Winogradskyella Rapida Sp. Nov., Isolated from Protein-Enriched Seawater

Total Page:16

File Type:pdf, Size:1020Kb

Winogradskyella Rapida Sp. Nov., Isolated from Protein-Enriched Seawater International Journal of Systematic and Evolutionary Microbiology (2009), 59, 21 80-2184 DOI 10.1099/ijs.0.008334-0 Winogradskyella rapida sp. nov., isolated from protein-enriched seawater Jarone Pinhassi,1 Olga Nedashkovskaya,2 Àke Hagström1 and Mare Vancanneyt3 Correspondence 'Marine Microbiology, Department of Pure and Applied Natural Sciences, University of Kalmar, Jarone Pinhassi SE-39182 Kalmar, Sweden [email protected] 2Paclflc Institute of Bloorganlc Chemistry of the Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100 Let Vladlvostoku 159, 690022 Vladivostok, Russia 3BCCM/LMG Bacteria Collection and Laboratory of Microbiology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium Flavobacteria are emerging as an Important group of organisms associated with the degradation of complex organic matter In aquatic environments. A novel Gram-reactlon-negatlve, heterotrophlc, rod-shaped, aerobic, yellow-pigmented and gliding bacterium, strain SCB361, was Isolated from a protein-enriched seawater sample, collected at Scrlpps Pier, Southern California Bight (Eastern Pacific). Analysis of the 1 6S rRNA gene sequence showed that the bacterium was related to members of the genusWinogradskyella within the familyFlavobacteriaceae, phylum Bacteroidetes. 1 6S rRNA gene sequence similarity to the otherWinogradskyella species was 94.5-97.1 °/o. DNA-DNA relatedness between strain SCB361Winogradskyella and thalassocola KMM 3907t , Its closest relative In terms of 1 6S rRNA gene sequence similarity, was 20 °/o. On the basis of the phylogenetic and phenotypic data, strain SCB361 represents a novel species of the genusWinogradskyella, for which the nameWinogradskyella rapida sp. nov. Is proposed. The type strain Is SCB361 (=CECT 7392T =CCUG 560981). Members of the phylum Bacteroidetes make up a significant plankton community would respond to protein enrichment portion (up to 30 %) of marine bacterioplankton com­ (Pinhassi et al, 1999). Enrichment with protein (BSA) was munities (Glöckner et a l, 1999). Notably, members of the chosen in an attempt to simulate the release of organic matter family Flavobacteriaceae account for a majority of the during the decay phase of a phytoplankton bloom. Surface phylogenetic diversity found among marine Bacteroidetes seawater was collected on 7 December 1995 from Scripps Pier, (Alonso et a l, 2007). Members of the phylum Bacteroidetes Southern California Bight (La Jolla, CA, USA; 32° 53' N 117° in general, and members of the family Flavobacteriaceae in 15' W). The sample was incubated for 3 days at 15 °C with a particular, have been implicated in the degradation of 12 h dark/12 h light cycle, after which agar plates were complex organic matter in the sea (Abell & Bowman, 2005; prepared for strain isolation as described previously by Kirchman, 2002; Pinhassi et a l, 2004). Cottrell & Pinhassi et al. (1999). Strain SCB36T was one of the bacteria Kirchman (2000) highlighted that marine members of the that exhibited the most pronounced positive growth response Bacteroidetes have a preference for the utilization of protein to enrichment with protein and reached net growth rates of over that of simple monomers. Understanding the nearly 1.5 day-1 (see Supplementary Fig. SI, available in taxonomy and the phenotypic characteristics of bacteria IJSEM Online), compared to net growth rates below 0.4 that potentially participate in the degradation of organic day-1 for the total bacterial community (Pinhassi et al, matter in the sea is an important step in understanding 1999). Further, its growth rate closely followed the increase in how biogeochemical processes are regulated. hydrolytic ectoenzyme activity measured in the mesocosms, particularly that of protease activity (Supplementary Fig. SI). Strain SCB36T was isolated from a seawater mesocosm Together with some other flavobacteria species, strain SCB36T experiment designed to investigate how a natural bacterio- increased in abundance even though it was in competition with other members of the bacterial community and exposed The GenBank/EMBL/DDBJ accession number for the 1 6S rRNA gene to active protozoan grazing, indicating its high growth sequence of strain SCB36T Is U64013. potential when supplied with protein. Rates of growth and protease activity for strain SCB36T and a scanning electron micrograph of bacterial cells are available as supplementary For strain isolation, 0.1 ml of 1/100-diluted sample water material with the online version of this paper. from the protein-enriched seawater mesocosm was spread 2180 008334 © 2009 IUMS Printed in Great Britain Winogradskyella rapida sp. nov. onto ZoBell agar plates prepared from seawater from the hydrogen sulfide and to form acid from glycerol distin­ Southern California Bight. Yellow colonies grew on these guished it from other members of the genus plates with an abundance of approximately 1 x IO3 c.f.u. Winogradskyella. Also, unlike most other Winogradskyella ml-1. After primary isolation and purification, strain species, it was unable to degrade agar. Other physiological SCB36t was cultivated at 23 °C on the same medium and characteristics are given in Table 1 and in the species stored at —80 °C in ZoBell medium with 25% (v/v) description. glycerol. For subsequent culturing of strain SCB36T, marine broth/agar 2216 (MB/MA; Difco) was used unless otherwise stated. Determination of growth at different temperatures, nitrate Tab le 1.Differentiating phenotypic features of type strains of reduction, acid production from carbohydrates, produc­ some Winogradskyella species tion of hydrogen sulfide, indole and acetoin (Voges- Strains: 1, Winogradskyella rapida sp. nov. SCB36T; 2, W. thalassocola Proskauer reaction), hydrolysis of casein, gelatin, starch, KMM 3907t ; 3, W. epiphytica KMM 3906T; 4, W. eximia KMM 3944T; Tweens 20, 40 and 80, agar (1.5%, w/v), DNA, urea and 5, W. poriferorum UST030701-295t . Data for reference strains were cellulose (CM-cellulose and filter paper) and oxidase, taken from Lau et al. (2005) (W. poriferorum UST030701-295t ) or catalase, ß-galactosidase and alkaline phosphatase activities Nedashkovskaya et al. (2005) (remaining strains). All strains were were carried out according to standard procedures positive for the following tests: chemo-organotrophic respiratory type (G erhardt et al., 1994). Requirement of NaCl for growth of metabolism; gliding motility, oxidase, catalase and alkaline was assessed on a solid medium, consisting of (I-1 distilled phosphatase activities; requirement for Na+ ions for growth; water): 5 g Bacto peptone (Difco), 2 g Bacto yeast extract hydrolysis of gelatin and Tween 40. All strains were negative for the (Difco), 1 g glucose, 0.02 g KH2P 0 4, 0.05 g MgS04. 7H20 following tests: nitrate reductase and /f-galactosidase activities; and 20 g Bacto agar (Difco), supplemented with 0, 1, 2, 3, flexirubin-type pigment production; indole and acetoin production; 4, 5, 6, 8, 10 or 12 % (w/v) NaCl; growth was determined hydrolysis of urea and chitin; acid production from L-arabinose, D - after 7 days of incubation at 28 °C. Utilization of carbon galactose, lactose, melibiose, L-rhamnose, DL-xylose, adonitol, dulci- sources was examined as described previously tol, inositol, sorbitol and citrate; and utilization of L-arabinose, (Nedashkovskaya et al., 2003). Hydrolysis of chitin (1%, lactose, inositol, sorbitol, malonate and citrate. All strains were w/v) was determined by the appearance of clear zones susceptible to carbenicillin and lincomycin and resistant to benzylpe­ around colonies on chitin agar. The presence of flexirubin nicillin, gentamicin, kanamycin, neomycin, polymyxin B and pigments in strain SCB36T was determined by the method streptomycin. + , Positive; —, negative; n d , no data available. of Fautz & Reichenbach (1980). Gliding motility was determined as described previously (Bowman, 2000). For Characteristic 1 2 3 4 5 studies of cell morphology, cells were grown at 21 °C in Growth at/with: MB until early exponential growth phase (35 h of 37 °C - - + - + incubation), when cells were fixed with glutaraldehyde 44 °C - - - - + and filtered onto 0.2 pm-pore-size polycarbonate filters 8 % NaCl + + + - - (Nuclepore). Samples were treated by sequential ethanol- Hydrogen sulfide production + - - - - dehydration steps, critical-point drying with C 02 and silver Degradation of: coating and viewed with a Hitachi S-3500N scanning Agar - + + + - electron microscope. Susceptibility to antibiotics was Casein, starch + - - + - examined by the routine disc-diffusion plate method after Tween 20 + - + + + 7 days of incubation on MA at 28 °C. Discs were Tween 80 + - + - + impregnated with the following antibiotics (|tg unless DNA - - + - + otherwise stated): ampicillin (10), benzylpenicillin (10 U), Acid formation from: carbenicillin (100), chloramphenicol (30), doxycycline D-Glucose, maltose + + - + - (10), erythromycin (15), gentamicin (10), kanamycin Cellobiose - + - - - (30), lincomycin (15), neomycin (30), oleandomycin Sucrose - - - + - (15), polymyxin B (300 U), streptomycin (30) and Glycerol + - - - - Mannitol - - - tetracycline (30). Phenotypic characteristics of strain + + Utilization of: SCB36t were determined in the same laboratory under D-Glucose, D-mannose + + - + - the same conditions and using the same methodology as Sucrose - - - + - described previously for the type strains of three other Mannitol + - - + - Winogradskyella species (Nedashkovskaya et a l, 2005). Susceptibility to: Cells of strain SCB36T were Gram-reaction-negative single
Recommended publications
  • Chemical Structures of Some Examples of Earlier Characterized Antibiotic and Anticancer Specialized
    Supplementary figure S1: Chemical structures of some examples of earlier characterized antibiotic and anticancer specialized metabolites: (A) salinilactam, (B) lactocillin, (C) streptochlorin, (D) abyssomicin C and (E) salinosporamide K. Figure S2. Heat map representing hierarchical classification of the SMGCs detected in all the metagenomes in the dataset. Table S1: The sampling locations of each of the sites in the dataset. Sample Sample Bio-project Site depth accession accession Samples Latitude Longitude Site description (m) number in SRA number in SRA AT0050m01B1-4C1 SRS598124 PRJNA193416 Atlantis II water column 50, 200, Water column AT0200m01C1-4D1 SRS598125 21°36'19.0" 38°12'09.0 700 and above the brine N "E (ATII 50, ATII 200, 1500 pool water layers AT0700m01C1-3D1 SRS598128 ATII 700, ATII 1500) AT1500m01B1-3C1 SRS598129 ATBRUCL SRS1029632 PRJNA193416 Atlantis II brine 21°36'19.0" 38°12'09.0 1996– Brine pool water ATBRLCL1-3 SRS1029579 (ATII UCL, ATII INF, N "E 2025 layers ATII LCL) ATBRINP SRS481323 PRJNA219363 ATIID-1a SRS1120041 PRJNA299097 ATIID-1b SRS1120130 ATIID-2 SRS1120133 2168 + Sea sediments Atlantis II - sediments 21°36'19.0" 38°12'09.0 ~3.5 core underlying ATII ATIID-3 SRS1120134 (ATII SDM) N "E length brine pool ATIID-4 SRS1120135 ATIID-5 SRS1120142 ATIID-6 SRS1120143 Discovery Deep brine DDBRINP SRS481325 PRJNA219363 21°17'11.0" 38°17'14.0 2026– Brine pool water N "E 2042 layers (DD INF, DD BR) DDBRINE DD-1 SRS1120158 PRJNA299097 DD-2 SRS1120203 DD-3 SRS1120205 Discovery Deep 2180 + Sea sediments sediments 21°17'11.0"
    [Show full text]
  • Prokaryotic Community Successions and Interactions in Marine Biofilms
    Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteriia Thomas Pollet, Lyria Berdjeb, Cédric Garnier, Gaël Durrieu, Christophe Le Poupon, Benjamin Misson, Jean-François Briand To cite this version: Thomas Pollet, Lyria Berdjeb, Cédric Garnier, Gaël Durrieu, Christophe Le Poupon, et al.. Prokary- otic community successions and interactions in marine biofilms: the key role of Flavobacteriia. FEMS Microbiology Ecology, Wiley-Blackwell, 2018, 94 (6), 10.1093/femsec/fiy083. hal-02024255 HAL Id: hal-02024255 https://hal-amu.archives-ouvertes.fr/hal-02024255 Submitted on 2 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteriia Thomas Pollet, Lyria Berdjeb, Cédric Garnier, Gaël Durrieu, Christophe Le Poupon, Benjamin Misson, Jean-François Briand To cite this version: Thomas Pollet, Lyria Berdjeb, Cédric Garnier, Gaël Durrieu, Christophe
    [Show full text]
  • Comparative Proteomic Profiling of Newly Acquired, Virulent And
    www.nature.com/scientificreports OPEN Comparative proteomic profling of newly acquired, virulent and attenuated Neoparamoeba perurans proteins associated with amoebic gill disease Kerrie Ní Dhufaigh1*, Eugene Dillon2, Natasha Botwright3, Anita Talbot1, Ian O’Connor1, Eugene MacCarthy1 & Orla Slattery4 The causative agent of amoebic gill disease, Neoparamoeba perurans is reported to lose virulence during prolonged in vitro maintenance. In this study, the impact of prolonged culture on N. perurans virulence and its proteome was investigated. Two isolates, attenuated and virulent, had their virulence assessed in an experimental trial using Atlantic salmon smolts and their bacterial community composition was evaluated by 16S rRNA Illumina MiSeq sequencing. Soluble proteins were isolated from three isolates: a newly acquired, virulent and attenuated N. perurans culture. Proteins were analysed using two-dimensional electrophoresis coupled with liquid chromatography tandem mass spectrometry (LC–MS/MS). The challenge trial using naïve smolts confrmed a loss in virulence in the attenuated N. perurans culture. A greater diversity of bacterial communities was found in the microbiome of the virulent isolate in contrast to a reduction in microbial community richness in the attenuated microbiome. A collated proteome database of N. perurans, Amoebozoa and four bacterial genera resulted in 24 proteins diferentially expressed between the three cultures. The present LC–MS/ MS results indicate protein synthesis, oxidative stress and immunomodulation are upregulated in a newly acquired N. perurans culture and future studies may exploit these protein identifcations for therapeutic purposes in infected farmed fsh. Neoparamoeba perurans is an ectoparasitic protozoan responsible for the hyperplastic gill infection of marine cultured fnfsh referred to as amoebic gill disease (AGD)1.
    [Show full text]
  • Disease of Aquatic Organisms 73:43
    DISEASES OF AQUATIC ORGANISMS Vol. 73: 43–47, 2006 Published November 21 Dis Aquat Org Concentration effects of Winogradskyella sp. on the incidence and severity of amoebic gill disease Sridevi Embar-Gopinath*, Philip Crosbie, Barbara F. Nowak School of Aquaculture and Aquafin CRC, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia ABSTRACT: To study the concentration effects of the bacterium Winogradskyella sp. on amoebic gill disease (AGD), Atlantic salmon Salmo salar were pre-exposed to 2 different doses (108 or 1010 cells l–1) of Winogradskyella sp. before being challenged with Neoparamoeba spp. Exposure of fish to Winogradskyella sp. caused a significant increase in the percentage of AGD-affected filaments com- pared with controls challenged with Neoparamoeba only; however, these percentages did not increase significantly with an increase in bacterial concentration. The results show that the presence of Winogradskyella sp. on salmonid gills can increase the severity of AGD. KEY WORDS: Neoparamoeba · Winogradskyella · Amoebic gill disease · AGD · Gill bacteria · Bacteria dose · Salmon disease Resale or republication not permitted without written consent of the publisher INTRODUCTION Winogradskyella is a recently established genus within the family Flavobacteriaceae, and currently Amoebic gill disease (AGD) in Atlantic salmon contains 4 recognised members: W. thalassicola, W. Salmo salar L. is one of the significant problems faced epiphytica and W. eximia isolated from algal frond sur- by the south-eastern aquaculture industries in Tasma- faces in the Sea of Japan (Nedashkovskaya et al. 2005), nia. The causative agent of AGD is Neoparamoeba and W. poriferorum isolated from the surface of a spp. (reviewed by Munday et al.
    [Show full text]
  • Development of a Free Radical Scavenging Probiotic to Mitigate Coral Bleaching
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185645; this version posted July 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title: Development of a free radical scavenging probiotic to mitigate coral bleaching 2 Running title: Making a probiotic to mitigate coral bleaching 3 4 Ashley M. Dungana#, Dieter Bulachb, Heyu Linc, Madeleine J. H. van Oppena,d, Linda L. Blackalla 5 6 aSchool of Biosciences, The University of Melbourne, Melbourne, VIC, Australia 7 bMelbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia 8 c School of Earth Sciences, The University of Melbourne, Melbourne, VIC, Australia 9 dAustralian Institute of Marine Science, Townsville, QLD, Australia 10 11 12 #Address correspondence to Ashley M. Dungan, [email protected] 13 14 Abstract word count: 216 15 Text word count: 16 17 Keywords: symbiosis, Exaiptasia diaphana, Exaiptasia pallida, probiotic, antioxidant, ROS, 18 Symbiodiniaceae, bacteria 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185645; this version posted July 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 19 ABSTRACT 20 Corals are colonized by symbiotic microorganisms that exert a profound influence on the 21 animal’s health.
    [Show full text]
  • Antibiogram of ESBL and MBL Producing Pseudomonas
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 1347–1353 DOI 10.1099/ijs.0.000110 Flavirhabdus iliipiscaria gen. nov., sp. nov., isolated from intestine of flounder (Paralichthys olivaceus) and emended descriptions of the genera Flavivirga, Algibacter, Bizionia and Formosa Qismat Shakeela, Ahmed Shehzad, Yunhui Zhang, Kaihao Tang and Xiao-Hua Zhang Correspondence College of Marine Life Sciences, Ocean University of China, Qingdao, PR China Xiao-Hua Zhang [email protected] A Gram-stain-negative, orange-coloured, rod-shaped bacterium, designated strain Th68T, was isolated from the intestine of flounder (Paralichthys olivaceus). The isolate required sea salts for growth. Gliding motility was not observed. Flexirubin-type pigments were present. 16S rRNA gene sequence analysis indicated that strain Th68T represented a distinct phyletic line within the family Flavobacteriaceae with less than 96.1 % similarity to members of the recognized genera of the family. The DNA G+C content was 33.0 mol%. The major fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. The major polar lipids were phosphatidy- lethanolamine, two unidentified aminolipids and two unidentified polar lipids. Menaquinone 6 (MK-6) was the only respiratory quinone. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain Th68T represents a novel species of a new genus in the family Flavobacteriaceae, for which the name Flavirhabdus iliipiscaria gen. nov., sp. nov. is proposed. The type strain of Flavirhabdus iliipiscaria is Th68T (5JCM 18637T5KCTC 32141T). The family Flavobacteriaceae was derived from the isolated from the tissue homogenate by the plate dilution etymology of its type genus Flavobacterium, which means method on marine agar 2216 (MA; Becton Dickinson) at yellow-coloured bacterium (Bernardet & Nakagawa, 2006).
    [Show full text]
  • Winogradskyella Echinorum Sp. Nov., a Marine Bacterium of the Family Flavobacteriaceae Isolated from the Sea Urchin Strongylocentrotus Intermedius
    International Journal of Systematic and Evolutionary Microbiology (2009), 59, 1465–1468 DOI 10.1099/ijs.0.005421-0 Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius Olga I. Nedashkovskaya,1 Marc Vancanneyt,2 Seung Bum Kim3 and Natalia V. Zhukova4 Correspondence 1Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy of Olga I. Nedashkovskaya Sciences, Pr. 100 Let Vladivostoku 159, 690022 Vladivostok, Russia [email protected] 2BCCM/LMG Bacteria Collection and Laboratory of Microbiology, Ghent University, or Ledeganckstraat 35, B-9000 Ghent, Belgium [email protected] 3Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, 220 Gung-dong, Yuseong, Daejeon 305-764, Republic of Korea 4Institute of Marine Biology of the Far-Eastern Branch of the Russian Academy of Sciences, Pal’chevskogo St 17, 690032 Vladivostok, Russia The taxonomic position of a novel marine, yellow-pigmented bacterium, designated strain KMM 6211T, was examined by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KMM 6211T is a member of the family Flavobacteriaceae, phylum Bacteroidetes. The closest relative of strain KMM 6211T was Winogradskyella eximia KMM 3944T, the sequence similarity being 97.1 %. The DNA G+C content of KMM 6211T was 33.6 mol%. The strain was motile by gliding and grew with 1–6 % NaCl and at 4–37 6C. Aesculin, casein and gelatin were hydrolysed, but agar, starch, DNA and chitin were not degraded. On the basis of phylogenetic data and phenotypic differences between the isolate and recognized Winogradskyella species, strain KMM 6211T represents a novel species of the genus Winogradskyella, for which the name Winogradskyella echinorum sp.
    [Show full text]
  • A Robust Metaproteomics Pipeline for a Holistic Taxonomic and Functional
    bioRxiv preprint doi: https://doi.org/10.1101/667428; this version posted June 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Title: A robust metaproteomics pipeline for a holistic taxonomic and functional 3 characterization of microbial communities from marine particles 4 Authors: Doreen Schultz,1 Daniela Zühlke,1 Jörg Bernhardt,1 Thomas Ben Francis,2 Dirk 5 Albrecht,1 Claudia Hirschfeld,1 Stephanie Markert,3 and Katharina Riedel 1* 6 7 Addresses: 1 Institute of Microbiology, University of Greifswald, Greifswald, Germany. 8 2 Max-Planck Institute for Marine Microbiology, Bremen, Germany. 9 3 Institute of Pharmacy, University of Greifswald, Greifswald, Germany. 10 11 *Corresponding author mailing address: Institute of Microbiology, Center for Functional 12 Genomics of Microbes (C_FunGene), University of Greifswald, Felix-Hausdorff-Straße 8, DE- 13 17487 Greifswald, Germany. E-mail [email protected]; Tel (+49) 3834 420 5900 14 15 Running title: Metaproteomic pipeline to analyse marine particles 1 bioRxiv preprint doi: https://doi.org/10.1101/667428; this version posted June 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 16 Originality-Significance Statement 17 Marine particles consist of organic particulate matter (e.g. phyto- or zooplankton) and 18 particle-associated (PA) microbial communities, which are often embedded in a sugary 19 matrix. A significant fraction of the decaying algal biomass in marine ecosystems is expected 20 to be mineralized by PA heterotrophic communities, which are thus greatly contributing to 21 large-scale carbon fluxes.
    [Show full text]
  • Role of Bacteria in Amoebic Gill Disease
    Role of bacteria in amoebic gill disease by Sridevi Embar-Gopinath B.Sc., M.Sc., M.Phil. Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Aquaculture, University of Tasmania, Launceston, Tasmania, Australia December, 2006 Declaration I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university and, to the best of my knowledge contains no copy or paraphrase of material previously published or written by any other person, except where due reference is made in the text of the thesis. Sridevi Embar-Gopinath Authority of Access This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Sridevi Embar-Gopinath i Abstract Neoparamoeba spp., are the causative agent of amoebic gill disease (AGD) in marine farmed Atlantic salmon, Salmo salar and AGD is the major problem faced by the salmonid industry in Tasmania. The only effective treatment to control AGD is freshwater bathing; however, complete removal of the parasite is not achieved and under favourable conditions AGD can reoccur within 10 days. Previous research on AGD suggests that gill bacteria might be one of the factors influencing colonisation of Neoparamoeba spp. onto Atlantic salmon gills. Therefore, the aim of this project was to investigate the role of salmonid gill bacteria in AGD. To obtain good understanding of the bacterial populations present on Atlantic salmon gills, bacteria samples were collected twice during this study. Initially, bacteria were cultured from AGD-affected and unaffected fish both from laboratory and farm.
    [Show full text]
  • Stenothermobacter Spongiae Gen. Nov., Sp. Nov., a Novel Member of The
    International Journal of Systematic and Evolutionary Microbiology (2006), 56, 181–185 DOI 10.1099/ijs.0.63908-0 Stenothermobacter spongiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine sponge in the Bahamas, and emended description of Nonlabens tegetincola Stanley C. K. Lau,1 Mandy M. Y. Tsoi,1 Xiancui Li,1 Ioulia Plakhotnikova,1 Sergey Dobretsov,1 Madeline Wu,1 Po-Keung Wong,2 Joseph R. Pawlik3 and Pei-Yuan Qian1 Correspondence 1Coastal Marine Laboratory/Department of Biology, The Hong Kong University of Science and Pei-Yuan Qian Technology, Clear Water Bay, Kowloon, Hong Kong SAR [email protected] 2Department of Biology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR 3Center for Marine Science, University of North Carolina at Wilmington, USA A bacterial strain, UST030701-156T, was isolated from a marine sponge in the Bahamas. Strain UST030701-156T was orange-pigmented, Gram-negative, rod-shaped with tapered ends, slowly motile by gliding and strictly aerobic. The predominant fatty acids were a15 : 0, i15 : 0, i15 : 0 3-OH, i17 : 0 3-OH, i17 : 1v9c and summed feature 3, comprising i15 : 0 2-OH and/or 16 : 1v7c. MK-6 was the only respiratory quinone. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences placed UST030701-156T within a distinct lineage in the family Flavobacteriaceae, with 93?3 % sequence similarity to the nearest neighbour, Nonlabens tegetincola. The DNA G+C content of UST030701-156T was 41?0 mol% and was much higher than that of N.
    [Show full text]
  • Selfish, Sharing and Scavenging Bacteria in the Atlantic Ocean: A
    The ISME Journal (2019) 13:1119–1132 https://doi.org/10.1038/s41396-018-0326-3 ARTICLE Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation 1 2 1 1 Greta Reintjes ● Carol Arnosti ● B. Fuchs ● Rudolf Amann Received: 13 May 2018 / Revised: 6 November 2018 / Accepted: 23 November 2018 / Published online: 7 December 2018 © The Author(s) 2018. This article is published with open access Abstract Identifying the roles played by individual heterotrophic bacteria in the degradation of high molecular weight (HMW) substrates is critical to understanding the constraints on carbon cycling in the ocean. At five sites in the Atlantic Ocean, we investigated the processing of organic matter by tracking changes in microbial community composition as HMW polysaccharides were enzymatically hydrolysed over time. During this investigation, we discovered that a considerable fraction of heterotrophic bacteria uses a newly-identified ‘selfish’ mode of substrate processing. We therefore additionally examined the balance of individual substrate utilisation mechanisms at different locations by linking individual microorganisms to distinct substrate utilisation mechanisms. Through FISH and uptake of fluorescently-labelled ‘ fi ’ fi 1234567890();,: 1234567890();,: polysaccharides, sel sh organisms were identi ed as belonging to the Bacteroidetes, Planctomycetes and Gammapro- teobacteria. ‘Sharing’ (extracellular enzyme producing) and ‘scavenging’ (non-enzyme producing) organisms predomi- nantly belonged to the Alteromonadaceae and SAR11 clades, respectively. The extent to which individual mechanisms prevail depended on the initial population structure of the bacterial community at a given location and time, as well as the growth rate of specific bacteria. Furthermore, the same substrate was processed in different ways by different members of a pelagic microbial community, pointing to significant follow-on effects for carbon cycling.
    [Show full text]
  • The Scout Model: a New Viewpoint on Microbial Survival Strategies
    1 THE SCOUT MODEL: A NEW VIEWPOINT ON MICROBIAL SURVIVAL STRATEGIES A dissertation presented by Sandra M. Buerger to The Department of Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Biology Northeastern University Boston, Massachusetts November, 2010 2 THE SCOUT MODEL: A NEW VIEWPOINT ON MICROBIAL SURVIVAL STRATEGIES by Sandra M. Buerger Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology in the Graduate School of Arts and Sciences of Northeastern University, November, 2010 3 Abstract: It has been frequently observed that microorganisms from different sources exist in a non-growing state. We suggest that this state represents a population level strategy utilized by non-sporeforming bacteria to maximize survival under unfavorable conditions. Individual members of the population enter a state of reversible dormancy from which they exit in a seemingly random fashion due to noise in gene networks. We term these stochastically awakened cells scouts, and further hypothesize that scouts may produce signaling compounds that cue the remaining dormant population to initiate growth (Epstein 2009a). To test this model, we employed single cell incubations from a mixed marine sediment sample, a model organism for the pathogen Mycobacterium tuberculosis, Mycobacterium smegmatis, and Escherichia coli. Single cells of environmental samples from the top oxic layer of the marine sediment incubated over extended times under static conditions showed initiation of growth well beyond typical growth times, ranging up to 18 months. Identification of isolates via sequencing of the 16S rRNA gene revealed that the majority of late growing isolates were typical marine species with known growth rates well below what was evidenced in our experiments.
    [Show full text]