID GENERA PARAGONIA MESNIL, 1950 AND MENETUS ALDRICH, 1926 (DIPTERA) Hüseyin Özdikmen* * Department of Biology, Faculty of Science and Arts, University of Gazi, 06500 Ankara / Turkey, e-mail: [email protected] [Özdikmen, H. 2006. New substitute names for two preoccupied Tachinid genera Paragonia Mesnil, 1950 and Menetus Aldrich, 1926 (Diptera). Munis Entomology & Zoology, 1 (2): 270-272] ABSTRACT: Two junior homonyms were detected amongst the Tachinidae and the following replacement names are proposed: Mesnilius for Paragonia Mesnil, 1950 and Aldrichomyia for Menetus Aldrich, 1926. Accordingly, new combinations are herein proposed for the type species currently included in monotypic genera Paragonia Mesnil, 1950 and Menetus Aldrich, 1926. Keywords: Mesnilius, Paragonia, Aldrichomyia, Menetus, homonymy, replacement names TAXONOMY Order Diptera Family Tachinidae Mesnilius nom. nov., substitute name Paragonia Mesnil, 1950. In Lindner, Flieg. palaearkt. Reg. Stuttgart, 64g, 106 (1950). (Diptera: Tachinidae: Goniinae: Sturmiini). Preoccupied by Paragonia Huebner, [1823]. Verz. bekannt. Schmett., (19) 292. (Lepidoptera: Geometroidea: Geometridae: Ennominae). Remarks: Mesnil (1950) proposed the genus Paragonia with the type species Paragonia portentosa Mesnil, 1950 by original designation in the fly family Tachinidae (Diptera) (Cantrell & Crosskey, 1989; Evenhuis, 1996; O’Hara & Wood, 2004; O’Hara, 2005). Unfortunately, the generic name was already preoccupied by Huebner (1823), who had described the genus Paragonia with the type species Phalaena tasima Cramer, 1779 by monotypy in the moth family Geometridae (Lepidoptera). Scoble et al. (1999) included 9 species and 2 subspecies (inc. nominates) in the genus Paragonia Huebner, 1823 and also Clysia Guenée, 1858 as a junior synonym of the genus Paragonia.
    [Show full text]
  • Firefly Genomes Illuminate Parallel Origins of Bioluminescence in Beetles
    Firefly genomes illuminate parallel origins of bioluminescence in beetles The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fallon, Timothy R. et al. "Firefly genomes illuminate parallel origins of bioluminescence in beetles." eLife 7 (2018): e36495 © 2019 The Author(s) As Published 10.7554/elife.36495 Publisher eLife Sciences Publications, Ltd Version Final published version Citable link https://hdl.handle.net/1721.1/124645 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Firefly genomes illuminate parallel origins of bioluminescence in beetles Timothy R Fallon1,2†, Sarah E Lower3,4†, Ching-Ho Chang5, Manabu Bessho-Uehara6,7,8, Gavin J Martin9, Adam J Bewick10, Megan Behringer11, Humberto J Debat12, Isaac Wong5, John C Day13, Anton Suvorov9, Christian J Silva5,14, Kathrin F Stanger-Hall15, David W Hall10, Robert J Schmitz10, David R Nelson16, Sara M Lewis17, Shuji Shigenobu18, Seth M Bybee9, Amanda M Larracuente5, Yuichi Oba6, Jing-Ke Weng1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States; 4Department of Biology, Bucknell University, Lewisburg, United States; 5Department of Biology, University of Rochester, Rochester, United States; 6Department of Environmental Biology,
    [Show full text]
  • Pyractomena Spp., Spring Fireflies (Coleoptera: Lampyridae) Able Chow, Forest Huval, Chris Carlton and Gene Reagan
    Pyractomena spp., Spring Fireflies (Coleoptera: Lampyridae) Able Chow, Forest Huval, Chris Carlton and Gene Reagan Description spring fireflies possess a unique morphological adaptation called the “holdfast organ,” that consists of several telescoping tubes armed with tiny hooks on The name spring firefly refers the last segment of their abdomens. Generally, spring firefly pupae resemble a to 16 firefly species belonging to darker version of the adult form, with wings folded onto the sides of the body. the genus Pyractomena. Adult spring The eggs are yellow to orange and appear translucent. fireflies are small-to-medium-sized beetles between one-third to three- quarters of an inch (7.5 to 19.0 mm) Life Cycle and Ecology in length. They possess large eyes, The eggs of spring fireflies are deposited as clusters of 20 to 100 eggs large elytra (wing covers) concealing covered in adhesive secretions on wetland vegetation. The eggs become faintly the hind wings and abdomen, and luminescent two to three days after being laid, and larvae hatch after 15 to 30 large pronota (foreparts of body) days. extending over their heads. Their Larval spring fireflies are nocturnal predators inhabiting various moist bodies are soft in texture and habitats, particularly those prone to flooding. They prey on snails and other covered in fine, dense hair. The body soft-bodied invertebrates. Spring firefly larvae are terrestrial, with the shape and coloration vary depending exception of the Eastern North American species P. lucifera. Larvae of this on species. The variation in elytral species are semiaquatic, living on aquatic vegetation and regularly submerging shape gives some species a stout in water to attack aquatic snails.
    [Show full text]