IZEST Orsay 2017Final
Total Page:16
File Type:pdf, Size:1020Kb
Design update and recent results of the Apollon 10 PW facility J-B. Accary1, P. Audebert 1, A. Beluze1, C. Bonnin1, G. Chériaux 1, F. Druon 2, A. Fréneaux 1, K. Genévrier2, P. Georges 2, N. Lebas1, C. Le Blanc 1, B. Le Garrec1 , L. Martin1, F. Mathieu 1, D. N. Papadopoulos 1, L. Ranc1 and J.P Zou 1, 1Laboratoire pour l’Utilisation des Lasers Intenses, (LULI) CNRS- CEA- Ecole Polytechnique 2Laboratoire Charles Fabry, Institut d’Optique Palaiseau, France IZEST: November 30IZESTth 2017 Orsay Nov.- Orsay 30th 2017 / 1 Outline Introduction Apollon 10PW: Laser system key features Laser construction progress Operation status / Performances The Front End The Power Amplification Section Commissioning phase Conclusion and perspectives IZEST Orsay Nov. 30th 2017 / 2 A multilab project on the Plateau de Saclay CILEX : Centre Interdisciplinaire de la Lumière Extrême ( ex ILE) aiming at the development of new instruments dedicated CEA-Saclay to address physics at unexplored laser intensity levels. Institut d'Optique Orme des Ecole Merisiers Polytechnique Soleil …beginning of 2015 ENSTA Université Paris Sud 1km Apollon10PW Former linear accelerator facility (ALS: 1969 – 2006) A renewed building : 5000 m², radio-protected experimental areas IZEST Orsay Nov. 30th 2017 / 3 Laser source Requirements • High laser intensity 22 2 2 ^0.5 - I > 2·10 W/cm (a0 = 0.85 (I18λ ) > 100) - 150 Joules - 15 fs - 10 PW on the target • High repetition rate - 1shot/min: to have enough statistics (>300 shots/day) • High contrast ratio - CR>1012 : to be able to interact with the solid without pre-formed plasma • Multi beams - To perform pump probe experiments and multi stage laser acceleration • Flexibility - To adjust the laser and experimental parameters - To perform new experiments IZEST Orsay Nov. 30th 2017 / 4 Apollon 10-PW laser system • will be delivering 4 beams: one 10-PW beam (F1 beam 400 mm diameter), one 1-PW beam (F2 beam 140 mm diameter) and two additional probe beams (F3 and F4) at a repetition rate of 1 shot per minute. • main beam at the output of the last amplifier will be split and dispatched to two experimental areas: the short-focal-length area dedicated for plasma physics experiments and the long-focal-length area dedicated for electron acceleration experiments. Multi-pass F Front-end 1 F amplifiers 10 PW Compressor 1 SFA F2 Beam 1 PW Compressor F2 splitting F3 F3 F4 LFA F4 Switchyard IZEST Orsay Nov. 30th 2017 / 5 The Apollon laser • CPA based on Ti-sapphire amplifiers (pulse stretched to 700 ps, Φ10-196 mm crystals) pumped by frequency-doubled solid-state lasers • Telescopes with off-axis-parabolic mirrors for beam collimating, spatial filtering and imaging purposes; beam size increased up to 140 mm • Deformable mirror before beam splitting to F1 main beam (10 PW) expanded to 400 mm diameter and F2 secondary beam (1 PW) at 140 mm diameter Deformable mirror 1 PW Compressor Last amplifier F2 F2 AF-07 F1 F1 Near field and Beam splitter AF-08 Wavefront sensor 10 PW Compressor IZEST Orsay Nov. 30th 2017 / 6 The Apollon Facility Long Focus Exp. Hall f=8-32m 300m2 Laser Hall ISO7-8 700m2 Short Focus Exp. Hall f=1m (F#2.5) 130m2 IZEST Orsay Nov. 30th 2017 / 7 The Apollon Facility: Laser Hall Beam Pump Source Area Separation 10 PW Compressor Amplification Section Front End 1 PW Compressor 35m Switchyard / Diagnostics IZEST Orsay Nov. 30th 2017 / 8 The Apollon Facility: Laser Hall Switchyard / Diagnostics 1 PW Compressor 10 PW Compressor Front End Amplification Section 35m IZEST Orsay Nov. 30th 2017 / 9 Apollon laser: construction progress 2013: beginning of reconstruction work 03/2015 building with clean rooms FRONT END AMPLIFICATION COMPRESSION >94% , λ/8 flatness Commissioned – daily 1-3 amplification stages: 6x meter-size LLNL operation commisionning phase – gratings available. daily operation Optomechanics in the final 4th stage in constuction reception phase phase IZEST Orsay Nov. 30th 2017 / 10 Outline Introduction Apollon 10PW: Laser system key features Laser construction progress Operation status / Performances The Front End The Power Amplification Section Commissioning phase Conclusion and perspectives IZEST Orsay Nov. 30th 2017 / 11 The Front End: OPCPA/Ti:Sapphire configuration Contrast & Bandwidth Femtopower/ ps-stretcher + XPW Rainbow DAZZLER Seed @ 1030 nm 1µJ Picosecond Pump 25mJ/100Hz ps-OPCPA è Compression + SHG Front End 0.7mJ commissioned ns-stretcher Daily operation 1 ns Energy booster 12-13 fs Powerlite Ti:Sapphire multipass 10 Hz 532 nm, 7 ns, 120 mJ, 10 Hz amplifier 10 mJ IZEST Orsay Nov. 30th 2017 / 12 The Front end: OPCPA performance (1) q Initial demonstration 2014 Institute of Optics Graduate School Eout=1mJ 9.5 fs q Highly reliable operation: 2% rms stability, <10µrad pointing CR~1012 q Optimized compression with a Wizzler/Dazzler: 9.5 fs (8.1 fs FTL) at 1 mJ q Contrast ratio measurement with a 3rd order autocorrelator: CR>1013 (estimated) *L. P. Ramirez, et al J. Opt. Soc. Am. B 30, 2607-2614 (2013) **D. N. Papadopoulos, et al in Advanced Solid State Lasers, OSA (2015) IZEST Orsay Nov. 30th 2017 / 13 The Front end: OPCPA current operation (2) q Current operation of OPCPA stage at the Apollon facility (10/2016) 700 µJ 150 µJ ü Reliable operation / fast start-up (<30min) ü Stable operation: <3.7% rms, <10 µrad ü Excellent beam quality ü Correct energy level ü Optimization of the OPCPA Spectrum: OPCPA output Stretcher output 720-920nm OPCPA spectrum evolution (100 min) 145 nm Time (min) üHigh spectral stability: Δλblue,red<±5nm, Δλcentral<±2nm IZEST Orsay Nov. 30th 2017 / 14 The Front end: OPCPA pump (3) Complete re-design of the opto- MP1 new design (03/2016) mechanics of MP1: • Thermalized baseplate • Mechanical isolation ü Very stable/reliable operation: <0.5% energy, <3µrad pointing (rms) ü Excellent beam quality up to >32 mJ ü High quality compression: Dtmin=670 fs (<1.4 FTL), n=65% ü Stable/efficient SHG: <1.2% rms, n=58%, >9.5 mJ at 515nm 25 mJ (MP1/Comp) <3 µrad (rms) IZEST Orsay Nov. 30th 2017 / 15 The Front end: Final amplification stage (4) 10 mJ 1 OPCPA delay 1 OPCPA delay 2 0.8 0.6 107.5 nm D-scan 91.5 nm Δt~17 fs 0.4 (FT:16fs) (a.u.) Intensity 0.2 0 Non-optimized compression: <140 nm 720 740 760 780 800 820 840 860 880 900 920 Wavelength (nm) acceptance compressor/no Dazzler feedback ü Highly reliable operation: <45min start-up time ü High beam quality: <λ/3 PtV over full beam ü Spectral Bandwidth: >100nm FWHM è <14 fs FTL (recently compressed to ~17fs) Ø More spectral content is required in the red tail of the pulse: ~180nm FW (1%) Still enough to inject the chain è ~16-17 fs final output IZEST Orsay Nov. 30th 2017 / 16 The Front end: Temporal characterization (5) Ø Taï ga Single shot, D-Scan and Sequoia measurement Taïga Δt~19 fs Sequoia (Amplitude) (Thales single shot) CR~1012 Dscan (Sphere photonics) Δt~17 fs Ø 1.5 TL due to a spectral cut in the compressor (to be fixed) + loop with Dazzler™ IZEST Orsay Nov. 30th 2017 / 17 Outline Introduction Apollon 10PW: Laser system key features Laser construction progress Operation status / Performances The Front End The Power Amplification Section Commissioning phase Conclusion and perspectives IZEST Orsay Nov. 30th 2017 / 18 Power Amplifier Section: current Operational design Powerlite ATLAS12 ATLAS100 CNE400 800 mJ 10 Joules 100 Joules 200 Joules Under construction Amp03 Amp3 Amp30 Amp100 300 mJ > 3 Joules > 30 Joules 100 Joules 10 Hz 0.1 Hz 1 min-1 1 min-1 Amplifier Output Crystal size Beam diameter Pump energy 2 energy (J) diameter/length at 1/e (mm) (mm) AMP-0.3 0.33 15/15 5 1 J at 10 Hz done AMP-3 3.3 40/20 20 10 J at 1 shot/mn done AMP-30 40 175/37 55 100 J at 1 shot/mn done AMP-100 100 196/42 140 200 J at 1 shot/mn 2018 AMP-100 250 196/42 140 500 J at 1 shot/mn 2019 IZEST Orsay Nov. 30th 2017 / 19 Power Amplifier Section IZEST Orsay Nov. 30th 2017 / 20 Ti:Sapphire amplifiers AMP-3.0 Amp03-Amp3 AMP-0.3 AMP-30 IZEST Orsay Nov. 30th 2017 / 21 Amp-0.3: performance Pump= Powerlite laser Amplified beam at 820 nm • Near field on crystal • Near field at the output • Far field 800mJ 150mJ Ø380µm m 1.4 x DL Ø6,5mm Ø5mm • Energy stability • Energy stability • Wavefront WFE ≈ 0,78λ PTP <E> = 815mJ; 0.8% RMS; <E> = 115mJ; 3.7% RMS; IZEST Orsay Nov. 30th 2017 / 22 Amp-3.0: performance Pump: ATLAS12 Amplified beam at 820 nm • Near field on crystal • Near field at the output • Far field At 6.5J At 2.5J 800mJ Ø20mm Ø18mm Ø130µm • Energy stability 1.2 x DL Ø janv. 2011: 12,5J en sortie • Energy stability • Wavefront Ø mars 2013: 12J, stockage à l’IOGS Ø6,5mm Ø juin 2015: installation en LAM, barreaux piqués, remplacés par barreaux 2 x moins dopés, 8J <E> = 2.7J; 1.16% RMS; Ø … - nov. 2016: augmentation progressive des tensions des WFE ≈ 0,82λ PTP flashs pour rester à 8J Ø mars 2017: renvoi pour rétrofit 0,8 λ 12J<E> sortie = 6.6J (retour; 0.4% mi -RMS;avril) IZEST Orsay Nov. 30th 2017 / 23 Amp-30 pump laser: ATLAS100 ATLAS100: 100J at 1sh/min <E> = 100.3J; 0.9% RMS Ø45mm SILIOS Technologies Lens integrated DOE homogenizer D Ø Very stable and robust operation: 100 Joule/min, at 527 nm, ~1% rms, D=4D=10D=5D=7 m m <15µrad rms pointing stability Ø Use of DOE for shaping the beam near field on the crystal with 90% 60mm transmissionè Flat-top beam, stable pumping conditions, no relay imaging required Ø ~87 Joules delivered on the crystal IZEST Orsay Nov.