Quick viewing(Text Mode)

(要約) Molecular Systematics of the Order Phyllobothriidea

(要約) Molecular Systematics of the Order Phyllobothriidea

Ꮫ఩ㄽᩥ 㸦せ⣙㸧

Molecular Systematics of the Order Phyllobothriidea (Platyhelminthes: ) from the Coastal Seas of Japan

㸦᪥ᮏ࿘㎶ᾏᇦ࡟࠾ࡅࡿ྾ⴥ┠㸦ᡥᙧື≀㛛㸸᮲⹸⥘㸧 ࡢศᏊ⣔⤫࡟ᇶ࡙ࡃศ㢮Ꮫⓗ◊✲㸧

ᖹᡂ 26 ᖺ 12 ᭶༤ኈ㸦⌮Ꮫ㸧⏦ㄳ

ᮾி኱Ꮫ኱Ꮫ㝔⌮Ꮫ⣔◊✲⛉

⏕≀⛉Ꮫᑓᨷ ಴ᓥ 㝧

ii

Abstract

The order Phyllobothriidea was established based on its molecular phylogeny that separates the family Phyllobothriidae from the order . However, many genera are left incertae sedis in Tetraphyllidea, and the order Phyllobothriidea should be revised together with these taxonomically uncertain genera. In this study, the systematics of Phyllobothriidea was revised based on molecular analyses using ssrDNA and lsrDNA. As a result, 17 genera including three new genera, namely Phyllobothrium, Alexandercestus, Bilocularia, Calliobothrium, Calyptrobothrium, Chimaerocestos, Crossobothrium, Mitsukuricestus n. gen., Monorygma, Orygmatobothrium, Pelichnibothrium, Scyphophyllidium, Symcallio, Thysanocephalum, Trilocularia, Yamaguticestus n. gen., and Vertebraeovicestus n. gen., were recognized in Phyllobothriidea. Clistobothrium was a junior synonym of Pelichnibothrium, and Marsupiobothrium, Nandocestus, Orectolobicestus, Paraorygmatobothrium, and Ruhnkecestus were junior synonyms of Scyphophyllidium. Monorygma megacotyla was a junior synonym of Ph. squali, and Ph. squali was transferred to Yamaguticestus. Marsupiobothrium gobelinus was transferred to Mitsukuricestus, and Ph. biacetabulatum was transferred to Anthocephalum of Rhinebothriidea. The sequences of the larval , namely Pe. caudatum, Ph. delphini, and Mo. grimaldii, were located in the Pelichnibothrium clade but did not match those of any adults. These three larval species were considered valid species of Pelichnibothrium. The most important taxonomic characteristics of Phyllobothriidea had been believed to be in its scolex and proglottid, but the morphological characteristics did not reflect the phylogeny. Five types of bothridium on the scolex, namely cup, crumple, divided, flat, and loculate margin, were observed in many lineages, but only sac type was uniquely found in Sc. giganteum. The hook of scolex was found to be evolved in multiple lineages. Moreover, it was observed not only in Phyllobothriidea but also in Tetraphyllidea and Onchoproteocephalidea. The presence of laciniate and non-laciniate proglottids was also seen in multiple lineages. Further molecular information is essential to clarify the phylogeny of Phyllobothriidea. Taxonomic studies of Phyllobothriidea have scarcely been done in the coastal seas of Japan, and only 14 species of four genera have been reported thus far. In this study, I have identified 34 species of 14 genera including 14 new species and three new genera from Japanese waters, of which 12 species and five genera are new to Japan. According to the new systematics in this study, the Phyllobothriidea fauna of

i i the coastal seas of Japan has a total of 47 species of 15 genera. The life history of Phyllobothriidea has not been studied extensively because identification of its larvae is difficult due to lack of taxonomic characteristics of the larvae. In this study, the identification of phyllobothriidean larvae was attempted by molecular analyses using lsrDNA and mtDNA COI. On investigating 79 species of teleost , mollusks, and decapod crustaceans collected from the coastal seas of Japan, the larvae of Phyllobothriidea or Tetraphyllidea were collected from 25 host species. Molecular analyses of 42 plerocercoids and merocercoids from 25 host species, with the adult and larval species’ sequences, revealed plerocercoids of Pelichnibothrium caudatum (17 plerocercoids), Pe. montaukensis (2), Pe. cf. montaukensis (2), Scyphophyllidium carcharhinus (1), and Vertebraeovicestus dobukasube (1) and merocercoids of Pe. delphini (2 merocercoids) and Pe. grimaldii (2). Only five plerocercoids were identified to be Phyllobothriidea. The other 10 plerocercoids were found to belong to Anthobothrium of Tetraphyllidea. On comparison of the morphology between adults and plerocercoids of the same species, the apical sucker on plerocercoids was shown to be lost in their adult stages. The morphology of bothridium also greatly changed in growth from plerocercoids to adult stages. Molecular identification is a very effective method for the exact identification of phyllobothriidean larvae. In this study, a part of the life cycle of three species was revealed by the exact molecular identification of its larvae. Comparison of the phyllobothriidean lineage with the host lineage suggested that both host-switch and host-range expansion occurred frequently in the evolution of Phyllobothriidea. These events may play important roles in the diversification of Phyllobothriidea.

ii ii

Contents

General Introduction………………………………………………………………………….1

Chapter I Taxonomic revision of the order Phyllobothriidea based on molecular analysis

1. Introduction………………………………………………………………………………..3 2. Materials and Methods…………………………………………………………………..4 2.1 Specimens…………………………………………………………………………….4 2.2 Treatment of specimens……………………………………………………………..5 2.3 Morphological observations…………………………………………………………5 2.4 DNA extraction, PCR amplification, and DNA sequencing…………………….6 2.5 Sequence alignment and tree construction……………………………………….7 3. Results…………………………………………………………………………………….8 3.1 Molecular phylogenetic analysis…………………………………………………..8 3.2 Evolution of taxonomically important morphological characters……………11 3.3 Systematics of Phyllobothriidea…………………………………………………..12 3.4 Phyllobothriidea fauna in the coastal seas of Japan…………………………109 4. Discussion……………………………………………………………………………….109 4.1 Taxonomic revision of Phyllobothriidea……………………………………..109 4.2 Host specificity……………………………………………………………………..110 4.3 Diversity of species within ………………………………………………111 4.4 Scolex morphology…………………………………………………………………111 4.5 Phyllobothriidea fauna in the coastal seas of Japan…………………………113

Chapter II Identification of phyllobothriidean larvae and their development

1. Introduction………………………………………………………………...…………..114 2. Materials and Methods………………………………………………………………..117 2.1 Sampling and treatment of specimens………………………………………….117 2.2 DNA extraction, PCR amplification, and DNA sequencing………………….117 2.3 Sequence alignment and tree construction…………………………………….118 2.4 Morphological observations………………………………………………………119

iii iii

3. Results…………………………………………………………………………………..119 3.1 Molecular identification of the larvae……………………………………………119 3.2 Morphology of the larvae…………………………………………………………121 3.3 Morphological differences between plerocercoid and adult scolex…………..137 3.4 Intermediate host of the Phyllobothriidea..…………………………………….137 4. Discussion……………………………………………………………………………….138 4.1 Molecular identification of Phyllobothriidea larvae………..…………………138 4.2 Morphology of the larvae …………………………………………………………138 4.3 Morphological changes from plerocercoids to adults………………………..…141 4.4 Life cycle of Phyllobothriidea…………………………………..…………………142

General Discussion…………………………………………………………………………145 1. Evolution of Phyllobothriidea………………………………………………………..145 2. Morphological diversity of Phyllobothriidea……………………………………….147

Conclusion………………………………………………………………………………..…149

Acknowledgements………………………………………………………………………...150

References…………………………………………………………………………………..152 Tables………………………………………………………………………………………...172 Figures……………………………………………………………………………………….229

Appendix…………………………………………………………………….……………….299

DISCLAIMER: The present study is not issued for the permanent scientific record, and no part of it is to be considered published within the meaning of the International Code of Zoological Nomenclature (see Code, Art. 8b).

iv iv

General introduction

Cestodes, which infest , skates, and rays (: Elasmobranchii), have long attracted parasitologists’ attention, probably due to their species diversity and unique morphological characteristics. Therefore, many taxonomic studies have been accumulated to date. However, taxa with unsettled have been widely recognized. This is due to species diversity and unique morphological characteristics of cestodes resident in elasmobranchs. For example, the order Tetraphyllidea previously considered as the most diverse, included four families: Onchobothriidae, Phyllobothriidae, Lecanicephalidae, and Ichthyotaeniidae. Subsequently, twenty families were recognized in this order (Table 1). Recent phylogenic analyses employing morphology (Euzet et al., 1981; Brooks et al., 1991; Hoberg et al., 1997; Caira et al., 1999; 2001) and biomolecular markers (Mariaux, 1998; Olson & Caira, 1999; Kodedová et al., 2000; Olson et al., 2001; Waeschenbach et al., 2007, 2012) revealed that the order Tetraphyllidea was, in fact, polyphyletic. The order Phyllobothriidea was recently elected from one of the families of the polyphyletic order Tetraphyllidea, based on molecular phylogenetic analysis by Caira et al. (2014). They examined 134 species representing 97 genera across the 15 cestode orders. However, the statistical support for the inclusion of Phyllobothriidea was relatively weak compared with support for that of other orders including Litobothriidea, Lecanicephalidea, Rhinebothriidea, Cathetocephalidea, and Onchoproteocephalidea. Moreover, they also withheld to dismantle the order Tetraphyllidea and remained several uncertain genera in polyphyletic Tetraphyllidea. These uncertainties seem to be consequent to inadequate sampling density (and hence statistical power) across the Tetraphyllidea. Elasmobranch fauna in the waters around Japan are relatively abundant, comprising 205 species (Nakabo, 2013) which correspond to approximately 1/5 of all elasmobranch species overall. In contrast to the diversity of host elasmobranchs, investigations of parasitic cestode fauna in the coastal seas of Japan have been limited to only 14 species and several unidentified forms from 11 host species, which have been detailed in five reports to date (Yoshida, 1917; Yamaguti, 1934, 1952, 1960; Yamaguchi et al., 2000; Table 2). It is strongly suggested that diverse cestodes, including new species, must infect elasmobranchs in the coastal seas of Japan. As detailed in Chapter I of the present study, the author conducted several molecular phylogenetic analyses on a wide variety of cestodes using newly collected specimens through intensive and extensive parasitological investigations on

- 1 - elasmobranchs in the coastal seas of Japan. The sequence data examined by Caira et al. (2014) was augmented to elucidate the precise nature of species diversity and phylogeny of elasmobranch cestodes with special reference to the order Phyllobothriidea. The most accurate, up-to-date statistical analytical techniques were also employed. Phyllobothriidean cestodes have two or more intermediate hosts for larval development in addition to a final host for adult stages (Euzet, 1952; Caira, 1990). The parasites migrate from an intermediate host to the advanced-stage host through the food chain during their life cycle. Adult worms occupy the spiral intestines of elasmobranchs and chimaeras, and eggs are released into sea water. The eggs hatch and develop into hexacanth embryos, which are usually consumed by copepods or euphausiids, representing the first intermediate host wherein they develop into procercoid larvae. The first intermediate host is consumed by the second intermediate host, which is typically an invertebrate of one of the seven phyla, teleosts, and cetaceans, and procercoids grow to merocercoid or plerocercoid larvae (Caira & Reyda, 2005). When the second intermediate host are eaten by elasmobranchs and chimaeras, merocercoids and plerocercoids mature into adult worms. Cestode larvae are frequently found during parasitological surveys of marine fishes, marine mammals, and marine invertebrates. However, these larvae can barely be identified because potentially-distinguishing morphological characteristics are not yet known. This has obstructed detailed characterization of intermediate hosts and life cycle stages for not only phyllobothriidean cestodes but also marine parasites in general. Molecular methods, i.e., molecular sequence comparisons between adults and larvae should be effective in linking larvae to adults. In Chapter II of the present study, the author employs such molecular techniques in efforts to identify a wide variety of larval cestodes collected from marine fishes, marine mammals, and marine invertebrates, using the sequence data obtained from adults.

- 2 - Chapter I Taxonomic revision of the order Phyllobothriidea based on molecular analysis

1. Introduction

Recent taxonomic and phylogenetic studies on cestodes parasitizing in elasmobronchs have been focused on solving polyphyly of the order Tetraphyllidea. Olson & Caira (2001) resurrected the order Litobothriidea and transferred the family Litobothriidae from Tetraphyllidea to Litobothriidea. Caira et al. (2005) resurrected the order Cathetocephalidea and transferred the families Cathetocephalidae and Disculicipitidae from Tetraphyllidea to Cathetocephalidea. Healy et al. (2009) elected a new order Rhinebothriidea and transferred a part of Phyllobothriidae from Tetraphyllidea to Rhinebothriidea. These taxonomical decisions were successful, but polyphyly of Tetraphyllidea was not resolved. Recently, Ruhnke (2011) re-examined 78 genera historically associated with the family Phyllobothriidae and reported that only Phyllobothrium was unambiguously valid, 16 genera were provisionally valid, five genera were nomina dubia, one genus was nomen ad interium, nine genera were genera inquirendae, and 17 genera were incertae sedis within the family Phyllobothriidae (Table 3). He transferred eight valid, nine provisionally valid, and one increate sedis genera to the order Rhinebothriidea. In addition, he transferred two valid genera and two genera inquirenda to the other tetraphyllidean family Serendipidae (Table 3). He also synonymized the remaining seven genera to some other tetraphyllidean or rhinebothriidean genera. Later, a new genus Alexandercestus was elected in Phyllobothriidae by Ruhnke & Workman (2013), and the family Phyllobothriidae included the following 18 genera: Phyllobothrium, Alexandercestus, Bibursibothrium, Calyptrobothrium, Cardiobothrium, Clistobothrium, Crossobothrium, Doliobothrium, Flexibothrium, Marsupiobothrium, Monorygma, Nandocestus, Orectolobicestus, Orygmatobothrium, Paraorygmatobothrium, Ruhnkecestus, Scyphophyllidium, and Thysanocephalum (Ruhnke, 2011; Ruhnke & Workman, 2013). Recently, Bayesian Inference (BI) analyses of various combinations of complete small subunit ribosomal DNA (ssrDNA) sequences and complete or partial large subunit ribosomal DNA (lsrDNA) sequences that included 134 species representing 97 genera across the 15 eucestode orders, were conducted by Caira et

- 3 - al. (2014). A monotypic clade consisted of 11 genera, of which 10 genera corresponded to those in the family Phyllobothriidae sensu Ruhnke (2011), emerged through an analysis of the complete ssrDNA along with the partial lsrDNA (D1–D3) sequences of 134 taxa. They raised the clade to the new order Phyllobothriidea elected from a part of Phyllobothriidae and Chimaerocestidae of Tetraphyllidea. Another new order Onchoproteocephalidea was also elected from the order Proteocephalidea and a part of from the family Onchobothriidae. A monophyletic order Phyllobothriidea was first recognized on a molecular basis by Caira et al. (2014), although the statistical significance was low when comparing with other orders. However, the family Phyllobothriidae, revised by Ruhnke (2011), has not been completely examined on a molecular basis and incertae sedis still remains within the family. Moreover, the polyphyly of the order Tetraphyllidea remains unclear because many uncertain genera in polyphyletic Tetraphyllidea remained in the study by Caira et al. (2014). In Chapter I, 419 specimens of cestodes were obtained and intensive and extensive parasitological investigations were performed on elasmobranchs, teleosts, and mammals in the coastal seas of Japan. The specimens were identified, described, illustrated, and sequenced for molecular analysis. In addition to the original data, data examined by Caira et al. (2014) were also included in the present analysis to precisely elucidate the species diversity and phylogeny of the order Phyllobothriidea and related taxa including the order Tetraphyllidea.

2. Materials and Methods

2.1 Specimens

Elasmobranchs were widely caught in the coastal seas of Japan, including the Ogasawara and Yaeyama Islands (Fig. 1, Table 4). Elasmobranchs and other host animals were collected using scientific research vessels and fishing boats and were also obtained from fishes at fishing ports. Parasite investigations were performed on a total of 921 individuals obtained from 76 elasmobranch species of 51 genera from 31 families, two teleost species of two genera from two families, and one cetacean species (Table 5). Hosts were preserved on ice or sometimes frozen until examination and dissected to collect cestodes under a stereomicroscope.

- 4 - 2.2 Treatment of specimens

Cestodes were washed and immersed in elasmobranch saline (NaCl, 2 g; KCl,

0.1 g; CaCl2, 0.02 g; NaHCO3, 0.002 g; urea, 2.5 g; and distilled water, 100 ml). Specimens were mounted on microscopic slides under coverslips with slight pressure and then fixed in alcohol, formaldehyde, and acetic acid (AFA) fixative (70% ethanol, 40% formaldehyde, and acetic acid glacial at a 20:1:1 ratio) for morphological observations. A part of proglottids of some specimens were separately preserved in 99.5 % ethanol for molecular analyses. Specimens on slides were stained with Heidenhain’s iron hematoxylin or alum carmine. Heidenhain’s iron hematoxylin staining was performed as follows: specimens were immersed in 70% ethanol for 1 h, distilled water for 1 h, and 4% ferric ammonium alum for 12h; washed with running water for a half day; stained using Heidenhain’s iron hematoxylin from 3–6 h; washed with running water for a half day; immersed in 1 or 2% ammonium ferric ammonium alum until the color was adequate for observation; washed in running water for a half day; dehydrated in graded ethanol series (70%, 90%, 99.5%, and 100%) for one day each; and cleared in creosote for over 3 days. For alum carmine staining, specimens were immersed in 70% ethanol for 1 h and distilled water for 1 h, stained using alum carmine for 3 days, washed with running water for a half day, with 70% ethanol containing 1% HCl until the color was adequate for observations, washed with running water for half a day, dehydrated in graded ethanol series (70%, 90%, 99.5%, and 100%) for one day each, and cleared in xylene for over 3 days. The stained specimens were then mounted in Canada balsam or Entellan new (Merck). Specimens were deposited in the National Museum of Nature and Science (NSMT-Pl).

2.3 Morphological observations

Prepared specimens were observed under a light microscope. Illustrations were made using a drawing tube or by tracing the photographs of the specimens. Morphological terms followed Chervy (2002) and Ruhnke (2011) (Fig. 2). Measurements of the following body parts were made directly on the specimens using ocular micrometer or on the drawings using ImageJ 1.49 (Rasband, 1997– 2014): total length and maximum width, muscle band widths at anterior and posterior proglottid, scolex length and width, accessory sucker length and width, bothridia length and width, apical sucker length and width, stem length and width,

- 5 - neck width, anterior region of scolex length and width, testis length and width, cirrus width, cirrus sac length and width, ovary length and width, uterus length and width, vagina width, vitelline follicles length and width, and egg length and width. The number of proglottids and tesres were also counted. Specimens were identified as species based on the published keys to the cestodes (Khalil et al., 1994) and every original or revised descriptions.

2.4 DNA extraction, PCR amplification, and DNA sequencing

Total genomic DNA was extracted from a total of 43 species (Table 6) of Phyllobothriidea and its related taxa. In the case that the same species was collected from two or more host species, DNA was obtained from cestode specimen from each host species. DNA extraction was performed using DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s protocol. Complete ssrDNA and partial lsrDNA (D1–D3) were amplified using the primers WormA and WormB, and LSU5 and 1500R, respectively (Waeschenbach et al., 2007; Table 7). PCR amplifications were performed using Premix Taq™ (Ex Taq™ Version 2.0, TaKaRa) or HotStarTaq DNA Polymerase (Qiagen). The total reaction volume was 15 μl containing 7.5 μl of Premix Taq, 0.75 μl of each 0.5 μM primer, and 4.5 μl of Milli-Q water, or 0.075 μl of HotSterTaq DNA Polymerase, 1.5 μl of 10X PCR Buffer, 0.3 μl of 1M dNTP mix, 0.75 μl of each 0.5 μM primer, and 10.125 μl of UPW. Thermal cycling was performed in a Mastercycler® nexus (Eppendorf) or TaKaRa PCR Thermal Cycler Dice® (TaKaRa). PCR reactions were initiated by denaturation at 94°C for 2 min, followed by 40 cycles of the following reactions: denaturation at 94°C for 1 min, annealing at 53°C for 30 s, and extension at 72°C for 2 min, followed by final extension at 72°C for 7 min and completed by preserving the mixture at 10°C. PCR products were loaded on 1.2% agarose gels to confirm amplification and purified by removing excess oligonucleotides using Exo-SAP IT For PCR Product Clean-Up (Affymetrix/USB) following the manufacturer’s protocol. BigDye Terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems) was used for sequencing the purified PCR product. Cycling conditions followed the manufacturer’s protocol. PCR and additional sequencing primers (300F, 300R, 930F, 1200F, 1200R, 1270F, 1270R, and 18S-A27 for ssrDNA and 300F, ECD2, and 1200R for lsrDNA; Table 7) were used. Sequencing was conducted for both strands by Applied Biosystems 3500/3500xL Genetic Analyzer (Applied Biosystems). Contigs were assembled using ATGC5 (GENETYX) or GeneStudio Professional (GeneStudio, Inc.).

- 6 - 2.5 Sequence alignment and tree construction

In the present study, 56 operational taxonomic units (OTUs) from the order Phyllobothriidea and its related taxa, which have not yet been analyzed on a molecular basis, were newly sequenced for the phylogenetic analyses (Table 6). In addition, 55 OTU sequences from GenBank, which were used by Caira et al. (2014), were also analyzed (Table 6). The following two datasets were prepared: Dataset 1 contained a suite of all 111 OTU sequences and Dataset 2 was restricted to 73 OTU sequences, excluding data from the fast-evolving taxa and those from the same species (Table 6, see Results). The sequences of complete ssrDNA, partial lsrDNA (D1–D3), and their combined sequences were used for analysis. By the multiple alignments using MAFFT v7.215 (Katoh & Standley, 2013) with the option L-INS-i, 2,322 positions were aligned from 1,770–2,157 bp of ssrDNA and 1,549 positions from 1,226–1,390 bp of lsrDNA in Dataset 1, whereas 1,905 positions were aligned from 1,816–1,956 bp of ssrDNA and 1,396 positions from 1,225–1,331 bp of lsrDNA in Dataset 2. To remove unreliably aligned regions, including large gaps, Gblocks v0.91b (Castresana, 2000) was employed with the following parameter settings in Dataset 1: minimum number of sequences for a conserved position = 57, minimum number of sequences for a flank position = 95, maximum number of contiguous non-conserved positions = 8, minimum length of a block = 10, allowed gap positions = all, whereas in dataset 2 the following parameter settings were employed: minimum number of sequences for a conserved position = 37, minimum number of sequences for a flank position = 62, maximum number of contiguous non-conserved positions = 8, minimum length of a block = 10, and allowed gap positions = all. Therefore, 1,859 positions of ssrDNA consisting of seven blocks and all 1,386 positions of lsrDNA consisting of nine blocks were selected for reliable regions in Dataset 1, whereas all 1,951 positions of ssrDNA and all 1,378 positions of lsrDNA consisting of two blocks were selected in Database 2. The phylogenetic trees were constructed using the maximum likelihood (ML) method with IQ-TREE version 1.4.3 (Nguyen et al., 2015) and BI with MrBayes v. 3.2.4 (Ronquist & Huelsenbeck, 2003). The General Time Reversible plus Gamma distributed (GTR + G) model was selected as the best-fitting evolutionary model by IQ-TREE for all analyses. Gaps and missing site characters were treated as unknown characters. In the ML analysis, branch supports with the ultrafast bootstrap (UFBoot) (Minh et al. 2013) were obtained and the Shimodaira-Hasegawa like interpretation of aLRT statistic (SH aLRT) (Guindon et al., 2010) implemented

- 7 - in the IQ-TREE, UFBoot, and SH aLRT were estimated from 1,000 replicates. SH aLRT was only used to estimate for nodes of orders. In the BI analysis, bayesian posterior probabilities (BPP) were obtained. The Markov-chain Monte Carlo (MCMC) process was run until the average standard deviation of split frequencies became less than 0.01. The MCMC process was run with four chains sampled every 100 generations for 6,500,000 generations for the combined sequence, 1,500,000 generations for ssrDNA, and 3,000,000 generations for lsrDNA in Dataset 1, whereas 100 generations for 500,000 generations for the combined sequence and ssrDNA and 1,500,000 generations for lsrDNA were sampled in Dataset 2, and the first 25% trees were discarded as burn-in. As above mentioned, a total of 12 phylogenetic analyses were conducted and summarized as follows. ML analysis with IQ-TREE in Dataset 1 with a combined sequence of ssrDNA and lsrDNA, a single ssrDNA, and lsrDNA (Analyses 1, 2, and 3, respectively) and in Dataset 2 with a combined sequence of ssrDNA and lsrDNA, a single ssrDNA, and a single lsrDNA (Analyses 4, 5, and 6, respectively) and BI analysis in Dataset 1 with a combined sequence of ssrDNA and lsrDNA, a single ssrDNA, and a single lsrDNA (Analyses 7, 8, and 9, respectively) and in Dataset 2 with a combined sequence of ssrDNA and lsrDNA, a single ssrDNA, and a single lsrDNA (Analyses 10, 11, and 12, respectively). The UFBoot and BPP are shown on each ML and BI tree, respectively. The author interpreted a statistical support as robust when a node was supported by UFBoot •95, BPP •0.98, or SH aLRT •80.0. The members of the order Litobothriidea and Lecanicephalidea were used as outgroups in Analyses 1–3 and 7–9 and those of the order Lecanicephalidea were used as outgroups in Analyses 4–6 and 10–12.

3. Results

3.1 Molecular phylogenetic analysis

In the present study, newly obtained complete ssrDNA and partial lsrDNA sequences 結果については,5年以内に雑誌等で刊行予定のため,非公開. from 56 OTUs, including seven genera from the order Phyllobothriidea and 10 genera from the order Tetraphyllidea, in addition to 55 OTU sequences used in the study by Caira et al. (2014) from GenBank (Table 6) were first examined in multiple combinations by ML analyses with IQ-TREE and BI analyses (Analyses 1– 12, Figs. 3–8, Appendix Figs. 1–6). In Analysis 1, using combined sequences of ssrDNA and lsrDNA from Dataset 1 by ML analysis, four clades containing diverse

- 8 - taxa, of which three were robust, appeared (Fig. 3). The first clade consisted of members結果については,5年以内に雑誌等で刊行予定のため,非公開. of the order Rhinebothriidea and unexpectedly contained one phyllobothriidean species Phyllobothrium biacetabulatum. The second clade was of the order Onchoproteocephalidea, and the third was the largest clade containing a wide variety of the phyllobothriidean and tetraphyllidean genera (Fig. 3). The last clade, although not statistically supported, was limited to the tetraphyllidean genera. The same topology was also found in Analysis 4 (Fig. 6), 7 (Appendix Fig. 1), and 10 (Appendix Fig. 4). Conversely, in all other analyses, including Analysis 2–3 (Figs. 4–5), 5–6 (Figs. 7–8), 8–9 (Appendix Figs. 2–3), and 11–12 (Appendix Figs. 5– 6), the clade consisted of the phyllobothriidean and tetraphyllidean genera that were divided into two or more clades without any statistical support. This indicates that the emergence of four diverse clades is limited to the analyses using the combined sequence of ssrDNA and lsrDNA. Each order clade in the phylogenetic tree using ML was more robust than those by BI, particularly in the clade containing the phyllobothriidean and tetraphyllidean genera (Analysis 1, Fig. 3). Therefore, the phylogenetic trees constructed by ML based on the combined sequence of ssrDNA and lsrDNA, i.e., Analysis 1 and 4, were selected for further discussion. The author consider the largest clade consisting of phyllobothriidean and tetraphyllidean genera to be a revised Phyllobothriidea based on the fact that all of the OTU sequences clustered in the order Phyllobothriidea sensu Caira et al. (2014) were contained in this clade with an exception of “New genus 10 n. sp. 1” (Caira et al., 2014) which was not examined in this study. Out of the genera in the Phyllobothriidea clade (Figs. 3, 6), monophyly of Calliobothrium, Calyptrobothrium, Chimaerocestos, Crossobothrium, Orectolobicestus, Orygmatobothrium, Pelichnibothrium, and Thysanocephalum was supported. Each monophyly of these genera was highly supported by UFBoot (•96) and BPP (•0.98) (Figs. 3, 6). On the other hand, Phyllobothrium, Clistobothrium, Marsupiobothrium, Monorygma, and Paraorygmatobothrium were polyphyletic or paraphyletic (Figs. 3, 6). Five species of Phyllobothrium were separated into three lineages. Phyllobothrium cf. lactuca, Ph. hoshizame, and Ph. serratum formed a clade (UFBoot 100 and BPP 1.00). Phyllobothrium squali was closely related to Mo. Megacotyla, and this clade was highly supported by UFBoot 100 or BPP 1.00 (Figs. 3, 6). Phyllobothrium delphini was closely related to Mo. grimaldii, Clistobothrium species, and Pelichnibothrium species, and this clade was highly supported by UFBoot 100 or BPP 1.00 (Figs. 3, 6). Clistobothrium was paraphyletic (Fig. 3) or polyphyletic (Fig. 6) and closely related to Mo. grimaldii, Ph. delphini, and

- 9 - Pelichnibothrium species. Two species of Marsupiobothrium were separated into 結果については,5年以内に雑誌等で刊行予定のため,非公開. different lineages. Marsupiobothrium sp. was closely related to Paraorygmatobothrium species and constructed a sister group with Pa. sp.1 (UFBoot 98 and BPP 1.00) (Figs. 3, 6). Marsupiobothrium gobelinus was closely related to Mo. chlamydoselachid and constructed a sister group with Mo. chamydoselachi (UFBoot 100 and BPP 1.00) (Figs. 3, 6). Three species of Monorygma were separated into three lineages. Monorygma chamydoselachi was closely related to Ma. gobelinus, Mo. megacotyla was closely related to Ph. squali, and Mo. grimaldii was closely related to Ph. delphini (Figs. 3, 6). A total of 14 species of Paraorygmatobothrium were closely related to each other and were included in a clade, but the clade also contained Orectolobicestus species, Ma. sp., Nandocestus guariticus, Ruhnkecestus latipi, and Scyphophyllidium cf. giganteum (Figs. 3, 6). Monophyly of this clade was highly supported by UFBoot 100 and BPP 1.00. The sequences of ssrDNA and lsrDNA were directly compared among two or more specimens of a species or from possibly identical species to examine the intraspecific variation in the sequence. Two specimens of Clistobothrium montaukensis from the same host species had only four different sites (0.12%) of 3,329 sites studied (Fig. 3, Table 8). These specimens were largely different from the other two congeneric species in the sequence (20–27 different sites, 0.60%–0.81%; Table 8). Crossobothrium dohrni and Cr. cf. dohrni from the same host species showed a slight difference (five different sites, 0.15%; Fig. 3, Table 9). These specimens were greatly different from the other two congeneric species (35–47 different sites, 1.05–1.41%; Table 9). Comparing four sequences of Orygmatobothrium musteli (two sequences), Or. cf. musteli 1, and Or. cf. musteli 2, three sequences of Or. musteli and Or. cf. musteli 1 were very similar (2–4 different sites, 0.06%–0.12%; Fig. 3, Table 10), but the sequence of Or. cf. musteli 2 was greatly different from them (94–97 different sites, 2.82%–2.91%; Fig. 3, Table 10). Phyllobothrium squali and Monorygma megacotyla were extremely closely related in the trees (Fig. 3). Among the nine specimens of the two species, five genotypes were recognized, and 1–21 different sites (0.03%–0.63%) were observed between the genotypes (Fig. 3, Table 11). The two species, however, shared three genotypes. These three genotypes of the species were not different depending on the host species. The sequence of Thysanocephalum thysanocephalum matched the sequence of Th. crispum reported by Caira et al. (2014). On the other hand, five species of Paraorygmatobothrium, Pa. prionacis, Pa. sp. 1, Pa. sp. 3, Pa. sp. 8, and Pa. sp. 10, did not show any intraspecific variation (Fig.

- 10 - 3, Table 12). No intraspecific variation was found even between specimens collected from結果については,5年以内に雑誌等で刊行予定のため,非公開. different host species for the latter four species (Table 12).

3.2 Evolution of taxonomically important morphological characters

Taxonomically important morphological characters (e.g., the hook of a scolex, bothridium, and proglottid) were evaluated based on the molecular phylogeny. All three characters evolved in multiple lineages (Figs. 9–13). In the classification by Caira et al. (2014), the hook of the scolex was not observed in Phyllobothriidea. In this study, two genera having the hook of a scolex, i.e., Calliobothrium and Symcallio, were closely related to Phyllobothriidea (Figs. 3, 6). Therefore, the hook of the scolex was found not only in lineages of Onchoproteocephalidea and Tetraphyllidea but also in lineage containing the Phyllobothriidea genera (Fig. 9). Bothridium had been used as a taxonomic character to distinguish the genera of Phyllobothriidea. Various bothridia were observed in the species of the Phyllobothriidea clade. Among this clade, the bothridium was classified into six types: flat, cup, crumple, divided, loculate margin, and sac. The flat type was observed in many species of the Phyllobothriidea clade (Fig. 10). The cup type was observed in Marsupiobothrium sp. and Paraorygmatobothrium paulum. However, these two species belonged to the Paraorygmatobothrium clade, and they were located in different lineages. The crumple type was observed in polyphyletic lineages, Phyllobothrium, Alexadercestus, Clistobothrium montaukensis, Cl. tumidum, Pelichnibothrium caudatum, and Vertebraeovicestus. The divided type was also observed in polyphyletic lineages Calliobothrium, Ruhnkecestus, Symcallio, and Trilocularia. Loculate margin type bothridium was observed in Chimaerocestos, Nandocestus, and Orectolobicestus. The sac type was only observed in Scyphophyllidium cf. giganteum, and this species belonged to the Paraorygmatobothrium clade. Therefore, these types without sac type of bothridium occurred in multiple lineages, and these types were not reflected their phylogeny. Two types of base of the bothridium, i.e., sessile and stalk, were observed in the clade including Phyllobothriidea. The sessile type was observed in many clades, whereas the stalk type was observed in only three clades (Fig. 11). One clade was composed only of the stalk type species of Crossobothrium, and the second clade was only composed of the stalk type species of Marsupiobothrium gobelinus and Monorygma chamydoselachi. The other clade was composed of the stalk type species,

- 11 - i.e., three Clistobothrium species, and the sessile type species, i.e., two Pelichnibothrium結果については,5年以内に雑誌等で刊行予定のため,非公開. species and Phyllobothrium delphini and Mo. grimaldii. Species with these four sessile type were only known as a larval stage or maintaining the larval form in adult stage (see Chapter II for more explanation). Two types of proglottids were observed among the Phyllobothriidea clade, i.e., the laciniate and flat type. The laciniate type was observed in Calliobothrium, Chimaerocestos, and Crossobothrium, whereas the flat type was widely observed in the other lineages of Phyllobothriidea (Fig. 12). The three genera with the laciniate type did not construct monophyletic group and were located in different lineages. The phylogenetic tree suggested that the non-laciniate proglottid was an ancestral character, and the laciniate proglottid appeared secondary. Almost all species of the Phyllobothriidea clade had four accessory suckers in bothridia. However, some species surprisingly had special suckers in addition to the accessory suckers or had lost accessory suckers (Fig. 13). All Orygmatobothrium species had a central sucker in each bothridium (Fig. 2C). The central sucker was a unique character of Orygmatobothrium. All Pelichnibothrium species had an apical sucker at the top of scolex (Fig. 2B). The apical sucker was a unique character of Pelichnibothrium. Monospecific genus Ruhnkecestus surprisingly had no accessory suckers. Because the others species of the Phyllobothriidea clade had accessory suckers, it was considered that this species had lost the accessory suckers.

3.3 Systematics of Phyllobothriidea

The order Phyllobothriidea has very diverse forms of scolex and was classified mainly based on the morphological characters of the scolex. However, molecular analysis revealed that these morphological characters did not reflect their phylogeny and the same morphology evolved in multiple lineages (Sections 3.1 and 3.2). Because of this, the taxonomy of Phyllobothriidea was confusing. In this study, Phyllobothriidea was revised to contain a total of 21 genera, including nine tetraphyllidean genera and a new genus according to molecular analysis (Figs. 3, 6). This new Phyllobothriidea clade was supported by SH aLRT 85.7 and 92.1 (Table 13). Phyllobothrium biacetabulatum of Phyllobothriidea was transferred to Anthocephalum of Rhinebothriidea. In this study, the monotypic family Phyllobothriidae was recognized in the order Phyllobothriidea. Phylogeny of the phyllobothriidean genera was indistinct due to weak statistical supports (Figs. 3, 6). Therefore, the auther refrained from

- 12 - separating the order into two or more families. 結果については,5年以内に雑誌等で刊行予定のため,非公開. The taxonomy of Phyllobothriidea was also confusing at the genus level. The phylogenetic analyses showed that five genera were polyphyletic (Figs. 3, 6; see Section 3.1). In this study, taxonomic revision of the genera of Phyllobothriidea was performed according to the following criteria; only monophyletic clades sharing similar morphology were recognized to be a valid genera. When two monophyletic genera constructed a sister group and their morphological difference was slight, these genera were not synonymized in this study. According to these criteria, Phyllobothriidea is classified into 17 monophyletic genera defined by morphological characters (Fig. 14; Table 14). Polyphyletic Phyllobothrium was divided into three genera: the species having bifid bothridium formed a monophyletic clade that was assigned as Phyllobothrium and the other species were transferred to other genera (see remarks of genus Phyllobothrium). Monorygma was divided into two genera: Mo. chamydoselachi having triangle accessory suckers was assigned as Monorygma (see remarks of genus Monorygma) and another species belonged to Pelichnibothrium or Yamaguticestus (see remarks of genus Pelichnibothrium and genus Yamaguticestus). Pelichnibothrium species, Clistobothrium species, Ph. delphini, and Mo. grimaldii constructed a clade highly supported by UFBoot 100 and BPP 1.00 (Figs. 3, 6). These species also shared a muscle band in proglottids, and they were recognized to be one genus. According to the priority (International Code of Zoological Nomenclature, Art. 23), these species were assigned as Pelichnibothrium, and Clistobothrium was treated as a junior synonym (see remarks of genus Pelichnibothrium). Marsupiobothrium, Nandocestus, Orectolobicestus, Ruhnkecestus, and Scyphophyllidium were nested in the Paraorygmatobothrium clade and were highly supported by UFBoot 100 and BPP 1.00 (Figs. 3, 6). Species of this clade shared ovaries extending to the side of the proglottids. This character was also observed in another clade of Calliobothrium and Symcallio species but they did not bear the hook found in Calliobothrium and Symcallio species. This clade was assigned as Scyphophyllidium according to its priority (International Code of Zoological Nomenclature, Art. 23) (see remarks of genus Scyphophyllidium). Further, three new genera were established for the species phylogenetically separated and morphologically different from the current genera. Yamaguticestus was established for Phyllobothrium squali. Although this genus is morphologically similar to Alexandercestus, the degree of crumpling of the bothridium differed (Table 14). The degree of crumpling of the bothridium of this genus was smaller than that

- 13 - of the bothridium of Alexandercestus (see remarks of genus Yamaguticestus). Mitsukuricestus結果については,5年以内に雑誌等で刊行予定のため,非公開. was established for Marsupiobothrium gobelinus. This genus has stalk type of bothridium base and non-laciniate proglottid, and this morphological combination was not observed in the other genus (see remarks of genus Mitsukuricestus). Vertebraeovicestus was established to accommodate a monotypic new species. This genus is similar to Yamaguticestus, but different from it in the morphology of eggs (see remarks of genus Vertebraeovicestus). A total of 14 new species were described in Phyllobothriidea. Ten undescribed species assigned to Paraorygmatobothrium in the current systematics (Paraorygmatobothrium sp. 1–10) were described as new species of Scyphophyllidium according to the revision of genera in this study (Table 15), and four new species were described in Phyllobothrium, Alexandercestus, Calliobothrium, and Vertebraeovicestus. Monorygma megacotyla was treated as a junior synonym of Yamaguticestus squali (see remarks of Yamaguticestus squali). Further, the species having bifid bothridium, like Phyllobothrium, was collected in this study. In this phylogenetic analysis, this species was located in the Tetraphyllidea clade (Figs. 3, 6). Therefore, this species was described as a new genus and a new species Rosebothrium ootenjikuzame in Tetraphyllidea.

Systematic account

Order Phyllobothriidea Caira, Jensen, Waeschenbach, Olson & Littlewood, 2014

Type family: Phyllobothriidae Braun, 1900 (by monotypy)

Diagnosis (emended from Caira et al., 2014)

Small to medium sized cestodes. Proglottids hermaphroditic, euapolytic, or apolytic, craspedote or acraspedote. One set of reproductive organs per proglottid. Two pairs of lateral osmoregulary canals; ventral canals usually wider than dorsal canals. Scolex with four muscular bothridia. Bothridium with anterior accessory sucker, most without facial loculi, some with marginal loculi, extensively folded posteriorly in some, stalks or not; accessory sucker without lateral muscular projections. Apical organ, hooks and metascolex in some. Remi absent. Testes numerous, post-poral field present. Vas deferens convoluted. External seminal vesicle present or absent. Cirrus armed with spinitriches. Genital pores lateral,

- 14 - irregularly alternating. Vagina opening anterior to cirrus sac. Vitellarium follicular; 結果については,5年以内に雑誌等で刊行予定のため,非公開. follicles generally in lateral fields, occasionally circumcortical. Uterus without lateral diverticula. Adults primarily in sharks, occasionally in batoids.

Remarks

The order Phyllobothriidea includes the monotypic family Phyllobothriidae. Phyllobothriidae was elected as one of the family in Tetraphyllidea. It had been treated as a major family of Tetraphyllidea until Caira et al. (2014) separated the family from Tetraphyllidea by molecular phylogeny. Caira et al. (2014) established the order Phyllobothriidea for Phyllobothriidae which included 11 genera. However, they did not examine many phyllobothriid genera in their analyses and left these genera in Tetraphyllidea as incertae sedis. According to the molecular analyses in this study (Figs. 3, 6), 11 genera clearly belonged to Phyllobothriidea and nine incertae sedis genera of Tetraphyllidea, i.e., Alexandercestus, Bilocularia, Calliobothrium, Clistobothrium, Crossobothrium, Monorygma, Pelichnibothrium, Symcallio, and Trilocularia, were transferred to Phyllobothriidea. Among these 20 genera, Phyllobothrium, Clistobothrium, Monorygma, and Paraorygmatobothrium were polyphyletic, and Marsupiobothrium, Nandocestus, Orectolobicestus, Pelichnibothrium, and Ruhnkecestus were nested in other genera (Figs. 3, 6). In this study, phyllobothriidean genera were revised according to molecular phylogeny and morphology (Fig. 14, Table 14). Consequently, Clistobothrium was considered as a junior synonym of Pelichnibothrium (see remarks of genus Pelichnibothrium). Marsupiobothrium, Nandocestus, Orectolobicestus, Paraorygmatobothrium, and Ruhnkecestus were treated as junior synonyms of Scyphophyllidium (see remarks of genus Scyphophyllidium). Yamaguticestus was established for Phyllobothrium squali (see remarks of genus Yamaguticestus). Mitsukuricestus was established for Marsupiobothrium gobelinus (see remarks of genus Mitsukuricestus). Moreover, Vertebraeovicestus was established to accommodate a new species (see remarks of genus Vertebraeovicestus).

Family Phyllobothriidae Braun, 1900

Type genus: Phyllobothrium van Beneden, 1850. Other genera: Alexandercestus Ruhnke & Workman, 2013; Bilocularia Obersteiner, 1914; Calliobothrium van Beneden, 1850; Calyptrobothrium Monticelli, 1893;

- 15 - Chimaerocestos Williams & Bray, 1984; Crossobothrium Linton, 1889; 結果については,5年以内に雑誌等で刊行予定のため,非公開.Mitsukuricestus n. gen.; Monorygma Diesing, 1863; Orygmatobothrium Diesing, 1863; Pelichnibothrium Monticelli, 1889; Scyphophyllidium Woodland, 1927; Symcallio Bernot, Caira & Pickering, 2015; Thysanocephalum Linton, 1890; Yamaguticestus n. gen.; Vertebraeovicestus n. gen.

Diagnosis

The same as a diagnosis of the order Phyllobothriidea.

Remarks

See remarks of Phyllobothriidea.

Genus Phyllobothrium van Beneden, 1850

Type species: Phyllobothrium lactuca van Beneden, 1850. Other species: Phyllobothrium hoshizame n. sp.; Ph. riseri Ruhnke, 1996; Ph. serratum Yamaguti, 1952.

Incertae sedis– Phyllobothrium arctowskii Wojciechowska, 1991; Ph. auricula van Beneden, 1858; Ph. blakei Shipley & Hornell, 1906; Ph. blochii Srivastav & Srivastava, 1988; Ph. bombayensis Srivastava & Capoor, 1979; Ph. compactum Southwell & Prashad, 1920; Ph. dagnallium Southwell, 1927; Ph. dasybati Yamaguti, 1934; Ph. discopygi Campbell & Carvajal, 1987; Ph. foliatum Linton, 1890; Ph. georgiense Wojciechowska, 1991; Ph. hallericola Church & Schmidt, 1990; Ph. loculatum Yamaguti, 1952; Ph. marginatum Yamaguti, 1934; Ph. microsomun Southwell & Hilmy, 1929; Ph. minimum Subhapradha, 1955; Ph. minutum Shipley & Hornell, 1906; Ph. myliobatidis Brooks, Mayes & Thorson, 1981; Ph. pastinacae Mokhtar-Maamouri & Zamali, 1981; Ph. piriei Williams, 1968; Ph. pristis Watson & Thorson, 1976; Ph. radioductum Kay, 1942; Ph. rakusai Wojciechowska, 1991; Ph. siedleckii Wojciechowska, 1991; Ph. sinuosiceps Williams, 1959; Ph. thridax van Beneden, 1850; Ph. vagans Haswell, 1902; Ph. williamsi Schmidt, 1986. Species inquirenda– Phyllobothrium chamissonii (Linton, 1905); Ph. loliginis (Leidy, 1887); Ph. pammicrum Shipley & Hornell, 1906; Ph. rhinoptera Vijaya Lakshmi & Sanaka, 1996; Ph. trygoni Jadhav, 1985.

- 16 - Diagnosis (emended from Ruhnke, 2011) 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Worms apolytic, robust, craspedote. Scolex with four muscular bothridia and glandular apical organ. Bothridium extremely foliose, distinctly bifid posteriorly. Cirrus sac oval. Cirrus bearing spinitriches. Genital pores lateral, irregularly alternating, in the middle third of proglottid; genital atrium well developed. Vaginal spincter present. Ovary posterior, not extends from side to side, H-shaped in frontal view, tetralobed in cross section. Uterus ventral, reaching posterior margin of cirrus sac in mature proglottids, reaching the anterior margin of cirrus sac in gravid proglottids. Vitellarium follicular, follices arranged in two lateral fields, each consisting of multiple columns of follicles, partially or completely interrupted by cirrus sac. Parasites of triakid sharks.

Remarks

Many species have been described in this genus. However, Ruhnke (1996b, 2011) recognized only three species, Phyllobothrium lactuca, Ph. riseri, and Ph. serratum, as valid species in this genus, and other 34 species were treated as incertae sedis or species inquirenda (Appendix Table 1). Type species of this genus, Phyllobothrium lactuca was taxonomically confusing. Since Ph. lactuca was described from Mustelus mustelus by van Beneden (1850), Phyllobothrium had frequently been reported from Mustelus sharks. The specimens from Mu. asterias, Mu. lenticulatus, and Mu. manazo were identified with as Ph. lactuca (Yoshida, 1917; Yamaguti, 1952; Robinson, 1959; Olson et al., 2001). However, these records were doubtful because phyllobothriideans were usually oioxenous (Ruhnke, 2011). Ruhnke (2011) mentioned that Ph. lactuca reported by Olson et al. (2001) should be treated as Ph. cf. lactuca. Further, Yoshida (1917) and Yamaguti (1952) reported Ph. lactuca from Mu. manazo, but they observed some morphological differences between their specimens and original description of Ph. lactuca (van Beneden, 1850). Historically, the species having crumple bothridium had been classified as Phyllobothrium. However, Phyllobothrium was polyphyletic and separated into four lineages (Fig. 3). Crumple bothridium did not reflect the phylogeny of Phyllobothrium in molecular analyses (Fig. 10; see Section 3.2). In morphological observations, Phyllobothrium could be subdivided by the detailed morphology of bothridium (Table 14). One of the lineages of Phyllobothrium contained Ph.

- 17 - hoshizame , Ph. serratum, and Ph. cf. lactuca. These three species had similar morphology結果については,5年以内に雑誌等で刊行予定のため,非公開. with the type species Ph. lactuca, and this lineage was assigned to the genus Phyllobothrium. The type species and the species of this lineage had bifid- form and crumple bothridium (Table 14). The other three lineages transferred to the other genera (see remarks of genus Pelichnibothrium, genus Yamaguticestus, and Anthocephalum biacetabulatum). The three valid species and two species of incertae sedis by Ruhnke (1996b, 2011) were examined in this study. The species of incertae sedis, i.e., Phyllobothrium squali and Ph. biacetabulatum, were positioned apart from the lineage of the valid Phyllobothrium species and were located in two separate lineages (Fig. 3). Phyllobothrium squali was closely related with Monorygma megacotyla. The two species were considered synonymous (see remarks of Yamaguticestus squali). This lineage was not included in any genera (Fig. 3), and Yamaguticestus was elected to accommodate these synonymous species (see remarks of genus Yamaguticestus). Phyllobothrium biacetabulatum was located in Anthocephalum clade in Rhinebothriidea (Fig. 3), and was transferred to Anthocephalum (see remarks of Anthocephalum biacetabulatum). Further, the taxonomic status of four species inquirendae by Ruhnke (2011) were resolved in this study. These species positioned apart from the lineage of valid Phyllobothrium species. Phyllobothrium delphini was nested in Pelichnibothrium clade (Figs. 3, 6) and was transferred to Pelichnibothrium (see remarks of genus Pelichnibothrium). Phyllobothrium caudatum and Ph. salmonis were considered junior synonyms of Pe. caudatum (see remarks of Pelichnibothrium caudatum). Phyllobothrium hyperapolytica was considered a junior synonym of Bilocularia hyperapolytica (see remarks of Bilocularia hyperapolytica). Phyllobothrium may be parasitic only in triakid sharks. Two species from the hosts other than triakids, Ph. biacetabulatum and Ph. squali, were removed from Phyllobothrium by this revision. The other Phyllobothrium species from the hosts other than triakids may also be removed from this genus.

Phyllobothrium hoshizame n. sp.

Phyllobothrium lactuca: Yoshida, 1917: 560–563; Yamaguti, 1952: 22–23, Pl. 10 Figs. 56, Pl. 20 Figs. 24–25.

Type host: Mustelus manazo Bleeker, 1854 (Carcharhiniformes: Triakidae).

- 18 -

Type結果については,5年以内に雑誌等で刊行予定のため,非公開. locality: off Kanaya, Chiba Prefecture, Japan. Site of infection: Spiral intestine. Distribution: Pacific Ocean–off Kanaya, Chiba Prefecture, Japan (this study); Tokyo, Tokyo Metropolitan, Japan (Yoshida, 1917): Sea of Japan (Yamaguti, 1952). Etymology: The species is named for Japanese name of its type host, Mustelus manazo.

Material examined: No. Mustelus manazo 27, 29 (two whole mounted adult specimens, host Mu. manazo, off Kanaya, Chiba Prefecture, Japan, 17.iv.2008).

Description (Fig. 15)

Adults Based on two mounted adult specimens. Worms craspedote, euapolytic. Scolex 3,883–3,937 (3910.0, N=2) long by 2,702–5,124 (3913.0, N=2) wide, composed of four bothridia with one accessory sucker (Fig. 15A). Bothridium crumpled, distinctly bifid posteriorly, 1,043–3,651 (2,037.5, N=2, n=8) long by 1,571–2,814 (2,101.8, N=2, n=8) wide, Accessory sucker round, 160–215 (193.3, N=2, n=8) long by 172–239 (209.1, N=2, n=8) wide. Neck 564– 1,398 (981, N=2) wide. Terminal proglottid 2,255 (N=1) long by 1,603 (N=1) wide. Mature proglottids 2,140–2,394 (2,268.8, N=1, n=4) long by 1,603–2,457 (2,105.8, N=1, n=4) wide (Fig. 15B). Testes oblong, densely arranged, 163–170 (165.3, N=1, n=4) in total number per proglottid, 70–110 (85.4, N=1, n=4) long by 75–98 (84.0, N=1, n=4) wide, post-vaginal testes 32–35 (32.8, N=1, n=4) in number. Cirrus flatted surface, 67–121 (87.0, N=1, n=4) wide. Cirrus-sac oval, 914–1,053 (972.0, N=1, n=4) long by 52–79 (61.4, N=1, n=4) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 52–78 (61.4, N=1, n=4)% of proglottid length from posterior end, irregularly alternating. Vagina 61–139 (86.0, N=1, n=4) wide. Ovary near posterior end of proglottid, not extend from side to side, H-shaped in dorsoventral view, 490– 705 (608.5, N=1, n=4) long by 973–1,386 (1,220.5, N=1, n=4) wide. Uterus saccate, median, running anteriorly up to genital pore level, 991–1,153 (1080.8, N=1, n=4) long by 140–352 (216.3, N=1, n=4) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 2,104–2,344 (2,181.0, N=1, n=4) long by 229–629 (429.5, N=1, n=4) wide.

- 19 - Remarks 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Phyllobothrium hoshizame was clearly different from other Phyllobothrium species. Accessory sucker of this species (160–215 long by 172–239 wide) was larger than Ph. lactuca (100–138 long by 128–155 wide) and Ph. riseri (110–160 in diameter) (Ruhnke, 1996b). The total number of testes (163–170) was less than Ph. serratum (205–230), and the number of post-vaginal testes (32–35) more than Ph. serratum (24–28) (this study). In the molecular analysis, the sequence of this species was different from Ph. cf. lactuca by Caira et al. (2014) (Table 16). Hence, this species was considered a species of Phyllobothrium. Yoshida (1917) reported Phyllobothrium lactuca from Mustelus manazo. He mentioned slight differences between his materials and the original description of Ph. lactuca. His materials were smaller than Ph. lactuca. Body size of Yoshida’s (1917) Ph. lactuca matched with my specimens. Yamaguti (1952) also reported Ph. lactuca from Mu. manazo. However, his materials were also smaller than Ph. lactuca, matched with Ph. hoshizame. Perhaps, Ph. lactuca of Yoshida (1917) and Yamaguti (1952) were conspecies with Ph. hoshizame. Phyllobothrium species from Mustelus sharks had considered closely related species (Ruhnke, 2011). However, Ph. hoshizame was phylogenetically more close to Ph. serratum from Triakis scyllium than to Ph. cf. lactuca from Mustelus sharks (Figs. 3, 6, Table 16). The host of these species, Mu. manazo and Tr. scyllium, have similar geographical distribution (Evert et al., 2013), and affinity between Phyllobothrium species may be more related to the distribution of the host species than their phylogeny. This species is oioxenous, parasitic in only Mustelus manazo.

Phyllobothrium serratum Yamaguti, 1952

Phyllobothrium serratum Yamaguti, 1952: 17–18, pl. 4 Figs. 19–21; Williams, 1968: 242; Ruhnke, 1996b: 5–6, Figs. 12–15; Ruhnke, 2011: 33–35, Figs. 15– 16. Phyllobothrium tumidum: Tseng, 1933: 330–332, Fig. 9; Hsü, 1935: 566.

Type host: Triakis scyllium Müller & Henle, 1839 (Carcharhiniformes: Triakidae). Type locality: off Hamajima, Mie Prefecture, Japan. Site of infection: Spiral intestine.

- 20 - Distribution : Pacific Ocean– off Hamajima, Mie Prefecture, Japan (Yamaguti, 1952); 結果については,5年以内に雑誌等で刊行予定のため,非公開. off Shimoda, Shizuoka Prefecture, Japan (this study): East China Sea– off Tsingtao, China (Tseng, 1933).

Material examined: No. Triakis scyllium 32, 34 (two whole mounted adult specimens, host Tr. scyllium, off Shimoda, Shizuoka Prefecture, Japan, 15.iv.2009), MPM 22715 (two whole mounted adult specimens, host Tr. scyllium, off Hamajima, Mie Prefecture, Japan, 14.iv.1939).

Description (Fig. 16)

Adults Based on four mounted adult specimens. Worms craspedote, euapolytic. Scolex 2,537–3,422 (2,945.7, N=3) long by 2,837–4,474 (3,499.0, N=3) wide, composed of four bothridia with one accessory sucker (Fig. 16A). Bothridium crumpled, distinctly bifid posteriorly, 981–2,089 (1,449.9, N=3, n=12) long by 1,351–2,590 (1,831.3, N=3, n=12) wide, Accessory sucker round, 81–40 (114.3, N=3, n=12) long by 92–152 (111.3, N=3, n=12) wide. Neck 845– 1,489 (1,060.3, N=3) wide. Mature proglottids 509–616 (569.5, N=2, n=6) long by 2,313–2,702 (2,501.7, N=2, n=6) wide (Fig. 16B). Gravid proglottids 3,582–3,738 (3,652.7, N=1, n=3) long by 1,660–1,884 (1,743.0, N=1, n=3) wide (Fig. 16C). Testes round, densely arranged, 205–230 (218.2, N=2, n=9) in total number per proglottid, 33–84 (51.8, N=2, n=18) long by 35–66 (49.1, N=2, n=18) wide, post-vaginal testes 24–28 (25.2, N=2, n=9) in number. Cirrus flatted surface, 40–165 (94.2, N=2, n=9) wide. Cirrus-sac oval, 734– 1,035 (856.1, N=2, n=9) long by 197–408 (278.1, N=2, n=8) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 41–50 (45.1, N=2, n=9)% of proglottid length from posterior end, irregularly alternating. Vagina 25–101 (46.1, N=2, n=9) wide. Ovary near posterior end of proglottid, not extend from side to side, H-shaped in dorsoventral view, 70–954 (353.0, N=2, n=9) long by 799–2,875 (2,645.0, N=2, n=9) wide. Uterus saccate, median, running anteriorly up to genital pore level, 289–396 (353.7, N=2, n=6) long by 189–352 (251.5, N=2, n=6) wide at mature proglottid, 2,235–2,875 (2,645.0, N=1, n=3) long by 681–825 (773.7, N=1, n=3) wide at gravid proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 351–3,652 (1,465.0, N=2, n=9) long by 123–323 (208.0, N=2,

- 21 - n=9) wide. Eggs quadrangular pyramid-like, 10–14 (12.7, N=1, n=4) long by 10–14 (12.3,結果については,5年以内に雑誌等で刊行予定のため,非公開. N=1, n=4) wide (Fig. 16D).

Remarks

Phyllobothrium serratum was closely related to Ph. hoshizame in the molecular analysis (Figs. 3, 6, Table 16) but different from it in morphology (see remarks of Phyllobothrium hoshizame). Tseng (1933) reported Phyllobothrium tumidum (= Pelichnibothrium tumidum; see remarks of Pelichnibothrium tumidum) from Triakis scyllium. However, his description was morphologically different from Pe. tumidum has bifid bothridium like Phyllobothrium. Perhaps, Pe. tumidum of Tseng (1933) should be regarded as Ph. serratum. This species is oioxenous, parasitic in only Triakis scyllium.

Genus Alexandercestus Ruhnke & Workman, 2013

Type species: Alexandercestus gibsoni Ruhnke & Workman, 2013. Other species: Alexandercestus manteri Ruhnke & Workman, 2013; Al. ootenjikuzame n. sp.

Diagnosis (emended from Ruhnke & Workman, 2013)

Worms euapolytic. Scolex with four bothridia; bothridium fleshy, foliose, with a single apical sucker. Proximal surfaces of bothridium covered with aristate gladiate spinitriches and filitriches; distal locular surfaces covered with serrate gladiate spinitriches and filitriches. Neck scutellate. Testes oblong, irregularly arranged. Genital pores lateral. Cirrus-sac curved anteriorly. Vas deferens coiled, anterior and medial to cirrus-sac. Vagina median, extending anteriorly from Mehlis’ gland, then laterally along the anterior margin of vas deferens to the genital atrium. Uterus ventral, extending anteriorly to level of vas deferens in mature proglottids. Vitellarium follicular, lateral, interrupted by cirrus-sac. Parasites of carcharhinid sharks.

Remarks

Alexandercestus was described in Phyllobothriidae of Tetraphyllidea by

- 22 - Ruhnke & Workman (2013), but Caira et al. (2014) did not include in Phyllobothriidea.結果については,5年以内に雑誌等で刊行予定のため,非公開. In this study, this genus was clearly shown to be located in Phyllobothriidea clade (Figs. 3, 6). Molecular analyses showed that Alexandercestus was a sister group of Scyphophyllidium, as Ruhnke & Workman (2013) showed in their phylogenetic tree of partial lsrDNA. This genus has strikingly crumpled bothridium, similar to some species of Pelichnibothrium and Phyllobothrium. However, their crumple bothridium was a different structure. The bothridium of this genus was crumpled all over, while the bothridium of Pelichnibothrium was crumpled the only margin. The bothridium of Phyllobothrium is bifid form, while the bothridium of this genus was not (Table 14). Both of the two currently valid species, Alexandercestus gibsoni and Al. manteri were reported from the sharks of Negaprion of Carcharhinidae. However, Al. ootenjikuzame was described from another carcharhinid genus, Carcharhinus in this study. This genus is parasitic only in Carcharhinidae. This study is the first report of this genus from Japanese waters.

Alexandercestus ootenjikuzame n. sp.

Type host: Carcharhinus leucas (Valenciennes, 1839) (Carcharhiniformes: Carcharhinidae). Type locality: off Yaeyama Islands, Okinawa Prefecture, Japan. Site of infection: Spiral intestine. Distribution: off Yaeyama Islands, Okinawa Prefecture, Japan. Etymology: The species is named for Japanese name of its type host.

Material examined: No. Carcharhinus leucas 10 (Holotype: a whole mounted adult specimen, host Ca. leucas, off Yaeyama Islands, Okinawa Prefecture, Japan, 30.vii.2013), No. Carcharhinus leucas 7–8 (Paratype: two whole mounted adult specimens, host Ca. leucas, off Yaeyama Islands, Okinawa Prefecture, Japan, 30.vii.2013).

Description (Fig. 17)

Adults Based on three whole mounted adult specimens. Worms craspedote, euapolytic 128.2–132.2 (120.2, N=2) mm long, maximum wide 2,657–2,769 (2,708.5, N=2) at level of scolex or proglottid; 378–401 (389.5, N=3)

- 23 - proglottids per worm (Fig. 17A). Scolex 2,528–2,920 (2,671, N=3) long by 2,240–3,080 (2,693.3,結果については,5年以内に雑誌等で刊行予定のため,非公開. N=3) wide, composed of four bothridia with one accessory sucker (Fig. 17B). Bothridium crumple, 932–2,660 (1,648.2, N=3, n=11) long by 1,085–2,073 (1,388.6, N=3, n=11) wide, Accessory sucker round, 127–270 (214.8, N=3, n=11) long by 186– 233 (207.6, N=3, n=11) wide. Neck 593–768 (703.0 N=3) wide. Terminal proglottid 2,380–2,490 (2,444.3, N=3) long by 1,987–2,159 (2,092.0, N=3) wide. Mature proglottids 1,793–2,490 (2,200.6, N=3, n=10) long by 1,987–2,657 (2,263.2, N=3, n=10) wide (Fig. 17C). Gravid proglottid not observed. Testes oblong, irregularly arranged, 183–228 (205.5, N=3, n=10) in total number per proglottid, 101–133 (113.3, N=3, n=20) long by 104–153 (134.2, N=3, n=20) wide, post-vaginal testes 50–59, (54.5, N=3, n=10) in number. Cirrus-sac oval, 424–824 (589.3, N=2, n=6) long by 146–389 (248.2, N=2, n=6) wide. Vas deferens coiled at median. Genital pores located lateral side, 47.1–58.9 (53.8, N=3, n=9)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 34– 69 (46.3, N=2, n=6) wide. Ovary near posterior end of proglottid, extend from side to side, H-shaped in dorsoventral view, 160–508 (306.0, N=3, n=10) long by 979–1,728 (1,277.1, N=3, n=10) wide. Uterus saccate, median, running anteriorly up to genital pore level. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac and ovary, 1,390–2,096 (1,699.8, N=3, n=9) long by 304–460 (391.9, N=3, n=9) wide.

Remarks

Alexandercestus ootenjikuzame was clearly different from its congeneric species. Worm length (128.2–132.2 mm) of this species was larger than Al. gibsoni (17–45 mm) and Al. manteri (11–36 mm) (Ruhnke & Workman, 2013). The length and number of testes were also different: the length of this species (101–153) was larger than those of Al. gibsoni (25–45) and Al. manteri (15–43), and the number of testes (183–228) was less than those of the others (212–378 and 224–358) (Ruhnke & Workman, 2013). This species is oioxenous, parasitic in only Carcharhinus leucas.

Genus Bilocularia Obersteiner, 1914

Type species: Bilocularia hyperapolytica Obersteiner, 1914.

- 24 - Diagnosis 結果については,5年以内に雑誌等で刊行予定のため,非公開. Worms craspedote, euapolytic. Scolex composed of four bothridia with one accessory sucker. Accessory sucker slightly covered with flaps, large. Testes medullary, densely arranged, located in anterior from the genital pore. Cirrus-sac oval. Vas deferens coiled at a median of proglottid. Genital pores located lateral side. Vagina median, Ovary H-shaped in dorsoventral view, Uterus saccate. Eggs semispherical. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac. Parasites of centrophorid sharks and dalatiid sharks.

Remarks

Bilocularia was originally described by Obersteiner (1914) based only on free proglottids of the monotypic species, Bilocularia hyperapolytica. Southwell (1925) treated this genus as a junior synonym of Phyllobothrium. It is inevitably difficult to identify phyllobothiids based on only free proglottids. Reports of this genus have been scarce, and DNA sequences of this genus had not been obtained so far. Ruhnke (2011) treated this genus as incertae sedis in Tetraphyllidea because the morphological description by Obersteiner (1914) did not contain scolex. In this molecular phylogeny, Bilocularia was separated from Phyllobothrium and the sister group of Calyptrobothrium (Figs. 3, 6). Bilocularia and Calyptrobothrium are distinguishable based on a morphological character. The accessory sucker of Bilocularia was only slightly covered with flaps compared to that largely covered with flaps of Calyptrobothrium (Table 14). Therefore, Bilocularia should be treated as a valid genus in Phyllobothriidea. This study is the first report of this genus from Japanese waters.

Bilocularia hyperapolytica Obersteiner, 1914

Bilocularia hyperapolytica Obersteiner, 1914: 109–124, Figs. 1–8. Phyllobothrium hyperapolytica: Williams, 1958: 116–117. Monorygma hyperapolytica: Alexander, 1963: 119–120, Fig. 1. Phyllobothrium perfectum: Southwell, 1925: 160–163, Fig. 94. Phyllobothrium riggii: Southwell, 1925: 173–177, Fig. 106.

- 25 - Type host: Centrophorus granulosus Bloch & Schneider, 1801 (Squaliformes: 結果については,5年以内に雑誌等で刊行予定のため,非公開. Centrophoridae). Type locality: off Naples, Italy. Site of infection: Spiral intestine. Additional host: Dalatias licha (Bonnaterre, 1788) (Squaliformes: Dalatiidae). Distribution: Mediterranean Sea– off Naples, Italy (Obersteiner, 1914): Atlantic Ocean– off British Isles, Scotland, U.K. (Williams, 1958): Pacific Ocean– Palliser Bay, North Island, New Zealand (Alexander, 1963); off Kanaya, Chiba Prefecture, Japan (this study).

Material examined: No. Dalatias licha 1, 3–5 (six whole mounted free proglottid specimens, host Da. licha, off Kanaya, Chiba Prefecture, Japan, 19.ix.2007), No. Dalatias licha 15 (a whole mounted adult specimen, host Da. licha, off Kanaya, Chiba Prefecture, Japan, 12.iv.2007), No. Dalatias licha 16 (five whole mounted free proglottid specimens, host Da. licha, off Kanaya, Chiba Prefecture, Japan, 12.iv.2007).

Description (Fig. 18)

Adults Based on one of whole mounted adult specimens and 11 of whole mounted free proglottid specimens. Worms acraspedote, euapolytic. Scolex 397 (N=1) long by 547 (N=1), composed of four bothridia with one accessory sucker (Fig. 18A). Bothridium flatted, small, 181–194 (188.0, N=1, n=4) long by 155–169 (161.0, N=1, n=4) wide. Accessory sucker slightly covered with flaps, large, accounted for 59.7–70.2 (64.4, N=1, n=4)% of the bothridium, 111–128 (121.0, N=1, n=4) long by 121–141 (132.8, N=1, n=4) wide. Neck 110 (N=1) wide. Free proglottids 3,334–4,779 (4,204.5, n=11) long by 460–713 (548.6, n=11) wide (Fig. 18B). Testes spherical, irregularly arranged, located in anterior from the genital pore, 122–167 (145.5, n=11) in number per proglottid, 24–58 (44.8, n=22) long by 26–52 (41.7, n=22) wide. Cirrus-sac oblong, 136–321 (195.6, n=10) long by 48–113 (78.3, n=10) wide. Vas deferens coiled at a median of proglottid. Genital pores locating lateral side, 30.0–53.8 (42.3, n=11)% of proglottid length from posterior end, locating irregularly alternating at the left side or right side. Vagina 25–37 (31.2, n=10) wide. Ovary near the posterior end of each proglottid, H-shaped in

- 26 - dorsoventral view, 288–505 (400.0, n=11) long by 187–290 (238.5, n=11) wide. Uterus 結果については,5年以内に雑誌等で刊行予定のため,非公開. saccate, median, running anteriorly up to the anterior region of proglottids. Gravid uterus, 467–1,095 (727.3, n=11) long by 188–509 (298.5, n=11) wide. Vitellarium follicular, vitelline follicles in two lateral fields, follicles widely overlapping on the testicular field, extending to the top from the end of proglottid, interrupted by cirrus- sac. Eggs semispherical, 4–10 (7.1, n=8) long by 4–8 (5.4, n=8) wide (Fig. 18C).

Remarks

This species was originally described as Bilocularia by Obersteiner (1914) but later transferred to Phyllobothrium and Monorygma (Williams, 1958; Alexander, 1963). However, morphological characters of this species were not consistent with neither of them, and this molecular study clearly showed that this species should be treated as Bilocularia (Figs. 3, 6). The type host of Bilocularia hyperapolytica was Centrophorus granulosus (Obersteiner, 1914). However, this species has been found only from Dalatias licha except for the original description (Williams, 1958; Alexander, 1963). It is possible that the type host was misidentified. This study is the first report of this species from Japanese waters.

Genus Calliobothrium van Beneden, 1850

Type species: Calliobothrium verticillatum (Rudolphi, 1819). Other species: Ca. australis Ostrowski de Nunez, 1973; Ca. creeveyae Butler, 1987; Ca. euzeti Bernot, Caira & Pickering, 2015; Ca. nodosum Yoshida, 1917; Ca. shirozame Kurashima, Shimizu, Mano, Ogawa & Fujita, 2014 n. sp.; Ca. tylotocephalum Alexander, 1963.

Species inquirenda– Calliobothrium corollatum Monticelli, 1887.

Diagnosis (emended from Nasin et al., 1997)

Worms craspedote, laciniate, euapolytic. Scolex composed of four divided bothridia with two pairs of hook and an anterior pad bearing one or three suckers. Bothridium each divided into three loculi by two transverse septa. Each bothridia with two pairs of simply articulated hooks and one anterior pad bearing one or three

- 27 - suckers. Genital pores lateral, irregularly alternating. Testes numerous. Ovary posterior,結果については,5年以内に雑誌等で刊行予定のため,非公開. H-shaped, bilobed in cross section. Vagina anterior to cirrus sac. Vitelline follicles in lateral. Uterus sac-shaped, medioventral. Eggs grouped in cocoons. Parasites of triakid sharks.

Remarks

Nasin et al. (1997) recognized two distinct clades of Calliobothrium in their based on the analysis morphological characters: one comprised of the species with laciniate proglottid and the other with non-laciniate proglottid. Based on the two clades, Bernot et al. (2015) separated non-laciniate species as Symcallio. They also showed Calliobothrium and Symcallio constructed a sister group by a molecular phylogeny of partial lsrDNA. Calliobothrium was treated as a genus of Onchobothriidae since the establishment of Onchobothriidae in Tetraphyllidea by Braun (1900). Caira et al. (2014) showed that Onchobothriidae was a polyphyletic family, and they separated Calliobothrium from the other onchobothriids. Bernot et al. (2015) showed Calliobothrium constructed a clade together with phyllobothriidean genera in their phylogenetic analysis, but they did not treat Calliobothrium in Phyllobothriidea because their analysis did not include Phyllobothriidea sensu Caira et al. (2014). As a result, this genus was treated as incertae sedis in Tetraphyllidea in Caira et al. (2014) and Bernot et al. (2015). In molecular analysis, Calliobothrium was clearly located in the Phyllobothriidea clade, and a sister group with Symcallio (Figs. 3, 6). Therefore, Calliobothrium should belong to Phyllobothriidea. Similarly, Symcallio should belong to Phyllobothriidea. Calliobothrium and Symcallio were morphologically clearly different from other phyllobothriidean the genera in having hooks.

Calliobothrium shirozame n. sp.

Type host: Mustelus griseus Pietschmann, 1908 (Carcharhiniformes: Triakidae). Type locality: off Chigasaki, Kanagawa Prefecture, Japan. Site of infection: Spiral intestine. Distribution: Pacific Ocean– off Chigasaki, Kanagawa Prefecture, Japan (this study); off Iburi, Kochi Prefecture, Japan (this study); off Kochi, Kochi Prefecture, Japan (this study).

- 28 - Etymology: The species is named for Japanese name of its type host.

Material examined: NSMT-Pl 6037 (Holotype: a whole mounted specimen ex Mu. griseus, off Chigasaki, Kanagawa Prefecture, Japan, 31. v. 2009); NSMT-Pl 6038– 6039 (two whole mounted specimens ex Mu. griseus, off Chigasaki, Kanagawa Prefecture, Japan); NSMT-Pl 6044, 6048 (two whole mounted specimens ex Mu. griseus, off Chigasaki, Kanagawa Prefecture, Japan, 31. v. 2009); NSMT-Pl 6040– 6041, 6051 (four whole mounted specimens ex Mu. griseus, off Chigasaki, Kanagawa Prefecture, Japan, vi. 2009); NSMT-Pl 6045 (a whole mounted specimen ex Mu. griseus, off Chigasaki, Kanagawa Prefecture, Japan, 24. x. 2009); NSMT-Pl 6042 (a whole mounted specimen ex Mu. griseus (host voucher NSMT-P 111875) off Iburi, Kochi Prefecture, Japan, 4. xii. 2012); NSMT-Pl 6043, 6050 (two whole mounted specimens ex Mu. griseus, off Iburi, Kochi Prefecture, Japan, 7. xii. 2012); NSMT-Pl 6046–6047 (two whole mounted specimens ex Mu. griseus, off Kochi, Kochi Prefecture, Japan, 17. i. 2013).

Description (Fig. 19)

Adults Based on 17 whole mounted adult specimens. Worms euapolytic 26.7–108.3 (56.4 mm, N=15) long, with maximum width 596–1,800 (1,062, N=15) at level of mature proglottids, comprised of 240–353 (288, N=15) proglottids (Fig. 19A). Scolex 295–562 (405, N=17) long, bears four bothridia and cephalic peduncle (Fig. 19B). Cephalic peduncle 19–119 (64, N=17) long, gradually widening posteriorly, extends beyond posterior margin of bothridium. Bothridium 257–495 (364, N=16, n=58) long, 129–190 (158, N=14, n=44) wide, each with muscular pad 24–148 (65, N=14, n=29) long, 33–190 (111, N=16, n=34) wide, with central accessory sucker 24–71 (40, N=15, n=41) in diameter and 2 lateral accessory suckers 19–57 (32, N=15, n=44) in diameter, bearing 2 pairs of articulated hooks, divided into 3 loculi by 2 transverse septa. Anterior loculus 105–238 (154, N=16, n=59) long, 81–143 (112, N=13, n=42) wide; middle loculus 33–105 (61, N=16, n=59) long, 62–143 (99, N=13, n=42) wide; posterior loculus 38–100 (61, N=16, n=59) long, 52–129 (80, N=13, n=42) wide. All hooks hollow. Lateral and medial pair of hooks symmetrical, each tip of prongs extending posteriorly (Fig. 19C). Axial hooks more acutely recurved than abaxial hooks. Lateral hook measurements (Fig. 19D): A, 48–93 (68, N=16, n=53); B,

- 29 - 95–148 (117, N=16, n=53); C, 43–67 (50, N=16, n=53); D, 95–148 (119, N=16, n=53); E, 60–98 (77, N=16, n=53); F, 31–52 (43, N=16, n=53). Medial hook measurements (Fig. 14D): A', 48–93 (68, N=16, n=53); B', 93–145 (116, N=16, n=53); C', 38–62 (49, N=16, n=53); D', 95–157 (118, N=16, n=53); E', 57–107 (77, N=16, n=53); F, 36–52 (43, N=16, n=53). Proglottids craspedote, laciniate (Fig. 19E). Cephalic peduncle with 2 dorsolateral and 2 ventrolateral pairs of laciniations; immature proglottids with 2 dorsolateral and 2 ventrolateral pairs and 1 central laciniation on dorsal and ventral surfaces (Fig. 19F), middle laciniations gradually disappearing toward mature proglottids; mature proglottids with 2 dorsolateral and 2 ventrolateral pairs of laciniations. Mature proglottids 576–3,323 (1,975, N=14, n=39) long, 506–1,573 (977, N=14, n=39) wide, becoming longer than wide with maturity. Testes 77–116 (93, N=13, n=36) in total number, 41–143 (85, N=13, n=37) long, 57–157 (100, N=13, n=37) wide, densely arranged, extend from near anterior margin of proglottid to anterior margin of ovary; postvaginal testes 26–43 (33, N=13, n=36) in number. Cirrus-sac spherical, 62–233 (160, N=13, n=35) long, 57–176 (116, N=13, n=35) wide, contains coiled cirrus, covered with small microtriches. Vas deferens medial, coiled lateral and anterior to cirrus-sac, enters the proximal end of cirrus-sac. Ovary posterior, 144–915 (438, N=12, n=39) long, 326–1,223 (708, N=12, n=39) wide, H- shaped in dorsoventral view; ovarian margins digitiform. Genital pores lateral, irregularly alternating, 62–81 (74, N=14, n=39)% from anterior margin of each proglottid. Vagina sinuous, arises from oötype, extends anteriorly along mid-line of proglottid, then laterally along the anterior margin of cirrus-sac, and opens in. common genital atrium next to cirrus. Vitellarium follicular, follicles arranged in two lateral fields consisting of multiple columns, interrupted by vagina and cirrus-sac on the poral side. Uterus median, occupies region from oötype to approximately anterior 1/5 of proglottid, ventral to the vagina.

Remarks

Calliobothrium shirozame was distinguished from the congeners by the number and form of laciniations. Calliobothrium shirozame has four posterior triangular laciniations in cephalic peduncle, six in immature proglottids and four in mature proglottids whereas Ca. australis and Ca. verticillatum have four posterior triangular laciniations in cephalic peduncle, six in early immature proglottids, eight in late immature proglottids, and four in mature proglottids (Euzet, 1959; Ivanov &

- 30 - Brooks, 2002) while Ca. creeveyae and Ca. tylotocephalum have two posterior triangular laciniations in cephalic peduncle and all proglottids (Alexander, 1963; Butler, 1987). All Calliobothrium species are oioxenous species. Two triakid sharks of the genus Mustelus, Mu. griseus and Mu. manazo, are sympatrically distributed in Japanese waters (Ebert et al., 2013), but Calliobothrium species except this new species have been reported only from Mu. manazo (Yoshida, 1917; Yamaguti, 1952; Yamaguchi et al., 2000). In this investigation, Calliobothrium shirozame was only found in Mu. griseus. Yamaguchi et al. (2000) also found no specimen of this new species from Mu. manazo in their surveys on parasites of Mustelus species in the coastal seas of Japan and Taiwan.

Genus Calyptrobothrium Monticelli, 1893 結果については,5年以内に雑誌等で刊行予定のため,非公開. Type species: Calyptrobothrium riggii Monticelli, 1893. Other species: Calyptrobothrium minus Linton, 1907; Ca. occidentale Linton, 1900.

Diagnosis (emended from Euzet, 1994)

Worms craspedote, euapolytic. Scolex composed of four bothridia with one accessory sucker. Accessory sucker covered with flaps, large. Testes medullary, densely arranged, located in anterior from the genital pore. Genital pores located lateral side. Vagina median. Eggs semispherical. Parasites of torpedinid rays.

Remarks

Calyptrobothrium was described by Monticelli (1893). Linton (1907) suggested Calyptrobothrium was related to Monorygma because both genera have large accessory suckers. However, this genus is also similar to Bilocularia in bearing flaps in accessory suckers (see remarks of genus Bilocularia). In molecular phylogenetic trees (Figs. 3, 6), the unidentified specimen of this study (Ca. sp. 1) and the undescribed species of Caira et al. (2014) (Ca. sp.) constructed a monophyletic group, and Calyptrobothrium was a sister group of Bilocularia apart from Monorygma. Although morphological differences between Calyptrobothrium and Bilocularia were few, each genus status was respected in this study. All species of this genus, including Calyptrobothrium sp. of Caira et al.

- 31 - (2014) and Ca. sp. 1 of this study have been described from rays of the family 結果については,5年以内に雑誌等で刊行予定のため,非公開. Torpedinidae. This study is the first report of this genus from Japanese waters.

Calyptrobothrium sp. 1

Host: Torpedo tokionis (Tanaka, 1908) (Torpediniformes: Torpedinidae). Site of infection: Spiral intestine. Distribution: Pacific Ocean– off Heda, Shizuoka Prefecture, Japan.

Material examined: No. Torpedo tokionis 1–4, 8–9 (six whole mounted adult specimens ex To. tokionis, off Heda, Shizuoka Prefecture, Japan, 27.ix.2008).

Description (Fig. 20)

Adults Based on six of whole-mounted specimens. Worms acraspedote, euapolytic. Scolex, robust, 660–853 (731, N=6) long by 703–1,172 (892.0, N=6) wide, composed of four bothridia with one accessory sucker (Fig. 20). Bothridium flatted, small, 230–402 (312.4, N=6, n=24) long by 154–232 (198.8, N=6, n=24) wide. Accessory sucker widely covered with flaps, large, accounted for 50–77 (61.5, N=6, n=24)% of the bothridium, 157–215 (189.3, N=6, n=24) long by 160–238 (196.4, N=6, n=24) wide. Neck 556–857 (668.8, N=6) wide.

Remarks

This is the first report of Calyptrobothrium from Torpedo tokionis. These specimens clearly belong to Calyptrobothrium because these specimens have the accessory sucker widely covered with flaps and closely related with Calyptrobothrium sp. of Caira et al. (2014) in molecular analyses (Figs. 3, 6). Unfortunately, the specimens were not identified because they lacked mature proglottids and free proglottids.

Genus Crossobothrium Linton, 1889

Type species: Crossobothrium laciniatum Linton, 1889.

- 32 - Other species: Crossobothrium antonioi Ivanov, 2009; Cr. campanulatum Klaptocz, 1906;結果については,5年以内に雑誌等で刊行予定のため,非公開. Cr. dohrni (Oerley, 1885); Cr. pequeae Ivanov, 2009.

Diagnosis (emended from Ruhnke, 2011)

Worms euapolytic, craspedote laciniate. Scolex composed of four stalked bothridia with one accessory sucker. Testes densely arranged. Cirrus-sac oval, cirrus armed with spinitriches. Vagina median. Ovary posterior, lobate, tetralobed in cross- section. Vitellarium follicular, in two lateral bands. Uterus ventral, reaching the anterior margin of cirrus-sac in gravid proglottids. Parasites of Hexanchid sharks and odontaspid sharks.

Remarks

Crossobothrium was described in Tetrabothriidae of Cestoidea by Linton (1889) but has a confusing taxonomic history. Southwell (1925) synonymized Crossobothrium with Phyllobothrium, but subsequent authors disregarded this synonymy (Joyeux & Baer, 1936; Rees, 1946; Wardle & McLeod, 1952; Yamaguti, 1959; Euzet, 1959, 1994; Williams, 1968; Schmidt, 1986). Ruhnke (1996a, 2011) revised Crossobothrium and presented an emended diagnosis as a genus of Phyllobothriidae. Most recently, Caira et al. (2014) treated Crossobothrium as a provisional member of Phyllobothriidae because the phylogenetic position of this genus was not statistically supported in their molecular analysis. In this molecular analysis, Crossobothrium was situated in Phyllobothriidea clade (Figs. 3, 6), and grouped with Trilocularia which was newly treated as Phyllobothriidea. Crossobothrium has laciniate proglottids as observed in Calliobothrium and Chimaerocestos. However, lineages of these genera were apart from each other (Fig. 12; see Section 3.2). The type species Crossobothrium laciniatum was reported from Carcharias taurus of Odontaspididae (Linton, 1889; Ruhnke, 1996a) and Hexanchus griseus of Hexanchidae (Caira et al., 2014). The others Crossobothrium species were reported from Hexanchidae (Klaptocz, 1906; Southwell, 1925; Ruhnke, 1996a, 2011; Ivanov, 2009). Hence, all Crossobothrium species are parasitic in Hexanchidae, and Cr. laciniatum might have become parasitic in Ca. taurus by host range expansion.

- 33 - C ro ssobothrium campanulatum Klaptocz, 1906 結果については,5年以内に雑誌等で刊行予定のため,非公開. Crossobothrium campanulatum Klaptocz, 1906: 325–360, Figs. 2–4: Southwell, 1925: 157–158, Fig. 92; Ruhnke, 2011: 68–70, Fig. 41. Crossobothrium dohrni: Rees, 1946: 163–171, Figs. 1–20; Ruhnke, 1996a: 94–797, Figs. 22–28.

Type host: Hexanchus griseus (Bonnaterre, 1788) (Hexanchiformes: Hexanchidae). Type locality: off Barcola, Gulf of Triest, Italy. Site of infection: Spiral intestine. Distribution: Mediterranean Sea– off Barcola, Gulf of Triest, Italy (Klaptocz, 1906), off Sète, France (Euzet, 1959); off Corearneau, France (Euzet, 1959): Atlantic Ocean– Porcupine Bank, Ireland. (Rees, 1946): Pacific Ocean– off Sado Islands, Niigata Prefecture, Japan (this study).

Materials examined: No. Hexanchus griseus 1–2, 5, 9, 16 (four whole mounted adult specimens and three whole mounted free proglottids specimens, host He. griseus, off Sado Island, Niigata Prefecture, Japan, 15.iv.2014).

Description (Fig. 21)

Adults Based on four whole mounted adult specimens and three whole mounted free proglottid specimens. Worms craspedote, laciniate; laciniations triangular, 4 in number, euapolytic 394.0–840.2 (613.7, N=3) mm, maximum wide 4,005–4,810 (4,407.5, N=2) at level of proglottid; 462–10056 (3747.7, N=3) proglottids per worm (Fig. 20A). Scolex 2,883–4,106 (354.3, N=4) long by 4,126–5,204 (4,594.8, N=4) wide, composed of four stalked bothridia with one accessory sucker (Fig. 21B). Bothridium 1,504– 2,327 (1,877.6, N=4, n=14) long by 1,563–2,423 (2,000.1, N=4, n=14) wide. Accessory sucker small, round, 120–219 (181.7, N=4, n=14) long by 175–250 (208.1, N=4, n=14) wide. Stalk 392–1,118 (773.4, N=4, n=14) long by 565–1,199 (864.7, N=4, n=14) wide. Neck 384–541 (435.0, N=4) wide. Terminal proglottid 4,176–6,578 (5,377.0, N=2) long by 3,525–4,507 (4,016.0, N=2) wide. Mature proglottids 2,290–3,420 (2781.3, N=2, n=4) long by 3,638–5,352 (4,238.0, N=2, n=4) wide (Fig. 21C). Free proglottids 7,679–9,968 (8,515.3, N=3) long

- 34 - by 2,946–5,171 (4,238.0, N=3) wide. Testes spherical, irregularly arranged, 220–242 (230.4,結果については,5年以内に雑誌等で刊行予定のため,非公開. N=2, n=8) in number per proglottid, 78–164 (107.8, N=2, n=16) long by 36– 138 (104.9, N=2, n=16) wide, post-vaginal testes 27–35 (30.6, N=2, n=8) in number. Cirrus-sac oblong, 614–976 (759.8, N=2, n=8) long by 305–622 (424.6, N=2, n=8) wide. Vas deferens coiled at median of proglottid. Genital pores locating lateral side, 44.4– 54.9 (50.5, N=2, n=8)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 69–142 (93.8, N=2, n=8) wide. Ovary near posterior end of each proglottids, H-shaped in dorsoventral view, 464–931 (675.6, N=2, n=8) long by 1,260–1,787 (1,489.1, N=2, n=8) wide. Uterus saccate, median, running anteriorly up to anterior region of proglottids, 617–1,033 (791.8, N=2, n=4) long by 707–2,136 (1,094.3, N=2, n=4) wide at mature proglottid. Gravid uterus only observed in terminally proglottids and free proglottids, 1,378–2,623 (1,843.3, N=2, n=4) long by 1,280–2,032 (1,750.3, N=2, n=4) wide in terminally proglottids, 3,754–5,236 (4,584.3, N=3) long by 1,950–2,457 (2,255.0, N=3) wide in free proglottids. Vitellarium follicular, vitelline follicles in two lateral fields, follicles widely overlapping on testicular field, extending to the top from laciniations, interrupted by cirrus-sac, 1,915–5,480 (3,168.0, N=2, n=8) long by 371–842 (622.8, N=2, n=8) wide in mature proglottid. 6,926–9,519 (7,958.7, N=3) long by 394–960 (707.0, N=3) wide in free proglottid. Eggs semispherical, 22–35 (27.1, N=2, n=16) long by 14–26 (18.9, N=2, n=16) wide (Fig. 21D).

Remarks

Crossobothrium campanulatum was originally described from Hexanchus griseus by Klaptocz (1906). Southwell (1925) treated this species as a junior synonym of Phyllobothrium dohrni. Later, Williams (1968) transferred Ph. dohrni to Crossobothrium. However, their taxonomical treatment was doubtful because of no critical morphological comparison between the two species (Southwell, 1925; Williams, 1968). Ruhnke (2011) mentioned that Cr. campanulatum and Cr. dohrni should be treated as different species because the type host is different between Cr. campanulatum and Cr. dohrni, but there are no detailed morphological comparison between the specimens from each type host. In this study, the two species were re- described based on the specimens collected from each type host. As a result, morphological differences were recognized in the two species: Crossobothrium campanulatum had more testes (220–242) than Cr. dohrni (131–172). Also in molecular analysis (Figs. 3, 6), the two species were clearly different. Therefore, Cr.

- 35 - campanulatum was a valid species. 結果については,5年以内に雑誌等で刊行予定のため,非公開. This species was oioxenous, parasitic in only Hexanchus griseus. This study is the first report of this genus from Japanese waters.

Crossobothrium dohrni (Oerley, 1885)

Orygmatobothrium dohrni Oerley, 1885: 119, Figs. 16–19. Phyllobothrium dohrni: Zschokke, 1888: 328–338, Figs. 138–144. Crossobothrium dohrni: Ruhnke, 2011: 70–71, Fig. 43.

Type host: Heptanchus cinereus Müller & Henle, 1839 (= Heptranchias perlo (Bonnaterre, 1788) (Hexanchiformes: Hexanchidae). Type locality: off Naples, Italy. Site of infection: Spiral intestine. Distribution: Mediterranean Sea– off Naples, Italy (Oerley, 1885): Pacific Ocean– off Kanaya, Chiba Prefecture, Japan (this study).

Materials examined: No. Heptranchias perlo 21, 23, 25–28 (six whole mounted adult specimens, host He. perlo, off Kanaya, Chiba Prefecture, Japan, 16.viii.2007), No. Heptranchias perlo 30–31 (four whole mounted adult specimens, host He. perlo, off Kanaya, Chiba Prefecture, Japan, 30.viii.2007).

Description (Fig. 22)

Adults Based on 10 specimens of whole mounted adult specimens. Worms craspedote, laciniate; laciniations triangular, 4 in number, euapolytic 70.3–145.3 (108.0, N=7) mm, maximum wide 1,485–3,189 (2,269.6, N=7) at level of proglottid or scolex; 102–470 (275.7, N=6) proglottids per worm (Fig. 22A). Scolex 1,170–1,906 (1,489, N=4) long by 1,485–2,351 (1,852.8, N=4) wide, composed of four stalked bothridia with one accessory sucker (Fig. 22B). Bothridium 421–2,056 (885.3, N=5, n=20) long by 424–1,061 (712.5, N=5, n=20) wide. Accessory sucker small, round, 67–148 (104.0, N=5, n=20) long by 64–156 (104.5, N=5, n=20) wide. Stalk 198–859 (395.8, N=4, n=16) long by 125–471 (316.7, N=4, n=16) wide. Neck 207–370 (301.0, N=4) wide. Terminal proglottid 942–2,160 (1,468.6, N=7) long by 1,561–3,031 (2,286,

- 36 - N=7) wide. Mature proglottids 942–2,225 (1494.6, N=8, n=16) long by 1,192–3,031 (2,023.3,結果については,5年以内に雑誌等で刊行予定のため,非公開. N=8, n=16) wide (Fig. 22C). Testes spherical, irregularly arranged, 131– 172 (149.8, N=8, n=16) in number per proglottid, 32–149 (68.4, N=8, n=32) long by 23–127 (65.3, N=8, n=32) wide, post-vaginal testes 22–35 (28.3, N=8, n=16) in number. Cirrus-sac oblong, 210–673 (446.8, N=8, n=16) long by 58–237 (121.2, N=8, n=16) wide. Vas deferens coiled at median of proglottid. Genital pores locating lateral side, 32.7–74.4 (53.5, N=8, n=16)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 22–49 (33.0, N=8, n=16) wide. Ovary near posterior end of each proglottids, H-shaped in dorsoventral view, 117– 381 (221.6, N=8, n=16) long by 394–999 (675.7, N=8, n=16) wide. Uterus saccate, median, running anteriorly up to anterior region of proglottids, 233–638 (351.3, N=8, n=16) long by 123–959 (286.9, N=8, n=16) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles widely overlapping on testicular field, extending to the top from laciniations, interrupted by cirrus-sac, 795–1,874 (1,174.1, N=8, n=16) long by 105–427 (242.0, N=8, n=16) wide.

Remarks

The original description of Crossobothrium dohrni by Oerley (1885) was briefly based on the specimens collected from Heptanchus cinereus (= Heptranchias perlo). Later, Zschokke (1888) redescribed this species in detail and transferred it to Phyllobothrium although he did not examine the specimens from the type host. Southwell (1925) synonymized Cr. laciniatum, Cr. Campanulatum, and Orygmatobothrium velamentum to Ph. dohrni. Williams (1968) transferred Ph. dohrni to Crossobothrium. Most recently, Ruhnke (2011) rejected their taxonomical changes. In this study, detailed redescription of this species denied Southwell’s (1925) taxonomic treatment (see remarks of Cr. campanulatum). The sequence differed in only five sites in ssrDNA and partial lsrDNA between Cr. cf. dohrni from He. perlo in Caira et al. (2014) and Cr. dohrni from He. perlo in this study (Table 9). Crossobothrium cf. dohrni of Caira et al. (2014) was considered to be Cr. dohrni because the difference was lower than interspecific differences among other Crossobothrium species. This species was oioxenous, parasitic in only Heptranchias perlo.

- 37 - Genus Mitsukuricestus n. gen. 結果については,5年以内に雑誌等で刊行予定のため,非公開. Type species: Mitsukuricestus gobelinus (Caira & Ruhnke, 1993) n. comb.

Etymology: This genus was named after Japanese name of the type host of the type species. Mitsukuri- is former part of Mitsukurizame which Japanese name of Mitsukurina owstoni, -cestus is cestoda in Latin.

Diagnosis

Worms slightly craspedote, euapolytic Scolex composed of four stalked bothridia with one accessory sucker. Bothridium flatted. Accessory sucker round. Testes oblong, densely arranged. Cirrus-sac oval. Vas deferens coiled, median. Genital pores lateral, irregularly alternating. Vitellarium follicular, interrupted by cirrus-sac.

Remarks

The new genus Mitsukuricestus was established to accommodate Marsupiobothrium gobelinus. This species was originally described as incertae sedis of Tetraphyllidea by Caira & Ruhnke (1993) with their comment “We are not tremendously confident in this placement of the species, but at present this would appear to be the most sensible course of action” and Ruhnke (2011) also treated this species as incertae sedis of Tetraphyllidea. Molecular analyses clearly showed that Ma. gobelinus was in a different lineage from Ma. sp. (Figs. 3, 6). Marsupiobothrium gobelinus has stalked bothridium clearly different from that of the type species, Ma. alopias and Ma. sp. Therefore, this species was separated from Marsupiobothrium and transferred to this new genus. Mitsukuricestus gobelinus was the most closely related with Monorygma chlamydoselachi in molecular analysis (Figs. 3, 6), but its small and round accessory sucker is different from large and triangle one of Mo. chlamydoselachi. Therefore, Mo. chlamydoselachi was not included in Mitsukuricestus (see remarks of Monorygma chlamydoselachi).

Mitsukuricestus gobelinus (Caira & Ruhnke, 1993) n. comb.

Marsupiobothrium gobelinus Caira & Ruhnke, 1993: 87–90, Figs. 7–14; Ruhnke,

- 38 - 2011: 75–76. 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Type host: Mitsukurina owstoni Jordan, 1898 (Lamniformes: Mitsukurinidae). Type locality: East-southeast of Ulladulla, New South Wales, Australia. Site of infection: Spiral intestine. Distribution: Pacific Ocean– East-southeast of Ulladulla, New South Wales, Australia (Caira & Ruhnke, 1993); off Kanaya, Chiba Prefecture, Japan (this study).

Material examined: No. Mitsukurina owstoni 1–5 (15 whole mounted adult specimens, host Mi. owstoni, off Kanaya, Chiba Prefecture, Japan, 10.x.2008).

Description (Fig. 23)

Adults Based on 15 whole mounted adult specimens. Worms slightly craspedote, euapolytic 3.2–7.5 (5.7, N=5) mm, maximum wide 1,686–2,359 (1,939.5, N=4) at level of scolex; 45–66 (56.4, N=5) proglottids per worm (Fig. 23A). Scolex 713–2,516 (1,066.1, N=14) long by 865–3,643 (2,421.4. N=14) wide, composed of four stalked bothridia with one accessory sucker (Fig. 23B). Bothridium flatted, 255–1,112 (700.6, N=14, n=48) long by 390–852 (628.5, N=14, n=50) wide. Accessory sucker round, 60–163 (100.1, N=14, n=54) long by 69–185 (130.1, N=14, n=54) wide. Stalk 160–1,784 (715.3, N=14, n=52) long. Neck 355–817 (537.6, N=14) wide. Terminal proglottid 646–761 (703.5, N=2) long by 468–742 (605.0, N=2). Mature proglottid 483–761 (632.6, N=2, n=7) long by 423–857 (597.3, N=2, n=7) wide (Fig. 23C). Testes oblong, densely arranged, 161–249 (203.4, N=2, n=7) in total number per proglottid, 14–29 (20.1, N=2, n=14) long by 14–30 (21.6, N=2, n=14) wide, post-vaginal testes 29–51 (38.0, N=2, n=7) in number. Cirrus 7–32 (23.3, N=2, n=4) wide. Cirrus-sac oval, 82–249 (137.4, N=2, n=5) long by 25–44 (36.6, N=2, n=5) wide. Vas deferens coiled, median. Genital pores lateral, 30.6–61.2 (46.7, N=2, n=7)% of proglottid length from posterior end, irregularly alternating. Vagina median, 7–14 (11.7, N=2, n=7) wide. Ovary near the posterior end of proglottid, H-shaped in dorsoventral view, 57–122 (79.7, N=2, n=7) long by 224–229 (258.3, N=2, n=7) wide. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 479–769 (603.3, N=2, n=7) long by 30–75 (48.9, N=2, n=7) wide.

- 39 - Remarks 結果については,5年以内に雑誌等で刊行予定のため,非公開.

This species was originally described as incertae sedis of Tetraphyllidea by Caira & Ruhnke (1993). According to this molecular analysis, this species was transferred to Mitsukuricestus (see remarks of genus Mitsukuricestus). This species is oioxenous, parasitic in only Mitsukurina owstoni. This study is the first report of this genus from Japanese waters.

Genus Monorygma Diesing, 1863

Type species: Monorygma perfectum (van Beneden, 1853). Other species: Monorygma chlamydoselachi Lönnberg, 1898; Mo. macquariae Johnston, 1937; Mo. magnum (Hart, 1936).

Species inquirenda– Monorygma chamissonii (Linton, 1905); Mo. rotundum Klaptocz, 1906.

Diagnosis

Worms euapolytic, slightly craspedote. Scolex composed of four bothridia with one triangle accessory sucker. Testes round, densely arranged. Cirrus-sac oval. Vagina median. Ovary posterior, lobate, tetralobed in cross-section. Vitellarium follicular, in two lateral bands. Uterus ventral, reaching the anterior margin of cirrus-sac in gravid proglottids. Parasites of squaliform sharks.

Remarks

Monorygma had been a genus of Phyllobothriidae, but Caira et al. (2014) did not treat it in Phyllobothriidae because it was not contained in their molecular analysis. Ten species have been described in Monorygma, but Ruhnke (2011) included only three species, Mo. perfectum, Mo. Macquariae, and Mo. magnum, collected from Somniosus sharks, and treated other seven species in an unknown status. Monorygma chlamydoselachi, Mo. megacotyla, and Mo. grimaldii were examined in this study. Monorygma chlamydoselachi had triangle accessory suckers which are diagnostic characteristics of the genus Monorygma (see description of Monorygma

- 40 - chlamydoselachi ). Based on this morphology, Mo. chlamydoselachi was regarded as a genuine結果については,5年以内に雑誌等で刊行予定のため,非公開. species of Monorygma. On the other hand, Mo. megacotyla and Mo. grimaldii had round accessory suckers. In phylogenetic analysis (Figs. 3, 6), these three species were positioned in separate lineages. Monorygma chlamydoselachi was located in Phyllobothriidea clade, and Monorygma was considered to belong to Phyllobothriidea. Molecular phylogenetic study of the type species, Mo. perfectum, is necessary to reveal the exact taxonomic status of Monorygma. Monorygma megacotyla was closely related with Phyllobothrium squali (Figs. 3, 6). Out of five genotypes observed in the two species, and Mo. megacotyla and Ph. squali shared three genotypes. Both species were considered synonymous (see remarks of Yamaguticestus squali). Monorygma grimaldii was contained in Pelichnibothrium clade (Figs. 3, 6) and was transferred to Pelichnibothrium (see remarks of genus Pelichnibothrium).

Monorygma chlamydoselachi Lönnberg, 1898

Monorygma chlamydoselachi Lönnberg, 1898: 3–11, Figs. 1–2; Williams, 1968: 263, Figs. 26–27; Ruhnke, 2011: 83. Monorygma perfectum: Baer, 1956: 18; Euzet, 1959: 97. Phyllobothrium chlamydoselachi: Southwell, 1925: 163–164, Fig.96.

Type host: Chlamydoselachus anguineus Garman, 1884 (Hexanchiformes: Chlamydoselachidae). Type locality: Not described. Site of infection: Spiral intestine. Distribution: Pacific Ocean– off Kanaya, Chiba Prefecture, Japan (this study).

Material examined: No. Chlamydoselachus anguineus 1 (a whole mounted adult specimen, host Ch. anguineus, off Kanaya, Chiba Prefecture, Japan, 9.ii.2007), No. Chlamydoselachus anguineus 8–9 (two whole mounted adult specimens, host Ch. anguineus, off Kanaya, Chiba Prefecture, Japan, 16.iii.2007), No. Chlamydoselachus anguineus 10–11, 13–14, 16–17, 22, 29–30 (nine whole mounted adult specimens and three whole mounted free proglottid specimens, host Ch. anguineus, off Kanaya, Chiba Prefecture, Japan, 22.iii.2007), No. Chlamydoselachus anguineus 42–44 (three whole mounted adult specimens, host Ch. anguineus, off Kanaya, Chiba Prefecture, Japan, 12.iv.2007), No.

- 41 - Chlamydoselachus anguineus 51–54 (four whole mounted adult specimens, host 結果については,5年以内に雑誌等で刊行予定のため,非公開.Ch. anguineus, off Kanaya, Chiba Prefecture, Japan, 4.x.2007).

Description (Fig. 24)

Adults Based on 17 whole mounted adult specimens and three whole mounted free proglottid specimens. Worms craspedote, euapolytic 43.0–75.6 (56.1, N=3) mm, maximum width 1,374–3,033 (1980.2, N=17) at level of scolex; 125–401 (231.3, N=17) proglottids per worm (Fig. 24A). Scolex 781–2,669 (1,355.9, N=17) long by 1,374–3,033 (1980.2, N=17) wide, composed of four stalked bothridia with one accessory sucker (Fig. 24B). Bothridium flatted, 389–1,040 (641.9, N=17, n=64) long by 44–713 (463.2, N=17, n=64) wide, stalk 66–732 (273.7, N=17, n=64) long by 232–950 (520.3, N=17, n=64) wide. Accessory sucker triangle, 124–427 (219.9, N=17, n=64) long by 129–504 (290.7, N=17, n=63) wide. Neck 119–616 (363.9, N=17) wide. Terminal proglottid 1,282–2,129 (1,575.5, N=8) long by 270–884 (574, N=8) wide. Mature proglottids 996–1,667 (1,383, N=7, n=12) long by 270–1,003 (690.2, N=7, n=12) wide (Fig. 24C). Gravid proglottids 1,450–2,129 (1816.3, N=2, n=3) long by 321–993 (732.7, N=2, n=3) wide. Free proglottids 4,190–4,844 (4,510, N=3) long by 636–866 (750.0, N=3) wide. Testes spherical, irregularly arranged, 74–130 (102.4, N=10, n=17) in total number per proglottid, 29–100 (53.2, N=10, n=35) long by 23– 92 (59.8, N=10, n=35) wide, post-vaginal testes 5–60, N=10, n=17) in number. Cirrus 23–89 (44.0, N=10, n=18) wide. Cirrus-sac oval, 155–340 (267.6, N=10, n=18) long by 45–164 (100.6, N=10, n=18) wide. Vas deferens coiled at median of proglottid. Genital pores lateral, 25.1–53.1 (35.3, N=10, n=18)% of proglottid length from posterior end, irregularly alternating. Vagina median, 15–52 (26.8, N=10, n=18) width. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 75– 523 (244.5, N=10, n=18) long by 114–430 (290.4, N=10, n=18) wide. Uterus saccate, median, running anteriorly up to genital pore level, 148–480 (331.5, N=7, n=13) long by 30–204 (103.6, N=7, n=13) wide at mature proglottid. 364–1,279 (880.4, N=3, n=5) long by 72–381 (264.4, N=3, n=5) wide at gravid proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles slightly overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 971–4,490 (1,787.3, N=10, n=18) long by 36–283 (139.0, N=10, n=18) wide. Eggs semispherical, 13–26 (19.2, N=2, n=12) long by 11–20 (14.6, N=2, n=12) wide (Fig. 24D).

- 42 - Remarks 結果については,5年以内に雑誌等で刊行予定のため,非公開. This species was described based on the specimens collected from Chlamydoselachus anguineus by Lönnberg (1898). This species was synonymized with Monorygma perfectum collected from Somniosus microcephalus by Baer (1956) and Euzet (1959). Later, Williams (1968) rejected this synonymy. Recently, Ruhnke (2011) considered the phylogenetic position of this species uncertain because this species has a stalked bothridium different from a sessile bothridium of other species of Monorygma examined in this study. However, this species has triangle accessory suckers like as the other Monorygma species. Therefore, this species should be treated as Monorygma. This species is oioxenous, parasitic in only Chlamydoselachus anguineus. This study is the first report of this genus from Japanese waters.

Genus Orygmatobothrium Diesing, 1863

Type species: Orygmatobothrium musteli (van Beneden, 1849). Other species: Orygmatobothrium juani Ivanov, 2008; Or. schmittii Suriano & Labriola, 2001.

Incertae sedis– Orygmatobothrium forte Linton, 1924. Species inquirenda– Orygmatobothrium crenulatum Linton, 1897; Or. velamentum Yoshida, 1917.

Diagnosis (emended from Ruhnke, 2011)

Worms euapolytic, craspedote. Scolex composed of four bothridia with one accessory sucker and one central sucker. Testes round, densely arranged. Cirrus-sac elongate oval, curved strongly anteriorly (J-shaped). Vas deferens coiled, anterior to cirrus-sac. Vagina median, extending anteriorly from Mehlis’ gland to mid-level of proglottid. Genital pores in the anterior half of proglottid. Ovary H-shaped in frontal view, tetralobed in cross section. Uterus ventral, saccate in free gravid proglottids, extending anteriorly from ovary to level of cirrus-sac. Vitellarium follicular; follicles distributed in two lateral fields, extending the entire length of proglottid, interrupted by cirrus-sac. Parasites of triakid sharks.

- 43 - Remarks 結果については,5年以内に雑誌等で刊行予定のため,非公開. Orygmatobothrium was elected by Diesing (1863) for Anthobothrium musteli. This genus has central suckers on bothridia which are never observed in any other genera. Two incertae sedis species of this genus by Ruhnke (2011) have no central sucker. Orygmatobothrium forte was described from Cestracion zygaena (= Sphyrna zygaena) by Linton (1924). Ruhnke (2011) reported the bothridium of Or. forte was similar to that of Marsupiobothrium species and Scyphophyllidium uruguayense. Orygmatobothrium crenulatum was described from Dasyatis centroura by Linton (1897a). This species has a cup-like bothridium, similar to Sc. paulum parasitic in Galeocerdo cuvier. Ruhnke (2011) suggested that the Linton’s (1897a) specimen might have been Sc. paulum accidentally infected to Da. centroura. A species inquirenda of this genus, Or. velamentum, by Ruhnke (2011) was described from Mu. manazo in Japanese waters by Yoshida (1917). Unfortunately, the whereabouts of the type specimens was unknown, and the taxonomic status could not be confirmed. Therefore, until additional specimens are obtained, Or. forte should be treated as incertae sedis, and Or. crenulatum and Or. velamentum should be treated as species inquirenda (Appendix Table 1).

Orygmatobothrium musteli (van Beneden, 1849)

Anthobothrium musteli van Beneden, 1849: 278; van Beneden, 1850: 126–127, Pl 7 Figs. 1–11. Orygmatobothrium musteli: Woodland, 1927: 529–530, Pl. 5 Figs. 50–53; Euzet, 1959: 63–65, Figs. 46–45. Tetrabothrium versatile Diesing, 1854: 582–583. Orygmatobothrium versatile: Diesing, 1863: 276–277; Yamaguti, 1952: 23, Pl. 7 Figs. 33–34, Pl. 21 Fig.32.

Type host: Mustelus vulgaris Cloquet, 1821 (= Mustelus mustelus (Linnaeus, 1758)) (Carcharhiniformes: Triakidae). Type locality: Coast of Belgium, Kingdom of Belgium. Additional host: Galeus canis Bonaparte, 1834 (= Galeorhinus galeus (Linnaeus, 1758)) (Carcharhiniformes: Triakidae); Mustelus canis (Mitchill, 1815) (Carcharhiniformes: Triakidae); Cynias manazo (Bleeker, 1855) (= Mustelus

- 44 - manazo Bleeker, 1855) (Carcharhiniformes: Triakidae); Mustelus griseus 結果については,5年以内に雑誌等で刊行予定のため,非公開. Pietschmann, 1908 (Carcharhiniformes: Triakidae); Scyllium canicula (= Scyliorhinus canicula (Linnaeus, 1758)) (Carcharhiniformes: Triakidae). Site of infection: Spiral intestine. Distribution: Atlantic Ocean– Coast of Belgium, Kingdom of Belgium (van Beneden, 1849); off Plymouth, United Kingdom (Woodland, 1927): Mediterranean Sea– off Sète, France (Euzet, 1959); off Corearneau, France (Euzet, 1959): Pacific Ocean– off Hiroshima, Hiroshima Prefecture, Japan (Yoshida, 1917); off Hamajima, Mie Prefecture, Japan (Yamaguti, 1952); off Heda, Shizuoka Prefecture, Japan (this study); off Chigasaki, Kanagawa Prefecture, Japan (this study); off Mimase, Kochi Prefecture, Japan (this study); off Kochi, Kochi Prefecture, Japan (this study).

Materials examined: No. Mustelus manazo 8, 11, 14, 19, 21 (five whole mounted adult specimens, host Mu. manazo, off Heda, Shizuoka Prefecture, Japan, 18.x.2007), No. Mustelus manazo 59, 66, 76–77, 95 (eight whole mounted adult specimens, host Mu. manazo, off Mimase, Kochi Prefecture, Japan, 11.xii.2012), No. Mustelus griseus 20 (a whole mounted adult specimen, host Mu. griseus, off Chigasaki, Kanagawa Prefecture, Japan, 9.vi.2007), No. Mustelus griseus 21 (a whole mounted adult specimen, host Mu. griseus, off Chigasaki, Kanagawa Prefecture, Japan, 31.v.2009), No. Mustelus griseus 50 (a whole mounted adult specimen, host Mu. griseus, off Kochi, Kochi Prefecture, Japan, 24.i.2013).

Description (Fig. 25)

Adults Based on 17 specimens of whole mounted adult specimens and three whole mounted free proglottids specimens. Worms slightly craspedote, euapolytic 28.0–65.4 (40.8, N=8) mm, maximum wide 1,493–2,932 (2,092.5, N=8) at level of scolex or proglottid; 36–74 (52.5, N=8) proglottids per worm (Fig. 25A). Scolex 796–1,741 (1,316.6, N=16) long by 1,112– 2,423 (1,862.3, N=16), composed of four stalked bothridia with one accessory sucker and central sucker (Fig. 25B). Bothridium 336–937 (554.2, N=16, n=44) long by 301– 1,180 (743.2, N=15, n=40) wide. Accessory sucker round, 36–88 (65.2, N=15, n=40) long by 43–84 (63.0, N=15, n=40) wide. Central sucker round, 77–315 (172.4, N=16, n=44) long by 82–440 (176.0, N=16, n=44) wide. Stalk 59–424 (188.0, N=15, n=40) long by 193–841 (479.0, N=15, n=40) wide. Neck 318–1,157 (974.7, N=16) wide.

- 45 - Terminal proglottid 1,924–2,855 (2,459.4, N=7) long by 1,063–1,920 (1,617.6, 結果については,5年以内に雑誌等で刊行予定のため,非公開. N=7) wide. Mature proglottids 1,282–2,855 (2,105.4, N=8, n=13) long by 1,063–2,052 (1,522.6, N=8, n=13) wide (Fig. 25C). Testes spherical, irregularly arranged, 274– 377 (308.2, N=8, n=13) in number per proglottid, 36–124 (65.8, N=8, n=26) long by 32–112 (67.0, N=8, n=26) wide, post-vaginal testes 49–89 (65.8, N=8, n=13) in number. Cirrus-sac oblong, 512–1,149 (726.7, N=8, n=13) long by 110–381 (236.0, N=8, n=13) wide. Vas deferens coiled at median of proglottid. Genital pores locating lateral side, 49.5–70.2 (58.1, N=8, n=13)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 23–80 (53.3, N=8, n=13) wide. Ovary near posterior end of each proglottids, H-shaped in dorsoventral view, 201–496 (344.4, N=8, n=13) long by 466–1,235 (741.2, N=8, n=13) wide. Uterus saccate, median, running anteriorly up to anterior region of proglottids, 829–1,705 (1,189.0, N=8, n=13) long by 63–230 (138.5, N=8, n=13) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles widely overlapping on testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 1,133–2,554 (1,958.3, N=8, n=13) long by 98–241 (175.5, N=8, n=13) wide.

Remarks

Orygmatobothrium musteli is parasitic in various species, Galeorhinus galeus, Mustelus canis, Mu. manazo, Mu. mustelus, Mu. griseus, and Scyliorhinus canicula (van Beneden, 1849; Yoshida, 1917; Woodland, 1927; Yamaguti, 1952; Euzet, 1959; this study), and the host specificity is low. In this study, two genotypes were observed in this species. Their ssrDNA and partial lsrDNA differed in only two nucleotides (Table 10), and this difference was considered an interspecific variation. Caira et al. (2014) recognized two genotypes of the combined sequence of ssrDNA and lsrDNA in two specimens of Or. cf. musteli. One of the genotypes (Or. cf. musteli 1 in Caira et al. 2014) was different in only two and four nucleotides from two sequences of Or. musteli in this study, respectively (Table 10). Hence, Or. cf. musteli 1 was considered congeneric with Or. musteli. On the other hand, another genotype (Or. cf. musteli 2 in Caira et al. 2014) was greatly different from Or. musteli in this study, and Or. cf. musteli 2 was considered to be a different species from Or. musteli (Table 10). Morphological observation is necessary to confirm whether Or. cf. musteli 2 is congeneric with Or. musteli or not. This species was euryxenous (parasitizing hosts in more than one family), parasitic in Triakidae.

- 46 - Genus Pelichnibothrium Monticelli, 1889 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Synonym: Clistobothrium Dailey & Vogelbein, 1990 n. syn.; Prionacestus Mete & Euzet, 1996.

Type species: Pelichnibothrium speciosum Monticelli, 1889. Other species: Pelichnibothrium carcharodoni (Dailey & Vogelbein, 1990) n. comb.; Pe. caudatum Zschokke & Heitz, 1914; Pe. delphini (Bosc, 1802) n. comb.; Pe. grimaldii (Moniez, 1899) n. comb.; Pe. montaukensis (Ruhnke, 1993) n. comb.; Pe. tumidum (Linton, 1922) n. comb.

Diagnosis

Worms craspedote or acraspedote, euapolytic. Scolex composed of four bothridia with one round accessory sucker. Bothridium pyriform, small lappet or crumple. Apical sucker present or absent. Apical region present. Longitudinal muscle band conspicuous. Testes numerous, densely arranged. Cirrus-sac L-shaped or oblong. Vas deferens coiled at a median of proglottid. Genital pores located lateral side, irregularly alternating. Ovary H-shaped in dorsoventral view, Uterus saccate. Vitellarium follicular. Vitelline follicles in two lateral fields, extending to the top from the end of each proglottid, interrupted by cirrus-sac. Parasites of Lamniformes and Carchariformes.

Remarks

The genus Pelichnibothrium was established for the monotypic species Pe. speciosum by Monticelli (1889). Other than the type species, only one additional species, Pe. caudatum was described in the genus by Zschokke & Heitz (1914) from salmonid fishes. Taxonomic status of this genus, however, has been very unstable since the original description. Wardle & McLeod (1952) and Schmidt (1986) treated Pelichnibothrium as a genus of Phyllobothriidae. However, Euzet (1994) suggested that Pe. speciosum and Pe. caudatum were a larval form of the other genus of Phyllobothriidae because they have an apical sucker a typical larval character of Phyllobothriidae. He treated the generic name Pelichnibothrium as a name of larvae and considered Pelichnibothrium was taxonomically invalid. While Yamaguti (1934)

- 47 - reported adult specimens of Pe. speciosum with an apical sucker from a different host,結果については,5年以内に雑誌等で刊行予定のため,非公開. Prionace glauca, Mete & Euzet (1996) established a new genus, Prionacestus, instead of Pelichnibothrium for the adult specimens of Pe. speciosum. However, Scholz et al. (1998) found matured adult specimens of Pe. speciosum from the type host, Alepisaurus ferox, and considered Pelichnibothrium as a valid genus and synonymized Prionacestus with Pelichnibothrium. Ruhnke (2011) considered that taxonomic status of Pelichnibothrium was uncertain because the taxonomical interpretation of the adult apical sucker was ambiguous. Most recently, Caira et al. (2014) suggested that this genus is possibly contained in Phyllobothriidea, but they obtained no molecular data of Pelichnibothrium. In this study, the specimens of Pelichnibothrium speciosum parasitizing Prionace glauca were correctly adult, completely matched with the sequence from type host Alepisaurus ferox by molecular analyses (Fig. 3, Table 8). Therefore, the type species of Pelichnibothrium, Pe. speciosum is valid and has an apical sucker even in adults suggesting Pelichnibothrium should also be valid. Zschokke & Heitz (1914) described Pe. caudatum as a species of Pelichnibothrium because their specimens had an apical sucker. It has been ever only known by plerocercoid larvae since then. In molecular analysis, Pe. caudatum was a sister species of Pe. speciosum (Figs. 3, 6), and Pe. caudatum should also be treated as a valid species in Pelichnibothrium although the morphology of adults is not revealed (see remarks of Pelichnibothrium caudatum). The molecular analysis in this study recognized a clade composing of Pelichnibothrium and Clistobothrium, and Phyllobothrium delphini and Monorygma grimaldii (Figs. 3, 6). Although these species have the various morphology of scolex, they shared distinct longitudinal muscle bands and a more developed apical region in the scolex than that of the other genera. Therefore, Pelichnibothrium, Clistobothrium, Ph. delphini, and Mo. grimaldii should be considered congeneric. In this study, Clistobothrium was regarded as a junior synonym of Pelichnibothrium according to priority in nomenclature, and Ph. delphini and Mo. grimaldii were transferred to Pelichnibothrium. The apical sucker had been treated as a most important taxonomic character of Pelichnibothrium. When adults, however, this structure was only observed in Pe. speciosum, but not in the other species (Yamaguti, 1934, 1954; Euzet, 1994; Scholz et al., 1998; Ruhnke, 2011). Apical sucker was observed in many larvae of Phyllobothriidea and related taxa (Jensen & Bullard, 2010). Euzet (1994) proposed that this genus represents the postlarva of an unknown adult Tetraphyllidea.

- 48 - Although the identification of larvae is very difficult, the author successfully identified結果については,5年以内に雑誌等で刊行予定のため,非公開. plerocercoid larvae of Pe. montaukensis, the most closely related species (Chapter II) and revealed the apical sucker of plerocercoids was lost in adults for Pe. montaukensis. Hence, Pe. speciosum having an apical sucker in adult was considered exceptional species, the apical sucker in adults was not the important taxonomic character of Pelichnibothrium. In this genus, a part of species, Pelichnibothrium montaukensis and Pe. tumidum have crumple bothridium. The bothridium of these species was only crumpled at the margin, different species with completely crumple bothridium of the other genera. This character was considered as a unique character of Pelichnibothrium although it was not a synapomorphy of this genus.

Pelichnibothrium speciosum Monticelli, 1889

Pelichnibothrium speciosum Monticelli, 1889: 324, pl. 33 Figs. 13–14; Yamaguti, 1934: 71–74, Figs. 113–116; Yamaguti, 1952: 53; Euzet, 1959: 194–195, Fig. 238; Williams, 1968: 274–275; Scholz et al., 1998: 1–8, Figs. 1–4; Ruhnke, 2011: 17–18. Prionacestus bipartitus Mete & Euzet, 1996: 363–366, Figs. 1–3: Ruhnke, 2011: 19.

Type host: Alepisaurus ferox Lowe, 1833 (Aulopiformes: Alepisauridae). Type locality: off Madeira, Portugal. Additional host: Prionace glauca (Linnaeus, 1758) (Carcharhiniformes: Carcharhinidae). Site of infection: Intestine and spiral intestine. Distribution: Atlantic Ocean– off Madeira, Portugal (Monticelli, 1889); Miami Beach, Florida, USA and South East coast of Iceland (Scholz et al., 1998): Mediterranean Sea– off Sète, France (Euzet, 1959): Indian Ocean– off Madagascar (Mete & Euzet, 1996): Pacific Ocean– off Kuki, Mie Prefecture, Japan (Yamaguti, 1934), off Shimizu, Shizuoka Prefecture, Japan (Scholz et al., 1998); off Toshima Islands, Tokyo Metropolitan (this study).

Materials examined: MPM 23879 (five whole mounted adult specimens and six whole mounted free proglottid specimens, SY3101, SY3102, SY5623, SY5624, host Pr. glauca, off Kuki, Mie Prefecture, Japan, 24.iii.1927; three whole mounted adult specimens and two whole mounted free proglottid specimens, SY3103, SY5679, host Pr. glauca, off Kuki, Mie Prefecture, Japan, 30.iii.1927), No. Prionace glauca

- 49 - 28–29 (three whole mounted adult specimens, host Pr. glauca, off Toshima Islands, 結果については,5年以内に雑誌等で刊行予定のため,非公開.Tokyo Metropolitan, Japan, 27.vii.2009), No. others 363–368, 370, 372, 373 (17 whole mounted adult specimens, host Al. ferox, off Toshima Islands, Tokyo Metropolitan, Japan, 20.viii.2014).

Description (Figs. 26, 27)

Adults Based on 28 whole mounted adult specimens, six whole mounted free proglottids specimens. Worms slightly craspedote, euapolytic 9.6–335.5 (74.9, N=21) mm, maximum wide 1,308–4,958 (2,638.5, N=25) at level of scolex or bladder; 15–189 (60.5, N=22) proglottids per worm (Figs. 26A, 27A). Scolex 1,372–4,406 (2484.0, N=22) long by 1,308–5,204 (2,990.7, N=22), composed of four bothridia with one accessory sucker and one apical sucker at tops of scolex. Bothridium 537–3,379 (1,504.3, N=21, n=78) long by 323–1,307 (723.7, N=21, n=78) wide, accessory sucker small, round, 142–635 (381.2, N=22, n=79) long by 152–583 (342.5, N=21, n=79) wide. Apical sucker round, 114–362 (201.9, N=22) long by 125–353 (221.4, N=22) wide. Neck 1,148–2,782 (1,809.6, N=16) wide. Bladder observed at terminal in some time, 4.8–154.6mm (49.3mm, N=17) long by 462–4,149 (1,850.8, N=16) wide. Proglottids with longitudinal muscle band, 44–599 (215.1, N=22) wide at anterior proglottids, 23–1,165 (405.2, N=20) wide at posterior proglottids, 47–118 (82.2, N=5) wide at free proglottids. Terminal proglottid 979–1,253 (1,142.0, N=4) long by 1,175–1,488 (1,371.5, N=4) wide. Mature proglottids 577–1,453 (1,010.2, N=14, n=35) long by 1,175–3,792 (2,048.5, N=14, n=35) wide (Figs. 26B, 27B). Free proglottids 2,113–4,132 (3,392.3, N=6) long by 1,978–2,883 (2,406.3, N=6) wide (Fig. 26C). Testes spherical, irregularly arranged, 157–445 (295.4, N=14, n=35) in number per proglottid, 25–95 (49.1, N=14, n=76) long by 19–85 (47.7, N=14, n=76) wide, post- vaginal testes 29–104 (64.7, N=14, n=35) in number. Cirrus-sac oblong, 252–1,082 (555.3, N=17, n=38) long by 40–368 (127.4, N=17, n=38) wide. Vas deferens coiled at median of proglottid. Genital pores locating lateral side, 19.9–81.6 (40.6, N=20, n=41)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 21–142 (47.4, N=17, n=38) wide. Ovary near posterior end of each proglottids, H-shaped in dorsoventral view, 94–559 (233.3, N=19, n=40) long by 290–1,570 (704.0, N=19, n=40) wide. Uterus saccate, median, running anteriorly up to anterior region of proglottids, 318–836 (507.7, N=14, n=35) long by

- 50 - 77–389 (198.6, N=14, n=35) at mature proglottid, Gravid uterus only observed in free proglottids,結果については,5年以内に雑誌等で刊行予定のため,非公開. 1,709–3,050 (2,060.8, N=5) long by 823–2,070 (1,471.4, N=5) wide. Vitellarium follicular, vitelline follicles in two lateral fields, follicles widely overlapping on testicular field, extending to the top from end of proglottids, interrupted by cirrus-sac.

Remarks

Pelichribothrium speciosum was originally described by Monticelli (1889) based on a larval specimen collected from Alepisaurus ferox. Adult worms were later described from Prionace glauca by Yamaguti (1934). Mete & Euzet (1996) established a new genus and a new species, Prionacestus bipartitus, for the Yamaguchi’s adult specimens of Pe. speciosum. However, Scholz et al. (1998) synonymized these species based on the morphology of proglottid. Morphological differences among adult specimens from Alepisaurus ferox and Prionace glauca were also observed in this study (Table 17): the specimens from Al. ferox was larger in worm length than those from Pr. glauca (335 mm vs. 22 mm), and the former had a larger number of proglottids than the latter (189 vs. 36). Further, a number of testes of the former was twice as many as latter’s one (157–237 vs. 389–445). These morphological differences were very large compared to usual interspecific differences in Phyllobothriidae as mentioned by Mete & Euzet (1996) suggesting they are two different species. In molecular analysis, however, these specimens have the same sequence of ssrDNA and lsrDNA (Table 9). Hence, these specimens were recognized as conspecific, and these morphological differences were considered an intraspecific variation. Prionacestus bipartitus described based on the adult specimens from Pr. glauca was regarded as a junior synonym of Pe. speciosum as Scholz et al. (1998) mentioned. Scholz et al. (1998) reported the larvae from Alepisaurus ferox was also presumably conspecific with Pelichribothrium speciosum. However, plerocercoid larvae corresponding with his description collected from Al. ferox were identified as Pe. montaukensis by molecular analyses (Chapter II).

Pelichnibothrium carcharodoni (Dailey & Vogelbein, 1990) n. comb.

Clistobothrium carcharodoni Dailey & Vogelbein, 1990: 108–112, Figs. 1–6; Ruhnke, 1993: 39, Fig. 1; Randhawa, 2011: 274–280, Fig. 1.

- 51 - Type host: Carcharodon carcharias (Linnaeus, 1758) (Lamniformes: Lamnidae). 結果については,5年以内に雑誌等で刊行予定のため,非公開. Type locality: off Pt. Dume, Los Angeles County, California, U.S.A. Site of infection: Spiral intestine. Intermediate host: Grampus griseus (Cuvier, 1812) (Cetartiodactyla: Delphinidae); Stenella coeruleoalba (Meyen, 1833) (Cetartiodactyla: Delphinidae). Distribution: Pacific Ocean– off Pt. Dume, Los Angeles County, California, U.S.A. (Dailey & Vogelbein, 1990); Kaipara Harbor, North Island, New Zealand (Randhawa, 2011); off Iburi, Kochi Prefecture, Japan (this study). Plerocercoid; Mediterranean Sea– Western Mediterranean Sea (Aznar et al., 2007).

Material examined: No. Carcharodon carcharias 15–16, 19–22 (12 whole mounted adult specimens, host Ca. carcharias, off Iburi, Kochi Prefecture, Japan, 17.x.2012).

Description (Fig. 28)

Adults Based on 12 whole mounted adult specimens. Worms acraspedote, euapolytic 15.0 (N=1) mm, maximum wide 1,717–2,523 (2,042.9, N=12) at level of scolex; 114 (N=1) proglottids per worm (Fig. 28A). Scolex 1,043–2,243 (1,671.0, N=12) long by 1,717–2,523 (2,042.9. N=12) wide, composed of four stalked bothridia with one accessory sucker and two anterior lappets (Fig. 28B). Bothridium 363–955 (497.5, N=12, n=48) long by 247–566 (483.8, N=12, n=48) wide, Accessory sucker large, round, 467–962 (659, N=12, n=48) long by 416–782 (545.8, N=12, n=48) wide. Stalk 74–422 (215.5, N=12, n=48) long by 284–819 (573.3, N=12, n=48) wide. Apical region present, 307–668 (442.3, N=12) long by 602–1,848 (1,209.5, N=12) wide. Neck 521–1,009 (659.3, N=12) wide. Proglottids with longitudinal muscle band, 70–74 (72.0, N=2) wide at anterior proglottids, 31 (N=1) wide at posterior proglottids. Terminal proglottid 548– 1,129 (838.5, N=2) long by 610–665 (637.5, N=2) wide. Mature proglottids 548–1,129 (789.5, N=2, n=4) long by 610–665 (644.8, N=2, n=4) wide. Testes spherical or oblong, irregularly arranged, 87–100 (95.25, N=2, n=4) in total number per proglottid, 23– 43 (31.0, N=2, n=8) long by 28–36 (32.2, N=2, n=8) wide, post-vaginal testes 26–33 (28.8, N=2, n=4) in number. Cirrus armed with spinitriches, 18–41 (29.8, N=2, n=4) wide. Cirrus-sac L-shaped or oblong, 172–315 (271.2, N=2, n=4) long by 80–123 (102.2, N=2, n=4) wide. Vas deferens coiled at median of proglottid. Genital pores

- 52 - located lateral side, 59.3–68.7 (64.0, N=2, n=4)% of proglottid length from posterior 結果については,5年以内に雑誌等で刊行予定のため,非公開. end, locating irregularly alternating at left side or right side. Vagina 12–16 (13.8, N=2, n=4) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 46–264 (141.3, N=2, n=4) long by 210–357 (361.8, N=2, n=4) wide. Uterus saccate, median, running anteriorly up to genital pore level, 274–572 (433.2, N=2, n=4) long by 35–62 (48.3, N=2, n=4) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles not overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 445–1,047 (687.5, N=2, n=4) long by 52–78 (61.5, N=2, n=4) wide.

Remarks

This species was originally described as Clistobothrium carcharodoni, the type species of Clistobothrium by Dailey & Vogelbein (1990). However, Clistobothrium was synonymized with Pelichnibothrium according to molecular analyses (Figs. 3, 6). In this study, this species was transferred to Pelichnibothrium. This species has flat type bothridium and large accessory sucker, greatly different from other Pelichnibothrium species. In this molecular analyses, however, this species was a sister species with Pe. tumidum having crumple type bothridium (Fig. 10). Although morphologies of both species are greatly different, they were most closely related. Both species were parasitic on the same host, Carcharodon carcharias, suggesting that phylogenetical similarity might derive from parasitizing the same host. This species is oioxenous, parasitic in only Carcharodon carcharias. Randhawa (2011) reported the plerocercoids of this species from two species of dolphins, Stenella coeruleoalba and Grampus griseus, determined by molecular analysis. This species uses dolphins as an intermediate host. This study is the first report of this genus from Japanese waters.

Pelichnibothrium caudatum Zschokke & Heitz, 1914

Pelichnibothrium caudatum Zschokke & Heitz, 1914: 205–217, Fig. 8. Phyllobothrium caudatum: Southwell, 1925: 179–180, Fig. 109. Phyllobothrium salmonis Fujita, 1922: 579–583; Williams, 1968: 273–274. Phyllobothrium keta Canavan, 1928: 51–55, Figs. 1–2.

- 53 - Type host: Onchorhynchus keta Walbaum, 1792 (Salmoniformes: Salmonidae). Type結果については,5年以内に雑誌等で刊行予定のため,非公開. locality: Kamtschatka, Russia. Final host: unknown. Intermediate host: Aptocyclus ventricosus (Pallas, 1769) (Scorpaeniformes: Cyclopteridae); Bathyraja smirnovi (Soldatov & Pavlenko, 1915) (Rajiformes: Arhynchobatidae); Berryteuthis magister (Berry, 1913) (Teuthida: Gonatidae); Careproctus trachysoma Gilbert et Burke, 1912 (Scorpaeniformes: Liparidae); Eumicrotremus asperrimus (Tanaka, 1912) (Scorpaeniformes: Cycloopteridae); Hippoglossoides dubius Schmidt, 1904 (Pleuronectiformes: Pleuronectidae); Onchorhynchus keta Walbaum, 1792; On. masou (Brevoort, 1856) (Salmoniformes: Salmonidae); On. nerca (Walbaum, 1792) (Salmoniformes: Salmonidae); On. taschawytcha (Walbaum, 1792) (Salmoniformes: Salmonidae); Watasenia scintillans (Berry, 1911) (Oegopsida: Enoploteuthidae). Distribution: Plerocercoid; Fresh Water– Kamtschatka, Russia (Zschokke & Heitz, 1914), Tonegawa R., Miomotegawa R., Jinzukawa R., Ishikarigawa R., Nishibetsugawa R., Japan (Fujita, 1922): Pacific Ocean– off Erimo, Hokkaido Prefecture, Japan (this study): Sea of Japan– Excursion Inlet, Alaska, U.S.A (Canavan, 1928); off Toyama, Toyama Prefecture, Japan (this study); off Oki, Shimane Prefecture, Japan (this study).

Description (Fig. 29)

Adults Unknown.

Plerocercoids See Chapter II.

Remarks

Pelichnibothrium caudatum described by Zschokke & Heitz (1914) was based on a larval specimen collected from Onchorhynchus keta. Southwell (1925) considered this species as a larvae of Phyllobothrium, and transferred it to Phyllobothrium. However, Ruhnke (2011) rejected this combination because Southwell (1925) did not show any morphological evidence. In this study, the sequence of ssrDNA and lsrDNA of larvae of this species

- 54 - was reported for the first time. As a result, this species was the sister species with Pelichnibothrium結果については,5年以内に雑誌等で刊行予定のため,非公開. speciosum and did not match any adult species (Figs. 3, 6). Hence, this species was considered as a valid species of Pelichnibothrium. In the future, the investigation of adults of this species will be necessary for understanding adult morphology, because adults of this species have never reported. Phyllobothrium salmonis was described by Fujita (1922) based on larval specimens from Onchorhynchus keta and On. masou. Williams (1968) accepted the species as valid, but also noted that this species might be a synonym of Pelichnibothrium caudatum. Ruhnke (2011) treated this species as species inquirenda. In this study, specimens of Pe. caudatum from Japanese waters were morphologically matched with Ph. salmonis (Chapter II). Hence, this species was regarded a junior synonym of Pe. caudatum. Phyllobothrium keta was described by Canavan (1928) based on larval specimens from Onchorhynchus keta. Later, Williams (1968) did not accept this species because Canavan’s specimens were doomful. He mentioned that Canavan’s description was based on the plerocercoid of a tetraphyllidean (probably Pe. caudatum) and the strobila of a pseudophyllidean (probably Eubothrium oncorhynchi = Eu. crassum). Ruhnke (2011) treated Ph. keta as a junior synonym of Pe. caudatum. In this study, plerocercoids of Pelichnibothrium caudatum were collected from various host species in addition to salmonid fishes as follows: teleosts, Aptocyclus ventricosus, Careproctus trachysoma, Eumicrotremus asperrimus and Hippoglossoides dubius; an elasmobranch, Bathyraja smirnovi; and cephalopods, Berryteuthis magister and Watasenia scintillans (Chapter II). It revealed that this species used many intermediate hosts of various taxa. Plerocercoids of Pelichnibothrium caudatum have slightly crumpled bothridium. This species is known only by larval stage, and morphology of their adults has never been revealed. Bothridium form of phyllobothriideans is greatly transformed as the worms grow from larvae to adults (Chapter II). Therefore, an adult of this species may have completely difference bothridium; it should not be identified based on bothridium morphology of larval stage.

Pelichnibothrium delphini (Bosc, 1802) n. comb.

Hydatis delphini Bosc, 1802: 324, Pl. 9, Figs. 10–13. Phyllobothrium delphini; van Beneden, 1868: 1051–1052; Adam, 1928: 1–17,

- 55 - Figs. 1–7; Baylis, 1932: 339; Guiart, 1935: 8–12, Pl. 1, Figs. 3–8; Southwell & 結果については,5年以内に雑誌等で刊行予定のため,非公開.Worker, 1936: 91–100, Figs. 1–4; Baylis, 1939: 488; Johnston & Mawson, 1939: 268–273, Fig. 11–16; Delyamure, 1955: 194–201, Figs. 123–130; Margolis & Pike, 1955: 106–107 ; Williams, 1968: 276–278; Agustí et al., 2005b: 465–468, Figs. 2, 3, Table 1.

Type host: Delphinus delphis Linnaeus, 1758 (Cetartiodactyla: Delphinidae). Type locality: not described. Final host: unknown. Intermediate host: Delphinus delphis Linnaeus, 1758 (Cetartiodactyla: Delphinidae); Arctocephalus australis (Zimmermann, 1783) (Carnivora: Otariidae); Balaena mysticetus Linnaeus, 1758 (Cetartiodactyla: Balaenidae); Globicephala melas Traill, 1809 (Cetartiodactyla: Delphinidae); Grampus griseus (Cuvier, 1812) (Cetartiodactyla: Delphinidae); Kogia sima Owen, 1866 (Cetartiodactyla: Kogiidae); Leptonychotes weddellii (Lesson, 1826) (Carnivora: Phocidae); Mesoplodon bidens Sowerby, 1804 (Cetartiodactyla: Ziphiidae); Physeter macrocephalus Linnaeus, 1758 (Cetartiodactyla: Physeteridae); Stenella coeruleoalba (Meyen, 1833) (Cetartiodactyla: Delphinidae); Tursiops truncatus (Montagu, 1821) (Cetartiodactyla: Delphinidae). Distribution: Merocercoid; Atlantic Ocean– Falkland Is., U.K. (Baylis, 1932; Hamilton, 1934; Southwell & Walker, 1936); Belgium (Adam, 1938); Cornwall, U.K. (Baylis, 1939); Azores Is., Portugal (Delyamure, 1955); Cape Finisterre, Spain (Delyamure, 1955): Mediterranean Sea– Gibraltar, U.K. (Delyamure, 1955); Corsica I., France (Delyamure, 1955); Spain (Agustí et al., 2005b; Aznar et al., 2007): Pacific Ocean– Commander Is., Russia (Delyamure, 1955); Australia (Johnston & Mawson, 1939; Delyamure, 1955; Margolis & Pike, 1955), Antarctica– (Delyamure, 1955).

Description (Fig. 30)

Adults Unknown.

Merocercoids See Chapter II.

- 56 -

Remarks 結果については,5年以内に雑誌等で刊行予定のため,非公開.

This species was described as Hydatis delphini by Bosc (1802). After van Beneden (1868), this species was treated as larvae of Phyllobothrium. Recently, Agustí et al. (2005b) and Aznar et al. (2007) reported its partial lsrDNA and revealed that this species was closely related to Clistobothrium species and Mo. grimaldii, and phylogenetically different from Phyllobothrium species. However, they did not revise the taxonomical status of this species. Merocercoids of this species have crumpled bothridium, and this species was traditionally treated as Phyllobothrium (van Beneden, 1868; Williams, 1968). However, crumple bothridium of this species is not bifid, while that of Phyllobothrium is bifid. Moreover, this bothridium was slightly crumpled, more similar to Pe. caudatum than the other Pelichnibothrium species. However, the morphology of adult Pe. delphini and Pe. caudatum has never been revealed. Bothridium form of phyllobothriideans is greatly transformed as the worms grow from larvae to adults (Chapter II). Therefore, an adult of this species may have completely difference bothridium; it should not be identified based on bothridium morphology of larval stage. In this study, Phyllobothrium delphini was found to be closely related to Pelichnibothrium species, Clistobothrium species, and Mo. grimaldii. They were considered congeneric and to be treated in Pelichnibothrium according to its priority in nomenclature (Figs. 3, 6). Therefore, this species was transferred to Pelichnibothrium. Adult specimens of this species have never been obtained. Although all species belonging to Pelichnibothrium were contained in this molecular analyses, the sequence of the larvae did not match with those of any adult species (Figs. 3, 6). Hence, this species was considered as a valid species of Pelichnibothrium. In the future, the investigation of an adult of this species was needed. This study is the first report of this genus from Japanese waters.

Pelichnibothrium grimaldii (Moniez, 1899) n. comb.

Taenia grimaldii Moniez, 1899: 825–827. Monorygma grimaldii; Baylis, 1919: 418–424, Figs. 1–4; Guiart, 1935: 12–17, Pl. 1, Figs. 9–12; Agustí et al., 2005b: 468, Figs. 4, Table 2.

- 57 - Type host: not described. Type結果については,5年以内に雑誌等で刊行予定のため,非公開. locality: not described. Final host: unknown. Intermediate host: Delphinus delphis Linnaeus, 1758 (Cetartiodactyla: Delphinidae); Globicephala melas Traill, 1809 (Cetartiodactyla: Delphinidae); Lagenorhynchus acutus Gray, 1828 (Cetartiodactyla: Delphinidae); Tursiops truncatus (Montagu, 1821) (Cetartiodactyla: Delphinidae). Distribution: Merocercoid; Atlantic Ocean– various points (Delyamure, 1955); Lincolnshire coast, Skegness, U.K. (Baylis, 1919): Mediterranean Sea– off coasts of Spain, Spain (Delyamure, 1955); off coasts of Finland, Finland (Delyamure, 1955); off coasts of Corsica, France (Delyamure, 1955).

Description (Fig. 31)

Adults Unknown.

Merocercoids See Chapter II.

Remarks

This species was described as Taenia grimaldii by Moniez (1899). Baylis (1889) transferred into Monorygma. Recently, Agustí et al. (2005b) and Aznar et al. (2007) reported its partial lsrDNA and revealed that this species was closely related to Clistobothrium species and Phyllobothrium delphini. However, they did not revise the taxonomical status of this species. Merocercoids of this species have flat bothridium with large accessory sucker, and this species was traditionally treated as Monorygma (Baylis, 1919). Monorygma species have triangle accessory suckers, while these species have round accessory suckers (Remarks of Genus Monorygma). At this point, this species is out of place from diagnosis of Monorygma. Bothridium form of phyllobothriideans is greatly transformed as the worms grow from larvae to adults (Chapter II). Therefore, an adult of this species may have completely difference bothridium; it should not be identified based on bothridium morphology of larval stage. In this study, Phyllobothrium delphini was found to be closely related with

- 58 - Pelichnibothrium species, Clistobothrium species, and Mo. grimaldii. They were 結果については,5年以内に雑誌等で刊行予定のため,非公開.considered congeneric and to be treated in Pelichnibothrium according to its priority in nomenclature (Figs. 3, 6). Therefore, this species was transferred to Pelichnibothrium. Adult specimens of this species have never been obtained. Although all species belonging to Pelichnibothrium were contained in molecular analyses, the sequence of the larvae did not match with those of any adult species (Figs. 3, 6). Hence, this species was considered as a valid species of Pelichnibothrium. In the future, the investigation of an adult of this species will be needed. This study is the first report of this genus from Japanese waters.

Pelichnibothrium montaukensis (Ruhnke, 1993) n. comb.

Clistobothrium montaukensis Ruhnke, 1993: 40, Figs. 3–15; Ruhnke, 2011: 58– 61, Figs. 31–33. Phyllobothrium tumidum: Euzet, 1959: 69–71, Figs. 51–52.

Type host: Isurus oxyrinchus Rafinesque, 1809 (Lamniformes: Lamnidae). Type locality: off Montauk, Long Island, U.S.A. Site of infection: Spiral intestine. Intermediate host: Alepisaurus ferox Lowe, 1833 (Aulopiformes: Alepisauridae). Distribution: Atlantic Ocean– off Montauk, Long Island, U.S.A. (Ruhnke, 1993), off Yarmouth, Massachusetts, U.S.A. (Ruhnke, 1993): Gulf of California– El Barril, Baja, Mexico (Ruhnke, 2011): Mediterranean Sea– off Sète, France (Euzet, 1959): Pacific Ocean– off Toshima, Tokyo Metropolitan, Japan (this study), off Ogasawara Is., Tokyo Metropolitan, Japan (this study): Sea of Japan– off Obama, Fukui Prefecture, Japan (this study). Plerocercoid; Pacific Ocean– off Toshima, Tokyo Metropolitan, Japan (this study).

Material examined: No. Isurus oxyrinchus 1, 5–6 (four whole mounted adult specimens, host Is. oxyrinchus, off Toshima, Tokyo Metropolitan, Japan, 1.viii.2009), No. Isurus oxyrinchus 17, 18, 21, 22 (six whole mounted adult specimens, host Is. oxyrinchus, off Ogasawara Is., Tokyo Metropolitan, Japan, 25.ii.2016). No. Isurus oxyrinchus 25, 29 (10 whole mounted juvenile specimens, host Is. oxyrinchus, off Ogasawara Is., Tokyo Metropolitan, Japan, 25.ii.2016).

- 59 - Description (Fig. 32) 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Adults Based on 10 whole mounted adult specimens. Worms slightly craspedote, euapolytic, 47.6–139.4 (84.5, N=5) mm, maximum wide 4,585–7,672 (5,817.0, N=5) at level of scolex; 339–609 (442.2, N=5) proglottids per worm (Fig. 29A). Scolex 1,318–6,924 (4,651.0, N=10) long by 3,423– 7,672 (5909.7, N=10) wide, composed of four stalked bothridia with one accessory sucker (Fig. 29B). Bothridium crumpled, 1,732–4,659 (2,920.9, N=10, n=40) long by 807–4,068 (1,883.9, N=10, n=40) wide. Accessory sucker small, round, 160–994 (308.7, N=10, n=40) long by 131–376 (276.8, N=10, n=40) wide. Apical region present, 715–2,646 (1,618.9, N=10) long by 708–5,867 (2661.5, N=10) wide. Stalk 389–1,873 (809.8, n=24, N=6) long by 813–2,206 (1,323.1, n=24, N=6) wide. Neck 892–2,500 (1623.3, N=10) wide. Proglottids with longitudinal muscle band, 123–187 (157.5, N=6) wide at anterior proglottids, 35–52 (41.7, N=3) wide at posterior proglottids. Terminal proglottid 1,739–1,812 (1,770.3, N=3) long by 1,123–1,291 (1208.3, N=3) wide. Mature proglottids 1,331–1,786 (1,599.0, N=3, n=9) long by 1,123–1,366 (1,249.2, N=3, n=9) wide (Fig. 29C). Testes spherical, irregularly arranged, 228–265 (241.1, N=3, n=9) in total number per proglottid, 22–41 (32.3, N=3, n=18) long by 24–53 (37.8, N=3, n=18) wide, post-vaginal testes 40–50, N=3, n=9) in number. Cirrus 55– 134 (95.4, N=3, n=9) wide. Cirrus-sac oval, 422–668 (576.4, N=3, n=9) long by 162– 218 (187.3, N=3, n=9) wide. Vas deferens coiled at median of proglottid. Genital pores lateral, 51.9–69.3 (61.5, N=3, n=9)% of proglottid length from posterior end, irregularly alternating. Vagina median, 41–63 (55.5, N=3, n=9) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 231–462 (350.2, N=3, n=9) long by 525–778 (653.3, N=3, n=9) wide. Uterus saccate, median, running anteriorly up to genital pore level, 507–860 (672.0, N=3, n=9) long by 114–155 (133.9, N=3, n=9) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles slightly overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 1,093–1,778 (1,363.3, N=3, n=9) long by 237–376 (290.0, N=3, n=9) wide.

Juveniles Based on 10 whole mounted juvenile specimens. Worms slightly craspedote, euapolytic, 5.8–8.7 (7.0, N=8) mm, maximum

- 60 - wide 1,594–2,242 (1954.9, N=8) at level of scolex; 39–103 (62.9, N=8) proglottids per 結果については,5年以内に雑誌等で刊行予定のため,非公開. worm (Fig. 24A). Scolex 1,138–1,778 (1,495.8, N=10) long by 1,594–2242 (1925.3, N=10) wide, composed of four stalked bothridia with one accessory sucker (Fig. 24A). Bothridium crumpled, 706–1,312 (943.9, N=10, n=40) long by 107–868 (507.9, N=10, n=40) wide. Accessory sucker small, round, 51–213 (128.6, N=10, n=40) long by 55– 172 (112.9, N=10, n=40) wide. Apical region present, 569–913 (736.3, N=10) long by 235–847 (597.0, N=10) wide. Stalk 88–524 (201.7, N=10, n=40) long by 268–885 (479.2, N=10, N=40) wide. Neck 376–807 (574.8, N=10) wide. Proglottids with longitudinal muscle band, 34–133 (72.5, N=10) wide.

Plerocercoids See Chapter II.

Remarks

This species was described as Clistobothrium montaukensis based on the specimens from Isurus oxyrinchus by Ruhnke (1993). Euzet (1959) had already reported another phyllobothriid species, Phyllobothrium tumidum, from the same host species, but Ruhnke (1993) identified his specimens from Is. oxyrinchus as Cl. montaukensis. Yamaguti (1934) also reported Ph. sp. from the same host species (as Is. glaucus). Perhaps, his specimens may be this species although it is not well developed. In this study, Clistobothrium montaukensis was found to be closely related with Pelichnibothrium species, Clistobothrium species, Phyllobothrium delphini, and Monorygm grimaldii. They were considered congeneric to be treated in Pelichnibothrium according to its priority in nomenclature (Figs. 3, 6). Therefore, this species was transferred to Pelichnibothrium. This species is morphologically similar to Pelichnibothrium tumidum in having a crumple bothridium. These species were only distinguished by cirrus sac length in mature proglottids, cirrus sac length of Pe. montaukensis was longer than Pe. tumidum (519–737 vs. 316–411). These two species were clearly distinguished in molecular analysis. Pelichnibothrium montaukensis was more closely related to Pe. speciosum and Pe. caudatum than to Pe. tumidum having similar morphology in the molecular data (Figs. 3, 6). Randhawa & Brickle (2011) reported the lsrDNA sequence of Clistobothrium cf. montaukensis from Lamna nasus. Their sequence was clearly

- 61 - distinguished from Pelichnibothrium montaukensis in molecular analysis (Chapter II).結果については,5年以内に雑誌等で刊行予定のため,非公開. Clistobothrium cf. montaukensis by Randhawa & Brickle (2011) was considered as an undescribed species of Pelichnibothrium. This species is oioxenous, parasitic in only Isurus oxyrinchus. Plerocercoid larvae of Pelichnibothrium montaukensis identified by molecular analysis are described in this study. It revealed that this species used Alepisaurus ferox as an intermediate host. Morphological changes from plerocercoids to adults in this species are shown (Chapter II).

Pelichnibothrium tumidum (Linton, 1922) n. comb.

Phyllobothrium tumidum Linton, 1922: 1–16, Pl. 1–3 Figs. 1–15; Southwell, 1925: 160; Euzet, 1952: 399–400; Williams, 1968: 245–249, Fig. 20. Clistobothrium tumidum: Ruhnke, 1993: 39–40, Fig. 2; Ruhnke, 2011: 61–63, Fig. 35.

Type host: Carcharodon carcharias (Linnaeus, 1758) (Lamniformes: Lamnidae). Type locality: off Woods Hole, Massachusetts, U.S.A. Site of infection: Spiral intestine. Distribution: Atlantic Ocean– off Woods Hole, Massachusetts, U.S.A. (Linton, 1922); off Montauk, Long Island, New York, U.S.A. (Ruhnke, 1993): Pacific Ocean– off Iburi, Kochi Prefecture, Japan (this study).

Material examined: No. Carcharodon carcharias 7–9, 12–14, 28 (10 whole mounted adult specimens, host Ca. carcharias, off Iburi, Kochi Prefecture, Japan, 17.x.2012).

Description (Fig. 33)

Adults Based on 10 whole mounted adult specimens. Worms slightly craspedote, euapolytic, 5.8–21.0 (10.0, N=6) mm, maximum wide 1,107–7,050 (3,932.2, N=9) at level of scolex; 149–225 (192.0, N=4) proglottids per worm (Fig. 25A). Scolex 804–3,855 (1,910, N=8) long by 1,107–7,050 (3,932.2. N=9) wide, composed of four bothridia with one accessory sucker (Fig. 25B). Bothridium crumpled, 691–3,178 (1,931.3, N=10, n=38) long by 593–3,836 (1,297.2, N=10, n=38) wide, Accessory sucker small, round, 350–954 (578.0, N=10, n=38) long

- 62 - by 593–3,836 (1,297.2, N=10, n=38) wide. Apical region present, 350–954 (578.0, 結果については,5年以内に雑誌等で刊行予定のため,非公開. N=9) long by 662–2,277 (1,469.8, N=9) wide. Neck 504–1,646 (1,002.2, N=10) wide. Proglottids with longitudinal muscle band, 50–109 (84.8, N=4) wide at anterior proglottids, 57–150 (103.4, N=4) wide at posterior proglottids. Terminal proglottid 646 (N=1) long by 690 (N=1). Mature proglottids 488–646 (542.6, N=1, n=3) long by 690–855 (790.0, N=1, n=3) wide. Testes spherical, irregularly arranged, 192–199 (194.3, N=1, n=3) in total number per proglottid, 16–22 (19.3, N=1, n=3) long by 13–22 (18.0, N=1, n=3) wide, post-vaginal testes 58–66 (62.0, N=1, n=3) in number. Cirrus-sac L-shaped, 338–387 (363.7, N=1, n=3) long by 48–89 (71.3, N=1, n=3) wide. Genital pores locating lateral side, 54.0–60.7 (57.0, N=1, n=3)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Ovary near posterior end of each proglottids, H-shaped in dorsoventral view, 36–95 (61.3, N=1, n=3) long by 218–384 (281.7, N=1, n=3) wide. Uterus saccate, median, running anteriorly up to anterior region of proglottid, 356–558 (432.0, N=1, n=3) long by 37–42 (39.7, N=1, n=3) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles not overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 468–606 (520.7, N=1, n=3) long by 172–210 (192.0, N=1, n=3) wide.

Remarks

This species was described as Phyllobothrium tumidum based on the adult specimens from Carcharodon carcharias by Linton (1922). Ruhnke (1993) transferred this species to Clistobothrium. In this study, this species was found to be closely related with Pelichnibothrium species, Clistobothrium species, Phyllobothrium delphini, and Monorygma grimaldii. They were considered congeneric and to be treated in Pelichnibothrium according to its priority in nomenclature (Figs. 3, 6). Therefore, this species was transferred to Pelichnibothrium. This species is morphologically similar to Pelichnibothrium montaukensis in having a crumple bothridium. These species were only distinguished by cirrus sac length in mature proglottids; cirrus sac length of Pe. tumidum was shorter than Pe. montaukensis (316–411 vs. 519–737). These two species were clearly distinguished in my molecular analysis. Pelichnibothrium tumidum was more closely related to Pe. carcharodoni than to Pe. montaukensis having similar morphology in the molecular data (Figs. 3, 6).

- 63 - This species had been reported from several hosts. However, this species is oioxenous,結果については,5年以内に雑誌等で刊行予定のため,非公開. parasitic in only Carcharodon carcharias, and the specimens from different hosts were considered another species. Euzet (1959) reported this species from Isurus oxyrinchus, but Ruhnke (1993) treated his specimens as Clistobothrium montaukensis (see remarks of Pelichnibothrium montaukensis). Tseng (1933) reported Phyllobothrium tumidum (= Pe. tumidum) from Triakis scyllium. However, his specimens have bifid bothridium, different form this species. Hence, it considered his specimens were Ph. serratum (see remarks of Phyllobothrium serratum). This study is the first report of this genus from Japanese waters.

Genus Scyphophyllidium Woodland, 1927

Synonym: Marsupiobothrium Yamaguti, 1952 n. syn.; Nandocestus Reyda, 2008 n. syn.; Orectolobicestus Ruhnke, Caira & Carpenter, 2006 n. syn.; Paraorygmatobothrium Ruhnke, 1994 n. syn.; Ruhnkecestus Caira & Durkin, 2006 n. syn.

Type species: Scyphophyllidium giganteum (van Beneden, 1858). Other species: Scyphophyllidium angustum (Linton, 1889) n. comb.; Sc. alopias (Yamaguti, 1952) n. comb.; Sc. arnoldi (Ruhnke & Thompson, 2006) n. comb.; Sc. bai (Ruhnke & Carpenter, 2008) n. comb.; Sc. barberi (Ruhnke, 1994) n. comb.; Sc. carcharhinus n. sp.; Sc. chiloscyllii (Subhapradha, 1955) n. comb.; Sc. eirakubuka n. sp.; Sc. exiguum (Yamaguti,1935) n. comb.; Sc. filiforme (Yamaguti, 1952) n. comb.; Sc. floraformis (Southwell, 1912) n. comb.; Sc. guariticus (Marques, Brooks & Lasso, 2001) n. comb.; Sc. hanazame n. sp.; Sc. insulaeum n. sp.; Sc. janineae (Ruhnke, Healy & Shapero, 2006) n. comb.; Sc. kelleyae (Ruhnke, Caira & Carpenter, 2006) n. comb.; Sc. kirstenae (Ruhnke, Healy & Shapero,2006) n. comb.; Sc. leuci (Watson & Thorson, 1976) n. comb.; Sc. longiproglottidum n. sp.; Sc. lorettae (Ruhnke, Caira & Carpenter, 2006) n. comb.; Sc. maritimum n. sp.; Sc. mobedii (Malek, Caira & Haseli, 2010) n. comb.; Sc. mukahensis (Ruhnke, Caira & Carpenter, 2006) n. comb.; Sc. musteli (van Beneden,1850) n. comb.; Sc. nemuribuka n. sp.; Sc. nicaraguensis (Watson & Thorson, 1976) n. comb.; Sc. ogasawaraensis n. sp.; Sc. orectolobi (Butler, 1987) n. comb.; Sc. paulum (Linton, 1897) n. comb.; Sc. prionacis (Yamaguti, 1934) n. comb.; Sc. randyi (Ruhnke, Caira & Carpenter, 2006) n. comb.; Sc. roberti (Ruhnke & Thompson, 2006); Sc. rodmani (Ruhnke & Carpenter, 2008) n. comb.; Sc. sinuspersicense (Malek, Caira & Haseli, 2010) n. comb.; Sc. sumitsukizame n. sp.; Sc. tyleri (Ruhnke, Caira & Carpenter,

- 64 - 2006) n. comb.; Sc. taylori (Cutmore, Bennett & Cribb, 2009) n. comb.; Sc. triacis 結果については,5年以内に雑誌等で刊行予定のため,非公開.(Yamaguti, 1952) n. comb.; Sc. typicum (Subhapradha, 1955) n. comb.; Sc. latipi (Caira & Durkin, 2006) n. comb.; Sc. uruguayense Brooks, Marques, Perroni & Sidagis, 1999; Sc. yogore n. sp.

Incertae sedis– Scyphophyllidium karbharii (Deshmukh & Shinde, 1975); Sc. rhinobati (Shinde & Deshmukh, 1980); Sc. rhynchobati (Shinde & Deshmukh, 1980); Sc. pruvoti (Guiart, 1933).

Diagnosis

Worms craspedote or acraspedote, euapolytic. Scolex composed of four bothridia with one round accessory sucker. Bothridium disk-like, saclike, cuplike or loculate, bothridium margin flat or loculate. Apical sucker absent. Testes numerous, densely arranged. Cirrus-sac oblong. Vas deferens coiled at a median of proglottid. Genital pores located lateral side, irregularly alternating. Ovary H-shaped in dorsoventral view, Uterus saccate. Vitellarium follicular. Vitelline follicles in two lateral fields, interrupted by cirrus-sac. Parasites of mainly Carcharhiniformes.

Remarks

The genus Scyphophyllidium was elected for Anthobothrium giganteum by Woodland (1927) based on a unique bothrium type, i.e., sac type. Later, four species, Sc. aradiansis, Sc. angustum, Sc. pruvoti, and Sc. uruguayense, have been described in this genus. Scyphophyllidium aradiansis was poorly described by Shinde & Chincholikar (1977), and its taxonomical status was doubtful even at the order level. Scyphophyllidium pruvoti was originally described in Diplobothrium by Guiart (1933), and later transferred to Scyphophyllidium by Joyeux & Bear (1936). However, this species was described based on a larva (Guiart, 1933), and its taxonomic status was doubtful. Recently, Ruhnke (2011) treated Sc. aradiansis as a nomen dubium, and Sc. pruvoti as incertae sedis, and also he transferred Sc. angustum to Paraorygmatobothrium. He kept only two species, Sc. giganteum and Sc. uruguayense as valid species of this genus. Scyphophyllidium, Marsupiobothrium, Nandocestus, Orectolobicestus, and Ruhnkecestus were nested in the clade of Paraorygmatobothrium (Figs. 3, 6). These genera were classified mainly based on bothridium types. However, bothridium type

- 65 - did not reflect the phylogeny, and the author could not classify this clade to monophyletic結果については,5年以内に雑誌等で刊行予定のため,非公開. genera by bothridium types. All species of this clade shared ovary extending along the inner surface of proglottids, although this character was also observed in Calliobothrium and Symcallio. However, the species of this clade did not bear hook which Calliobothrium and Symcallio had. These characters should be good enough to assign this clade as a single genus (Table 14). Marsupiobothrium, Nandocestus, Orectolobicestus, Paraorygmatobothrium, and Ruhnkecestus were regarded as junior synonyms of Scyphophyllidium according to its priority (International Code of Zoological Nomenclature, Art. 23). As a result of this synonymization, Marsupiobothrium karbharii, Ma. rhinobati, and Ma. rhynchobati were reluctantly transferred from Marsupiobothrium to Scyphophyllidium in this study. The descriptions of these three species were not enough to specify their generic status (Ruhnke, 2011). The bothridium of the type specimens in their drawings (Deshmukh & Shinde, 1975: figs. A, C; Shinde & Deshmukh, 1980: fig. A) looks similar to that of Pithophorus, an incertae sedis genus in Tetraphyllidea. However, the author could not judge the correct generic disposition of the three species by the drawings. These species should be treated as incertae sedis until the type specimens are re-examined (Appendix Table 1).

Scyphophyllidium carcharhinus n. sp.

Type host: Carcharhinus limbatus (Valenciennes, 1839) (Carcharhiniformes: Carcharhinidae). Type locality: off Yaeyama Islands, Okinawa Prefecture, Japan. Site of infection: Spiral intestine. Additional host: Carcharhinus galapagensis (Snodgrass & Heller, 1905) (Carcharhiniformes: Carcharhinidae); Ca. leucas (Valenciennes, 1839) (Carcharhiniformes: Carcharhinidae). Intermediate host: Coryphaena hippurus Linnaeus, 1758 (: Coryphaenidae). Distribution: Pacific ocean– off Yaeyama Islands, Okinawa Prefecture, Japan (this study); off Ogasawara Islands, Tokyo Metropolitan, Japan (this study). Plerocercoid; Sea of Japan– off Maizuru, Kyoto Prefecture, Japan (this study). Etymology: The species is named for the generic name of its type host.

- 66 - Material examined: No. Carcharhinus limbatus 14a (Holotype: a whole mounted 結果については,5年以内に雑誌等で刊行予定のため,非公開. adult specimen, host Ca. limbatus, off Yaeyama Islands, Okinawa Prefecture, Japan, 30.vii.2013), No. Carcharhinus limbatus 14b, 15 (Paratype: two whole mounted adult specimens, host Ca. limbatus, off Yaeyama Islands, Okinawa Prefecture, Japan, 30.vii.2013), No. Carcharhinus galapagensis 9, 21, 23 (Paratype: four whole mounted adult specimens, host Ca. galapagensis, off Ogasawara Islands, Tokyo Metropolitan, Japan, 21.vi.2014), No. Carcharhinus leucas 11 (Paratype: a whole mounted adult specimen, host Ca. leucas, off Yaeyama Islands, Okinawa Prefecture, Japan, 30.vii.2013).

Description (Fig. 34)

Adults Based on eight whole mounted adult specimens. Worms craspedote, euapolytic 13.3–25.4 (18.5, N=5) mm, maximum wide 362–849 (545.8, N=8) at the level of scolex; 22–35 (26.8, N=5) proglottids per worm (Fig. 34A). Scolex 346–710 (484.6, N=8) long by 362–849 (545.8, N=8) wide, composed of four bothridia with one accessory sucker (Fig. 34B). Bothridium flatted, 247–693 (383.8, N=8, n=21) long by 109–438 (228.9, N=8, n=21) wide, Accessory sucker round, 22–64 (41.6, N=8, n=21) long by 22–76 (43.1, N=8, n=21) wide. Neck 67–205 (160.4, N=7) wide. Terminal proglottid 1,360–2,321 (1,713.8, N=8) long by 389–764 (561.9, N=8) wide. Mature proglottids 792–2,321 (1,453.0, N=8, n=21) long by 389–782 (575.7, N=8, n=21) wide (Fig. 34C). Testes oblong, consisting 2–3 dorsal and 2–3 ventral rows at posterior region of genital pore level, 82–146 (114.8, N=7, n=18) in total number per proglottid, 28–64 (43.6, N=8, n=42) long by 43–98 (71.3, N=8, n=42) wide, post-vaginal testes 31–49 (35.8, N=8, n=21) in number. Cirrus 22–53 (37.5, N=8, n=21) wide. Cirrus-sac oval, 167–409 (291.3, N=8, n=21) long by 73–243 (132.6, N=8, n=21) wide. Vas deferens coiled at a median of proglottid. Genital pores lateral side, 58.3–77.1 (68.6, N=8, n=21)% of proglottid length from posterior end, locating irregularly alternating at the left side or right side. Vagina 11–51 (24.3, N=8, n=21) wide. Ovary near the posterior end of proglottid, H-shaped in dorsoventral view, 129–417 (224.5, N=8, n=21) long by 82–523 (356.2, N=8, n=21) wide. Uterus saccate, median, running anteriorly up to genital pore level, 460–1,377 (837.6, N=8, n=21) long by 30–86 (59.1, N=8, n=21) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles slightly overlapping testicular field,

- 67 - extending to the top from anterior of the ovary, interrupted by cirrus-sac, 645–2,098 結果については,5年以内に雑誌等で刊行予定のため,非公開. (1,325.8, N=8, n=21) long by 34–113 (69.5, N=8, n=21) wide.

Plerocercoids See Chapter II.

Remarks

This species has 2–3 rows of testes on each side of proglottid, similar to Scyphophyllidium leuci and Sc. nemuribuka: this species was distinguished from Sc. leuci by its shorter accessory sucker (22–64) than that of Sc. leuci (68–82 in Ruhnke, 2011). Although the other measurements overlapped between this species and Sc. nemuribuka, maximum scolex length and maximum accessory sucker length were further larger in this species (710 and 64) than in Sc. nemuribuka (448 and 31). In the molecular analysis, this species was clearly distinguished from Sc. nemuribuka (Figs. 3, 6, Table 12). This species was collected from three species: Carcharhinus, Carcharhinus limbatus, Ca. galapagensis, and Ca. leucas. Morphological difference between the specimens from each host species was not observed (Table 18). Moreover, their sequences of ssrDNA and lsrDNA were identical (Fig. 3, Table 12). This species was considered mesostenoxenous (parasitizing in a restricted number of species in one genus), parasitic in only Carcharhinus sharks. Plerocercoid larvae of Scyphophyllidium carcharhinus identified by molecular analysis are described in this study. It revealed that this species used Coryphaena hippurus as an intermediate host. Morphological changes from plerocercoids to adults in this species are shown (Chapter II).

Scyphophyllidium eirakubuka n. sp.

Type host: Hemitriakis japanica (Müller & Henle, 1850) (Carcharhiniformes: Triakidae). Type locality: off Iburi, Kochi Prefecture, Japan. Site of infection: Spiral intestine. Distribution: Pacific ocean– off Shimoda, Shizuoka Prefecture, Japan (this study); off Iburi, Kochi Prefecture, Japan (this study). Etymology: The species is named for Japanese name of its type host, Hemitriakis japanica.

- 68 - Material examined: No. Hemitriakis japanica 64 (Holotype: a whole mounted adult 結果については,5年以内に雑誌等で刊行予定のため,非公開.specimen, host He. japanica, off Iburi, Kochi Prefecture, Japan, 6.xii.2012), No. Hemitriakis japanica 22 (Paratype: a whole mounted adult specimen, host He. japanica, off Shimoda, Shizuoka Prefecture, Japan, 7.v.2008), No. Hemitriakis japanica 41–42, 58–61 (Paratype: 12 whole mounted adult specimens, host He. japanica, off Shimoda, Shizuoka Prefecture, Japan, 26.vii.2009).

Description (Fig. 35)

Adults Based on 14 specimens of whole mounted adult specimens. Worms craspedote, euapolytic 33.1–56.1 (49.5, N=7) mm, maximum wide 655–1,552 (905.0, N=14) at level of scolex; 41–55 (47.0, N=6) proglottids per worm (Fig. 35A). Scolex 567–1,336 (843.0, N=14) long by 655–1,552 (905.0, N=14) wide, composed of four bothridia with one accessory sucker (Fig. 35B). Bothridium flatted, 324–989 (606.9, N=9, n=27) long by 187–1,127 (375.1, N=9, n=27) wide, Accessory sucker round, 23–88 (48.5, N=9, n=27) long by 16–88 (46.1, N=9, n=27) wide. Neck 51–192 (110.7, N=14) wide. Terminal proglottid 1,284–3,192 (2,032.2, N=13) long by 287–900 (590.0, N=13) wide. Mature proglottids 1,106–3.192 (1,920.9, N=13, n=28) long by 287–908 (594.4, N=13, n=28) wide (Fig. 35C). Gravid proglottid not observed. Testes oblong, consisting 2 dorsal and 2 ventral rows at posterior region of genital pore level, 92–135 (112.5, N=13, n=28) in total number per proglottid, 28–99 (56.0, N=13, n=27) long by 28–100 (62.5, N=13, n=56) wide, post-vaginal testes 30–50 (37.5, N=13, n=28) in number. Cirrus 21–69 (47.0, N=13, n=25) wide. Cirrus-sac oval, 154–475 (303.0, N=13, n=27) long by 71–308 (175.8, N=13, n=27) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 64.7–81.7 (72.0, N=13, n=28)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 20–82 (33.5, N=12, n=25) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 146–541 (331.6, N=13, n=28) long by 200– 692 (427.5, N=13, n=28) wide. Uterus saccate, median, running anteriorly up to genital pore level, 678–1,687 (1,111.5, N=13, n=28) long by 22–186 (63.0, N=13, n=28) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 609–2,936 (1,772.5, N=13, n=28) long by 33–225 (110.2, N=13, n=28) wide.

- 69 - Remarks 結果については,5年以内に雑誌等で刊行予定のため,非公開. The body of Scyphophyllidium eirakubuka is very long (33.1–56.1 mm), similar to Sc. orectolobi (13–65 mm in Butler, 1987), Sc. taylori (25.9–32.9 mm in Cutmore et al., 2009), and Sc. triacis (23.2–46.2 mm). However, Sc. eirakubuka is distinguished from these species in 2 rows of testes on each side of proglottid. This species is oioxenous, parasitic in only Hemitriakis japanica.

Scyphophyllidium hanazame n. sp.

Type host: Carcharhinus brevipinna (Müller & Henle, 1839) (Carcharhiniformes: Carcharhinidae). Type locality: off Iburi, Kochi Prefecture, Japan. Site of infection: Spiral intestine. Distribution: Pacific Ocean– off Iburi, Kochi Prefecture, Japan (this study). Etymology: The species is named for the specific epithet of its type host.

Material examined: No. Carcharhinus brevipinna 11a (Holotype: a whole mounted adult specimen, host Ca. brevipinna, off Iburi, Kochi Prefecture, Japan, 4.xi.2012), No. Carcharhinus brevipinna 3, 6, 12, 14 (Paratype: seven whole mounted adult specimens, host Ca. brevipinna, off Iburi, Kochi Prefecture, Japan, 4.xi.2012), No. Carcharhinus brevipinna 46 (Paratype: four whole mounted adult specimens, host Ca. brevipinna, off Iburi, Kochi Prefecture, Japan, 2.xii.2012), No. Carcharhinus brevipinna 74 (Paratype: a whole mounted adult specimen, host Ca. brevipinna, off Iburi, Kochi Prefecture, Japan, 5.xii.2012), No. Carcharhinus brevipinna 101 (Paratype: a whole mounted free proglottid specimen, host Ca. brevipinna, off Iburi, Kochi Prefecture, Japan, 9.xii.2012).

Description (Fig. 36)

Adults Based on 13 specimens of whole mounted adult specimens and one specimen of free proglottid. Worms craspedote, euapolytic 8.6–22.8 (15.7, N=10) mm, maximum wide 414–620 (495.3, N=12) at the level of mature proglottid; 17–26 (22.3, N=10) proglottids per worm (Fig. 36A). Scolex 189–413 (309.3, N=12) long by 273–555

- 70 - (393.8, N=12) wide, composed of four bothridia with one accessory sucker (Fig. 36B). Bothridium結果については,5年以内に雑誌等で刊行予定のため,非公開. flatted, 62–349 (211.7, N=13, n=50) long by 63–341 (157.1, N=13, n=50) wide, Accessory sucker round, 16–43 (26.0, N=13, n=50) long by 13–48 (25.8, N=13, n=50) wide. Neck 21–106 (56.3, N=13) wide. Terminal proglottid 1,138–2,615 (1,705.1, N=12) long by 414–620 (495.3, N=12). Mature proglottids 720–2,615 (1,545.3, N=12, n=29) long by 377–620 (491.6, N=12, n=29) wide (Fig. 36C). Free proglottids 1,825 (N=1) long by 1,002 (N=1) wide. Testes oblong, densely arranged, consisting 3–4 dorsal and 3–4 ventral rows at posterior region of genital pore level, 89–130 (112.9, N=12) in total number per proglottid, 32–86 (57.0, N=13, n=54) long by 34–145 (70.7, N=13, n=54) wide, post- vaginal testes 25–45, N=13, n=30) in number. Cirrus 19–376 (275.4, N=13, n=30) wide. Cirrus-sac oval, 91–376 (275.4, N=13, n=30) long by 100–239 (164.0, N=13, n=30) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 56.4–84.5 (71.2, N=13, n=30)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 14–31 (22.2, N=13, n=29) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 105– 448 (266.0, N=13, n=30) long by 208–697 (372.9, N=13, n=30) wide. Uterus saccate, median, running anteriorly up to genital pore level, 386–1,507 (853.1, N=13, n=30) long by 33–105 (54.6, N=13, n=30) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from anterior of ovary, interrupted by cirrus-sac, 559–2,069 (1,237 N=13, n=30) long by 84–223 (130.5, N=13, n=30) wide.

Remarks

This species has a large number of testes, similar to Scyphophyllidium barberi, Sc. janineae, Sc. kirstenae, Sc. musteli, Sc. orectolobi, and Sc. triacis. The number of proglottids of the examined specimens (17–26) was smaller than these species, Sc. barberi (47–67 in Ruhnke, 1994), Sc. janineae (59–104 in Ruhnke et al., 2006), Sc. kirstenae (33–64 in Ruhnke et al., 2006), Sc. musteli (128–153 in Ruhnke, 2011), Sc. orectolobi (>90 in Butler, 1987) and Sc. triacis (27–51). This species was different from Sc. janineae and Sc. kirstenae in having vitelline follicles widely overlapping to the testicular field. This species is oioxenous, parasitic in only Carcharhinus brevipinna.

- 71 - Scy phophyllidium insulaeum n. sp. 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Type host: Carcharhinus galapagensis (Snodgrass & Heller, 1905) (Carcharhiniformes: Carcharhinidae). Type locality: off Yaeyama Islands, Okinawa Prefecture, Japan. Site of infection: Spiral intestine.

Additional host: Carcharhinus plumbeus (Nardo, 1827) (Carcharhiniformes: Carcharhinidae). Distribution: Pacific ocean– off Yaeyama Islands, Okinawa Prefecture, Japan (this study); off Ogasawara Islands, Tokyo Metropolitan (this study). Etymology: The species is named for the collecting site was near isolated islands. insulae (L.) = island.

Material examined: No. Carcharhinus galapagensis 3 (Holotype: a whole mounted adult specimen, host Ca. galapagensis, off Ogasawara Islands, Tokyo Metropolitan, Japan, 21.vi.2014), No. Carcharhinus galapagensis 7, 20, 23 (Paratype: five whole mounted adult specimens, host Ca. galapagensis, off Ogasawara Islands, Tokyo Metropolitan, Japan, 21.vi.2014), No. Carcharhinus plumbeus 6, 8 (Paratype: five whole mounted adult specimens, host Ca. plumbeus, off Yaeyama Islands, Okinawa Prefecture, Japan, 30.vii.2013).

Description (Fig. 37)

Adults Based on 11 whole mounted adult specimens. Worms craspedote, euapolytic 15.2–25.3 (20.3, N=9) mm, maximum wide 294–906 (605.3, N=9) at the level of a scolex, 21–44 (30.7, N=9) proglottids per worm (Fig. 37A). Scolex 270–739 (472.7, N=9) long by 249–906 (605.3, N=9) wide, composed of four bothridia with one accessory sucker (Fig. 37B). Bothridium flatted, 205–706 (368.6, N=8, n=24) long by 69–602 (236.8, N=8, n=24) wide, Accessory sucker round, 13–64 (31.4, N=8, n=24) long by 12–71 (34.8, N=8, n=24) wide. Neck 33–205 (105.6, N=1) wide. Terminal proglottid 1,123–2,145 (1,662.9, N=10) long by 422–604 (509.9, N=10) wide. Mature proglottids 937–2,145 (1,470.6, N=10, n=23) long by 422–612 (521.3, N=10, n=23) wide (Fig. 37C). Testes oblong, consisting 2 dorsal and 2 ventral

- 72 - rows at posterior region of genital pore level, 84–111 (97.2, N=9, n=21) in total number結果については,5年以内に雑誌等で刊行予定のため,非公開. per proglottid, 22–77 (47.4, N=10, n=45) long by 47–95 (68.8, N=10, n=45) wide, post-vaginal testes 27–36 (31.3, N=9, n=21) in number. Cirrus 12–85 (31.7, N=10, n=23) wide. Cirrus-sac oval, 136–411 (259.5, N=10, n=23) long by 72–271 (139.2, N=10, n=23) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 63.5–77.1 (68.7, N=10, n=23)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 12– 44 (27.0, N=10, n=23) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 70–371 (190.1, N=10, n=23) long by 228–559 (368.0, N=10, n=23) wide. Uterus saccate, median, running anteriorly up to genital pore level, 514–1,273 (847.9, N=10, n=23) long by 36–103 (59.0, N=10, n=23) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles not overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 896–2,071 (1,366.3, N=10, n=23) long by 44–110 (76.2, N=10, n=23) wide.

Remarks

Scyphophyllidium insulaeum has 2 rows of testes on each side of proglottid, similar to Sc. arnoldi, Sc. bai, Sc. eirakubuka, Sc. nicaraguensis, Sc. rodmani, Sc. sumitsukizame and Sc. typicum. Worm length of this species (15.2–25.3 mm) is larger than Sc. arnoldi (6.2–8.4 mm in Ruhnke & Thompson, 2006) and Sc. typicum (3.3–4.1 mm in Ruhnke, 2011), smaller than Sc. eirakubuka (33.1–56.1 mm). Vitelline follicles of this species are not covered with testes field, and that distinguishes this species from Sc. bai and Sc. sumitsukizame. A maximum number of testes of this species (44) is less than Sc. nicaraguensis (132 in Watson & Thorson, 1976) and Sc. rodmani (280 in Ruhnke & Carpenter, 2008). Scyphophyllidium insulaeum was collected from two host species, Carcharhinus galapagensis and Ca. plumbeus. No morphological difference between the specimens from each host was observed (Table 19), and they were identied in their sequences of ssrDNA and lsrDNA (Fig. 3, Table 12). This species was considered mesostenoxenous, parasitic in only Carcharhinus sharks.

Scyphophyllidium longiproglottidum n. sp.

Type host: Carcharhinus limbatus (Valenciennes, 1839) (Carcharhiniformes: Carcharhinidae).

- 73 - Type locality: off Yaeyama Islands, Okinawa Prefecture, Japan. Site結果については,5年以内に雑誌等で刊行予定のため,非公開. of infection: Spiral intestine. Distribution: Pacific Ocean– off Yaeyama Islands, Okinawa Prefecture, Japan (this study). Etymology: The species is named for its long proglottid. longi (L.) = long; proglottid (L.) = proglottid.

Material examined: No. Carcharhinus limbatus 4, 5, 8 (three whole mounted adult specimens, host Ca. limbatus, off Yaeyama Islands, Okinawa Prefecture, Japan, 19.vii.2013).

Description (Fig. 38)

Adults Based on three specimens of whole mounted adult specimens. Worms craspedote, euapolytic 22.7 (N=1) mm, maximum wide 82–233 (142.2, N=3, n=9) at level of mature proglottid, 16 (N=1) proglottids per worm (Fig. 38A). Scolex 128 (N=1) long by 135 (N=1) wide, composed of four bothridia with one accessory sucker. Bothridium flatted, 104–111 (107.5, N=1, n=2) long by 48–51 (49.5, N=1, n=2) wide, Accessory sucker round, 11–13 (12, N=1, n=2) long by 11–14 (12.5, N=1, n=2) wide. Neck 29 (N=1) wide. Terminal proglottid 1,208–1,959 (1,499.7, N=3) long by 111–233 (170.7, N=3) wide. Mature proglottids 1,208–1,959 (1,513.3, N=3, n=9) long by 82–233 (142.2, N=3, n=9) wide (Fig. 38B). Testes oblong, consisting 1 dorsal and 1 ventral rows at posterior region of genital pore level, 107–121 (114.8, N=3, n=9) in total number per proglottid, 20–44 (29.7, N=3, n=18) long by 15–57 (31.8, N=3, n=18) wide, post-vaginal testes 33– 45 (38.8, N=3, n=9) in number. Cirrus 7–14 (11.3, N=2, n=4) wide. Cirrus-sac oval, 62– 169 (100.0, N=3, n=9) long by 86–174 (119.7, N=3, n=9) wide. Vas deferens coiled at a median of proglottid. Genital pores located lateral side, 58.3–65.6 (62.8, N=3, n=9)% of proglottid length from posterior end, locating irregularly alternating at the left side or right side. Vagina 7–16 (10.0, N=3, n=9) wide. Ovary near the posterior end of proglottid, H-shaped in dorsoventral view, 74–200 (153.4, N=3, n=9) long by 45–209 (125.1, N=3, n=9) wide. Uterus saccate, median, running anteriorly up to genital pore level, 592–805 (679.8, N=2, n=6) long by 11–16 (13.5, N=2, n=6) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles not overlapping testicular field, extending to the top from end of proglottid, interrupted by

- 74 - cirrus-sac, 993–1,312 (1,132, N=2, n=6) long by 5–10 (7.5, N=2, n=6) wide. 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Remarks

Testes of Scyphophyllidium longiproglottidum is arranged in 1 row on each side of proglottid, similar to Scyphophyllidium floraformis, Sc. maritimum, Sc. mobedii, Sc. ogasawaraensis and Sc. prionacis (Yamaguti, 1934; Malek et al., 2010; Ruhnke, 2011). This species is distinguished from these species except Sc. ogasawaraensis in its very elongated proglottid. This species is different from Sc. ogasawaraensis in a number of testes (107–121 vs. 74–102). This species can be clearly distinguished from Sc. ogasawaraensis by ssrDNA and lsrDNA (Figs. 3, 6, Table 13). This species is oioxenous, parasitic in only Carcharhinus limbatus.

Scyphophyllidium maritimum n. sp.

Type host: Carcharhinus brevipinna (Müller & Henle, 1839) (Carcharhiniformes: Carcharhinidae). Type locality: off Iburi, Kochi Prefecture, Japan. Site of infection: Spiral intestine. Additional host: Carcharhinus galapagensis (Snodgrass & Heller, 1905). Distribution: Pacific Ocean– off Iburi, Kochi Prefecture, Japan (this study); off Ogasawara Is., Tokyo Metropolitan, Japan (This study). Etymology: The species is named for host’s distribution. maritimum (L.) = coastal.

Material examined: No. Carcharhinus brevipinna 78 (Holotype: a whole mounted adult specimen, host Ca. brevipinna, off Iburi, Kochi Prefecture, Japan, 3.xii.2012), No. Carcharhinus brevipinna 11, 15 (Paratype: two whole mounted adult specimens, host Ca. brevipinna, off Iburi, Kochi Prefecture, Japan, 4.xi.2012), No. Carcharhinus brevipinna 61, 64 (Paratype: two whole mounted adult specimens, host Ca. brevipinna, off Iburi, Kochi Prefecture, Japan, 3.xii.2012), No. Carcharhinus brevipinna 101 (Paratype: a whole mounted adult specimen and three whole mounted free proglottid specimens, host Ca. brevipinna, off Iburi, Kochi Prefecture, Japan, 9.xii.2012), No. Carcharhinus galapagensis 34– 36, 38, 39 (Paratype: 11 whole mounted adult specimens, host Ca. galapagensis, off Ogasawara Is., Tokyo Metropolitan, Japan, 24.ii.2016).

- 75 - Description (Fig. 39) 結果については,5年以内に雑誌等で刊行予定のため,非公開. Adults Based on six whole mounted adult specimens and three whole mounted free proglottid specimens. Worms craspedote, euapolytic 7.1–22.1 (11.0, N=14) mm, maximum wide 240–830 (455.2, N=14) at level of scolex; 14–34 (21.0, N=14) proglottids per worm (Fig. 39A). Scolex 151–524 (343.0, N=17) long by 240–572 (422.2, N=17) wide, composed of four bothridia with one accessory sucker (Fig. 39B). Bothridium flatted, 119–415 (235.9, N=16, n=64) long by 62–278 (174.0, N=16, n=64) wide, Accessory sucker round, 11–48 (27.8, N=16, n=64) long by 10–48 (26.6, N=16, n=64) wide. Neck 44–150 (96.0, N=16) wide. Terminal proglottid 597–1,686 (1,136.8, N=16) long by 189–830 (339.3, N=16) wide. Mature proglottids 500–1,882 (987.0, N=16, n=45) long by 167–830 (334.2, N=16, n=45) wide (Fig. 39C). Free proglottids 2.5–4.1 (3.1, N=3) mm long by 585–660 (618.3, N=3) wide. Testes oblong, consisting 1 dorsal and 1 ventral rows at posterior region of genital pore level, 61–102 (85.2, N=19, n=48) in total number per proglottid, 10–73 (27.4, N=19, n=96) long by 11–105 (51.5, N=19, n=96) wide, post- vaginal testes 19–34 (24.9, N=19, n=48) in number. Cirrus 10–49 (23.9, N=19, n=47) wide. Cirrus-sac oval, 84–331 (176.7, N=19, n=48) long by 41–377 (87.4, N=19, n=48) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 44.9–78.0 (66.0, N=19, n=48)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 8–40 (19.3, N=19, n=47) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 90–643 (147.8, N=19, n=48) long by 65–471 (219.6, N=19, n=48) wide. Uterus saccate, median, running anteriorly up to genital pore level, 285–2,499 (619.8, N=19, n=48) long by 13–85 (29.1, N=19, n=48) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles not overlapping testicular field, extending to the top from median of ovary, interrupted by cirrus-sac, 474–3,202 (988.7, N=19, n=48) long by 15–123 (38.6, N=19, n=48) wide.

Remarks

Testes of Scyphophyllidium maritimum is arranged in 1 row on each side on proglottid, similar to Sc. floraformis, Sc. longiproglottidum, Sc. mobedii, Sc. ogasawaraensis, and Sc. prionacis (Yamaguti, 1934; Malek et al., 2010; Ruhnke,

- 76 - 2011). Worm length of this species (7.1–22.1 mm) is different from that of Sc. floraformis結果については,5年以内に雑誌等で刊行予定のため,非公開. (2.0–4.5 mm in Ruhnke, 2011). A number of testes of this species (61–87) is different from Sc. longiproglottidum (107–121) and Sc. prionacis (37–62). The body of this species is wider (240–830) than Sc. mobedii (188–238 in Malek et al., 2010). Strobila of this species is constricted at the junction in mature proglottids, but Sc. ogasawaraensis is flatted. This species was collected from two species of Carcharhinus, Ca. brevipinna and Ca. galapagensis. No morphological difference between the specimens from each host was observed (Table 20). Moreover, they were identied in sequences of ssrDNA and lsrDNA (Fig. 3, Table 12). This species was considered mesostenoxenous, parasitic in only Carcharhinus sharks.

Scyphophyllidium nemuribuka n. sp.

Type host: Triaenodon obesus (Rüppell, 1837) (Carcharhiniformes: Carcharhinidae). Type locality: off Ogasawara Islands, Tokyo Metropolitan, Japan. Site of infection: Spiral intestine. Distribution: Pacific Ocean– off Ogasawara Islands, Tokyo Metropolitan, Japan (this study). Etymology: The species is named for Japanese name of its type host, Triaenodon obesus.

Material examined: No. Triaenodon obesus 26 (Holotype: a whole mounted adult specimen, host Tr. obesus, off Ogasawara Islands, Tokyo Metropolitan, Japan, 18.vi.2014), No. Triaenodon obesus 5, 25 (Paratype: 12 whole mounted adult specimens, host Tr. obesus, off Ogasawara Islands, Tokyo Metropolitan, Japan, 18.vi.2014).

Description (Fig. 40)

Adults Based on 12 specimens of whole mounted adult specimens. Worms craspedote, euapolytic 8.6–27.6 (19.0, N=11) mm, maximum wide 301–489 (384.9, N=11) at level of scolex, 19–35 (24.6, N=11) proglottids per worm (Fig. 40A). Scolex 279–448 (369.8, N=11) long by 301–489 (384.9, N=11) wide, composed of four bothridia with one accessory sucker (Fig. 40B). Bothridium flatted,

- 77 - 63–284 (222.6, N=5, n=15) long by 73–285 (175.1, N=5, n=15) wide, Accessory sucker 結果については,5年以内に雑誌等で刊行予定のため,非公開. round, 16–31 (23.7, N=5, n=15) long by 15–33 (25.7, N=5, n=15) wide. Neck 32–124 (89.0., N=11) wide. Terminal proglottid 770–1,377 (1,063.2, N=12) long by 331–466 (391.1, N=12) wide. Mature proglottids 648–1,509 (1,051.7, N=12, n=24) long by 292–466 (374.8, N=12, n=24) wide (Fig. 40C). Testes oblong, consisting 2–3 dorsal and 2–3 ventral rows at posterior region of genital pore level, 93–122 (104.8, N=12, n=24) in total number per proglottid, 17–45 (28.1, N=12, n=47) long by 29–57 (42.3, N=12, n=47) wide, post-vaginal testes 29–40 (34.0, N=12, n=24) in number. Cirrus 19–66 (31.9, N=12, n=24) wide. Cirrus-sac oval, 165–265 (218.8, N=12, n=24) long by 74– 180 (121.6, N=12, n=24) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 60.9–76.7 (66.3, N=12, n=24)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 10– 43 (18.9, N=12, n=24) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 73–164 (121.6, N=12, n=24) long by 183–349 (241.0, N=12, n=24) wide. Uterus saccate, median, running anteriorly up to genital pore level, 350–838 (564.9, N=12, n=24) long by 19–56 (33.0, N=12, n=24) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from anterior of ovary, interrupted by cirrus-sac, 580–1,415 (968.7, N=12, n=24) long by 29–67 (43.8, N=12, n=24) wide.

Remarks

Scyphophyllidium nemuribuka was similar to Sc. carcharhinus and Sc. leuci (Watson & Thorson, 1976). However, this species was clearly different from these species in some morphology and molecular phylogeny (see remarks of Scyphophyllidium carcharhinus). This species is oioxenous, parasitic in only Triaenodon obesus.

Scyphophyllidium ogasawaraensis n. sp.

Type host: Triaenodon obesus (Rüppell, 1837) (Carcharhiniformes: Carcharhinidae). Type locality: off Ogasawara Islands, Tokyo Metropolitan, Japan. Site of infection: Spiral intestine. Additional host: Carcharhinus galapagensis (Snodgrass & Heller, 1905) (Carcharhiniformes: Carcharhinidae).

- 78 - Distribution : Pacific Ocean– off Ogasawara Islands, Tokyo Metropolitan, Japan (this 結果については,5年以内に雑誌等で刊行予定のため,非公開.study). Etymology: The species is named for the type locality.

Material examined: No. Triaenodon obesus 27 (Holotype: a whole mounted adult specimen, host Tr. obesus, off Ogasawara, Tokyo Metropolitan, Japan, 18.vi.2014), No. Triaenodon obesus 6, 29–31 (Paratype: four whole mounted adult specimens, host Tr. obesus, off Ogasawara, Tokyo Metropolitan, Japan, 18.vi.2014), No. Carcharhinus galapagensis 13–15, 26 (Paratype: eight whole mounted adult specimens, host Ca. galapagensis, off Ogasawara, Tokyo Metropolitan, Japan, 21.vi.2014).

Description (Fig. 41)

Adults Based on 13 whole mounted adult specimens. Worms craspedote, euapolytic 9.1–20.1 (13.5, N=9) mm, maximum wide 2,524–3,627 (2,984.9, N=9) at level of scolex; 20–29 (24.2, N=9) proglottids per worm (Fig. 41A). Scolex 220–452 (310.2, N=12) long by 355–485 (417.3. N=12), composed of four bothridia with one accessory sucker (Fig. 41B). Bothridium flat, 93–349 (217.9, N=10, n=36) long by 107–357 (174.9, N=10, n=36) wide, Accessory sucker round, 18–43 (30.1, N=10, n=36) long by 18–41 (28.0, N=10, n=36) wide. Neck 56–139 (82.6, N=12) wide. Terminal proglottid 914–1,694 (1,257.8, N=13) long by 281–824 (372.3, N=13) wide. Mature proglottid 587–1,694 (1,113.4, N=13, n=28) long by 244–824 (373.6, N=13, n=28) wide (Fig. 41C). Testes oblong, consisting 1 dorsal and 1 ventral rows at posterior region of genital pore level, 74–102 (87.2, N=12, n=28) in total number per proglottid, 18–62 (32.7, N=13, n=56) long by 22–77 (48.4, N=13, n=56), post-vaginal testes 22–30 (26.1, N=13, n=28) in number. Cirrus 9–47 (26.1, N=13, n=28) wide. Cirrus-sac oval, 131–250 (188.4, N=13, n=28) long by 56–151 (100.3, N=13, n=28) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 54.0–80.7 (68.5, N=13, n=28)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 7–31 (17.3, N=13, n=28) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 53–253 (130.9, N=13, n=28) long by 95–363 (185.3, N=13, n=28) wide. Uterus saccate, median, running anteriorly up to genital pore level, 312–961 (605.2, N=13, n=28) long by 10–73 (30.5, N=13, n=28) wide at mature proglottid. Vitellarium follicular,

- 79 - vitelline follicles in two lateral fields, follicles slightly overlapping testicular field, extending結果については,5年以内に雑誌等で刊行予定のため,非公開. to the top from end of proglottid, interrupted by cirrus-sac, 491–1,530 (1,015.1, N=13, n=28) long by 16–59 (36.1, N=13, n=28) wide.

Remarks

Testes of Scyphophyllidium ogasawaraensis arranged in 1 row on each side on proglottid, similar to Sc. floraformis, Sc. maritimum, Sc. longiproglottidum, Sc. mobedii, and Sc. prionacis (Yamaguti, 1934; Malek et al., 2010; Ruhnke, 2011). However, this species was clearly different from these species on some morphology and molecular phylogeny (see remarks of Scyphophyllidium longiproglottidum). This species was collected from two species of Carcharhinidae, Triaenodon obesus and Carcharhinus galapagensis. No morphological difference between the specimens from each host was observed (Table 21). Moreover, their sequences of ssrDNA and lsrDNA were identical (Fig. 3, Table 12). This species was considered metastenoxenous (parasitizing hosts in one family, but more than one genus), parasitic in carcharhinid sharks.

Scyphophyllidium paulum (Linton, 1897) n. comb.

Orygmatobothrium paulum Linton, 1897a: 444, Pl. 33 Figs. 7–8. Phyllobothrium paulum: Southwell, 1925: 165–166. Paraorygmatobothrium paulum: Ruhnke, 2011: 153–156, Figs. 136–139. Monorygma galeocerdonis MacCallum, 1921: 236–238, Fig. 122.

Type host: Galeocerdo cuvier (Péron & Lesuer, 1822) (Carcharhiniformes: Carcharhinidae). Type locality: off Woods Hole, Massachusetts, U.S.A. Site of infection: Spiral intestine. Distribution: Atlantic Ocean– off Woods Hole, Massachusetts, U.S.A. (Linton, 1897; MacCallum, 1921); off Montauk, Long Island, U.S.A. (Ruhnke, 2011): Gulf of Mexico– Horn Island, Mississippi, U.S.A. (Ruhnke, 2011): Timor Sea– off Darwin, Australia (Ruhnke, 2011): Pacific Ocean– off Iburi, Kochi Prefecture, Japan (this study).

Material examined: No. Galeocerdo cuvier 5–7 (four whole mounted adult specimens, host Ga. cuvier, off Iburi, Kochi Prefecture, Japan, 7.xii.2012).

- 80 - Description (Fig. 42) 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Adults Based on four specimens of whole mounted adult specimens. Worms craspedote, euapolytic 12.3–15.7 (14.0, N=2) mm, maximum wide 562–979 (787.0, N=4) at level of scolex; 43–48 (45.5, N=2) proglottids per worm (Fig. 42A). Scolex 632–808 (691.3, N=4) long by 652–979 (787.0, N=2) wide, composed of four bothridia with one accessory sucker (Fig. 42B). Bothridium cup shape by contraction of marginal muscle bands of bothridium, 260–417 (342.6, N=4, n=15) long by 212–345 (283.2, N=4, n=15) wide, Accessory sucker round, 48–77 (61.3, N=4, n=15) long by 43–77 (61.9, N=4, n=15) wide. Neck 64–98 (79.3, N=4) wide. Terminal proglottid 789–1,236 (943.8, N=4) long by 184–225 (208.0, N=4) wide. Mature proglottids 737–1,236 (856.1, N=4, n=10) long by 163–233 (202.6, N=4, n=10) wide (Fig. 42C). Testes oblong, consisting 1 dorsal and 1 ventral rows at posterior region of genital pore level, 46–56 (51.9, N=3, n=7) in total number per proglottid, 22–49 (35.0, N=4, n=20) long by 23–48 (35.3, N=4, n=20) wide, post- vaginal testes 11–12, N=3, n=7) in number. Cirrus 20 (N=1) wide. Cirrus-sac oval, 88–124 (105.5, N=4, n=10) long by 60–101 (82.0, N=4, n=10) wide. Vas deferens coiled at the median. Genital pores located lateral side, 49.3–61.6 (53.8, N=4, n=10)% of proglottid length from posterior end, locating irregularly alternating at the left side or right side. Vagina 10–20 (14.3, N3, n=6) wide. Ovary near the posterior end of proglottid, H-shaped in dorsoventral view, 61–123 (86.6, N=4, n=10) long by 124– 168 (139.0, N=4, n=10) wide. Uterus saccate, median, running anteriorly up to genital pore level, 284–533 (407.8, N=4, n=10) long by 15–40 (27.2, N=9, n=22) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles slightly overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac and ovary, 591–979 (694.4, N=4, n=10) long by 12–25 (16.5, N=4, n=10) wide.

Remarks

Scyphophyllidium paulum was originally described as Orygmatobothrium paulum by Linton (1897a), subsequently transferred to Phyllobothrium by Southwell (1925). Ruhnke (2011) treated this species as a junior synonym of Monorygma galeocerdonis. According to this molecular analysis, this species was transferred to Scyphophyllidium (Figs. 3, 6).

- 81 - This species is oioxenous, parasitic in only Galeocerdo cuvier. 結果については,5年以内に雑誌等で刊行予定のため,非公開. This is the first report of this genus from Japanese waters.

Scyphophyllidium prionacis (Yamaguti, 1934) n. comb.

Phyllobothrium prionacis Yamaguti, 1934: 51–52, Figs. 84–85. Crossobothrium prionacis: Williams, 1968: 259. Paraorygmatobothrium prionacis: Ruhnke, 1994: 66–69, Figs. 1–12; Ruhnke, 2011: 117–121, Figs. 90–92. Anthobothrium minutum Guiart, 1935: 17–18, Pl. 1 Fig. 13.

Type host: Prionace glauca (Linnaeus, 1758) (Carcharhiniformes: Carcharhinidae). Type locality: Pacific Coast, Japan. Site of infection: Spiral intestine. Distribution: Pacific Ocean– Pacific Coast, Japan (Yamaguti, 1934); off Tosashimizu, Kochi Prefecture, Japan (this study): Mediterranean Sea– off San-Nicolão, France (Guiart, 1935); off Sète, France (Euzet, 1959); off Roscoff, France (Euzet, 1959): Atlantic Ocean– off Fogo, Portugal (Guiart, 1935); off Montauk, Long Island, U.S.A. (Ruhnke, 1993), off Yarmouth, Massachusetts, U.S.A. (Ruhnke, 1993); Woods Hole, Massachusetts, U.S.A. (Ruhnke, 2011): Gulf of California– La Paz, Baja California Sur, Mexico (Ruhnke, 2011).

Material examined: No. Prionace glauca 22–24 (14 whole mounted adult specimens, host Pr. glauca, off Tosashimizu, Kochi Prefecture, Japan, 3.xi.2012).

Description (Fig. 43)

Adults Based on 14 whole mounted adult specimens. Worms craspedote, euapolytic 9.1–16.2 (12.4, N=10) mm, maximum wide 339–741 (536.5, N=13) at level of scolex; 20–37 (26.5, N=10) proglottids per worm (Fig. 43A). Scolex 366–624 (494.0, N=13) long by 339–741 (536.5, N=13) wide, composed of four bothridia with one accessory sucker (Fig. 43B). Bothridium flatted, 153–562 (366.6, =14, n=54) long by 122–565 (223.1, N=14, n=54) wide. Accessory sucker round, 34–91 (64.4, N=14, n=54) long by 38–106 (64.5, N=14, n=54) wide. Neck 50–131 (80.9, N=14) wide.

- 82 - Terminal proglottid 426–1073 (778.0, N=11) long by 212–363 (284.3, N=11) wide.結果については,5年以内に雑誌等で刊行予定のため,非公開. Mature proglottids 411–1146 (753.5, N=11, n=28) long by 207–384 (274.4, N=11, n=28) wide (Fig. 43C). Testes oblong, consisting 1 dorsal and 1 ventral rows at posterior region of genital pore level, 37–53 (42.3, N=11, n=28) in total number per proglottid, 20–50 (32.8, N=11, n=54) long by 38–98 (61.3, N=11, n=54) wide, post- vaginal testes 8–11, N=28, n=11) in number. Cirrus 8–17 (12.0, N=2, n=4) wide. Cirrus-sac oval, 65–131 (102.7, N=11, n=27) long by 23–73 (51.6, N=11, n=27) wide. Vas deferens coiled at median. Genital pores located lateral side, 43.0–57.4 (50.3, N=10, n=26)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 7–15 (10.7, N=2, n=6) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 25–93 (53.4, N=10, n=26) long by 57–239 (129.0, N=10, n=26) wide. Uterus saccate, median, running anteriorly up to genital pore level, 260–525 (366.7, N=9, n=22) long by 15–40 (27.2, N=9, n=22) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles slightly overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac and ovary, 382–958 (655.2, N=9, n=25) long by 11–32 (20.4, N=9, n=25) wide.

Remarks

Scyphophyllidium prionacis was originally described as Phyllobothrium prionacis from Prionace glauca by Yamaguti (1934) and transferred to Crossobothrium by Williams (1968). Later, Ruhnke (1996b) elected the genus Paraorygmatobothrium designating this species for its type species. He also treated another species, Anthobothrium minutum, also described from Prionace glauca by Guiart (1935) as a junior synonym of this species. In this study, this species was transferred to Scyphophyllidium (Figs. 3, 6). This species is oioxenous, parasitic in only Prionace glauca.

Scyphophyllidium sumitsukizame n. sp.

Type host: Carcharhinus dussumieri Müller & Henle, 1839 (Carcharhiniformes: Carcharhinidae). Type locality: off Tosasaga, Kochi Prefecture, Japan. Site of infection: Spiral intestine. Distribution: Pacific Ocean– off Tosasaga, Kochi Prefecture, Japan (this study).

- 83 - Etymology : The species was named for Japanese name of its type host, Carcharhinus dussumieri 結果については,5年以内に雑誌等で刊行予定のため,非公開..

Material examined: No. Carcharhinus dussumieri 11 (Holotype: a whole mounted adult specimen, host Ca. dussumieri, off Tosasaga, Kochi Prefecture, Japan, 5.xii.2012).No. Carcharhinus dussumieri 10, 13–14, 24 (Paratype: 10 whole mounted adult specimens, host Ca. dussumieri, off Tosasaga, Kochi Prefecture, Japan, 5.xii.2012).

Description (Fig. 44)

Adults Based on 11 specimens of whole mounted adult specimens. Worms craspedote, euapolytic 7.9–17.0 (13.3, N=7) mm, maximum wide 205–428 (305.0, N=11) at level of scolex; 19–39 (31.6, N=7) proglottids per worm (Fig. 44A). Scolex 179–326 (244.1, N=11) long by 205–428 (305.5, N=11) wide, composed of four bothridia with one accessory sucker (Fig. 44B). Bothridium flatted, 97–242 (155.4, N=11, n=44) long by 87–228 (130.1, N=11, n=44) wide, Accessory sucker round, 6–46 (17.6, N=11, n=44) long by 6–41 (16.8, N=11, n=44) wide. Neck 31–91 (60.1, N=11) wide. Terminal proglottid 655–1,295 (1,041.7, N=9) long by 177–406 (290.1, N=9). Mature proglottid 568–1,343 (1,037.4, N=9, n=20) long by 177–406 (287.6, N=9, n=20) wide (Fig. 44C). Testes oblong, consisting 2 dorsal and 2 ventral rows at posterior region of genital pore level, 55–84 (69.8, N=9, n=20) in total number per proglottid, 14–56 (31.7, N=9, n=40) long by 31–78 (50.8, N=9, n=40) wide, post-vaginal testes 16– 28, (22.5, N=9, n=20) in number. Cirrus 13–42 (23.1, N=6, n=14) wide. Cirrus-sac oval, 74–169 (122.0, N=9, n=20) long by 44–129 (74.8, N=9, n=20) wide. Vas deferens coiled at a median of proglottid. Genital pores lateral, 59.6–89.1 (68.8, N=9, n=20)% of proglottid length from posterior end, locating irregularly alternating at the left side or right side. Vagina median, 10–21 (15.2, N=6, n=14) wide. Ovary near the posterior end of proglottid, H-shaped in dorsoventral view, 49–225 (132.8, N=9, n=20) long by 92– 269 (158.4, N=9, n=20) wide. Uterus saccate, median, running anteriorly up to genital pore level, 342–955 (589.1, N=9, n=20) long by 12–40 (24.9, N=9, n=20) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 426–1,177 (851.4, N=9, n=20) long by 14–56 (31.7, N=9, n=20) wide.

- 84 - Remarks 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Scyphophyllidium sumitsukizame has 2 rows of testes on each side of proglottid, similar to Sc. arnoldi, Sc. bai, Sc. eirakubuka, Sc. insulaeum, Sc. nicaraguensis, Sc. typicum, and Sc. rodmani (Watson & Thorson, 1976; Ruhnke & Thompson, 2006; Ruhnke & Carpenter, 2008; Ruhnke, 2011). Worm length of this species (7.9–17.0 mm) is longer than Sc. typicum (3.3–4.1 mm in Ruhnke, 2011), and shorter than Sc. eirakubuka (33.1–56.1 mm). Vitelline follicles of this species are not covered with the rows of lateral testes, and that distinguishes this species from Sc. arnoldi, Sc. eirakubuka, Sc. insulaeum, Sc. nicaraguensis, and Sc. typicum (Watson & Thorson, 1976; Ruhnke & Thompson, 2006; Ruhnke & Carpenter, 2008; Ruhnke, 2011). The number of testes of this species (55–84) is different from Sc. bai (100–145 in Ruhnke & Carpenter, 2008). This species is oioxenous, parasitic in only Carcharhinus dussumieri.

Scyphophyllidium triacis (Yamaguti, 1934) n. comb.

Phyllobothrium triacis Yamaguti, 1952: 15–16, Pl. 4 Fig. 16, Pl. 20 Fig.14; Euzet, 1952: 400–401. Crossobothrium triacis: Williams, 1968: 259–260. Paraorygmatobothrium triacis: Ruhnke, 1996b: 798; Ruhnke, 2011: 162–163, Fig. 150.

Type host: Triakis scyllium Müller & Henle, 1839. (Carcharhiniformes: Triakidae). Type locality: off Hamajima, Mie Prefecture, Japan. Site of infection: Spiral intestine. Distribution: Pacific Ocean– off Hamajima, Mie Prefecture, Japan (Yamaguti, 1952); off Shimoda, Shizuoka Prefecture, Japan (this study).

Material examined: No. Triakis scyllium 3–7, 26–27 (eight whole mounted adult specimens, host Tr. scyllium, off Shimoda, Shizuoka Prefecture, Japan, 1.v.2008), No. Triakis scyllium 24–25, 29–30 (four whole mounted adult specimens, host Tr. scyllium, off Shimoda, Shizuoka Prefecture, Japan, 15.vi.2009), No. Triakis scyllium 21–23, 28 (six whole mounted adult specimens, host Tr. scyllium, off Shimoda, Shizuoka Prefecture, Japan, 13.v.2009).

- 85 - Description (Fig. 45) 結果については,5年以内に雑誌等で刊行予定のため,非公開. Adults Based on 18 whole mounted adult specimens. Worms craspedote, euapolytic 23.2–46.2 (31.0, N=9) mm, maximum wide 544–1,552 (997.8, N=17) at level of scolex; 27–51 (37.9, N=9) proglottids per worm (Fig. 45A). Scolex 470–1,100 (773.8, N=17) long by 544–1,552 (997.8, N=17) wide, composed of four bothridia with one accessory sucker (Fig. 45B). Bothridium flatted, 230–869 (508.2, N=17, n=65) long by 212–665 (340.0, N=17, n=65) wide, Accessory sucker round, 34–128 (75.0, N=17, n=65) long by 32–131 (71.2, N=17, n=65) wide. Neck 104–322 (200.6, N=17) wide. Terminal proglottid 1,288–4,215 (2,463.6, N=12) long by 309–1,591 (936.6, N=12) wide. Mature proglottids 724–4,446 (2,148.4, N=16, n=31) long by 309–1,591 (974.6, N=16, n=31) wide (Fig. 45C). Testes oval, densely arranged, 128–269 (185.4, N=16, n=31) in total number per proglottid, 11–118 (55.9, N=16, n=62) long by 16– 128 (71.5, N=16, n=62) wide, post-vaginal testes 36–84, N=16, n=31) in number. Cirrus 14–106 (54.5, N=16, n=31) wide. Cirrus-sac oval, 144–1,051 (455.0, N=16, n=31) long by 51–600 (206.7, N=16, n=31) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 57.5–80.3 (67.0, N=16, n=31)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 17–112 (43.4, N=16, n=31) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 123–728 (256.5, N=16, n=31) long by 98– 1,325 (689.5, N=16, n=31) wide. Uterus saccate, median, running anteriorly up to genital pore level, 420–2,352 (1,143.2, N=16, n=31) long by 19–169 (68.8, N=16, n=31) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles slightly overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac and ovary, 642–4,134 (1,998.0 N=16, n=31) long by 24–313 (115.3, N=16, n=31) wide.

Remarks

Scyphophyllidium triacis was originally described as Phyllobothrium triacis from Triakis scyllium by Yamaguti (1952) and transferred to Crossobothrium by Williams (1968). Recently, Ruhnke (1996b) transferred it to Paraorygmatobothrium. Based on the molecular analysis of this study, this species was transferred to Scyphophyllidium (Figs. 3, 6).

- 86 - This species is oioxenous, parasitic in only Triakis scyllium. 結果については,5年以内に雑誌等で刊行予定のため,非公開. Scyphophyllidium yogore n. sp.

Type host: Carcharhinus longimanus (Poey, 1861) (Carcharhiniformes: Carcharhinidae). Type locality: off Yaeyama Islands, Okinawa Prefecture, Japan. Site of infection: Spiral intestine. Distribution: Pacific Ocean– off Yaeyama Islands, Okinawa Prefecture, Japan (this study). Etymology: The species is named for Japanese name of its type host, Carcharhinus longimanus.

Material examined: No. Carcharhinus longimanus 9 (Holotype: a whole mounted adult specimen, host Ca. longimanus, off Yaeyama Islands, Okinawa Prefecture, Japan, 30.vii.2013).

Description (Fig. 46)

Adult Based on a whole mounted adult specimen. Worms craspedote, euapolytic, maximum wide 571 (N=1) at the level of scolex. Scolex 912 (N=1) long by 571 (N=1), composed of four bothridia with one accessory sucker (Fig. 46A). Bothridium flatted, 441–638 (563.3, N=1, n=4) long by 188–340 (270.8, N=1, n=4) wide, Accessory sucker round, 62–96 (80.8, N=1, n=4) long by 65–94 (80.8, N=1, n=4) wide. Neck 152 (N=1) wide. Mature proglottids 845–1,232 (1,038.5, N=1, n=2) long by 294–309 (301.5, N=1, n=2) wide (Fig. 46B). Testes oblong, consisting 1–2 dorsal and 1–2 ventral rows at posterior region of genital pore level, 101–105 (103.0, N=1, n=2) in total number per proglottid, 23–32 (28.8, N=1, n=4) long by 40–50 (46.0, N=1, n=4) wide, post- vaginal testes 30 (30.0, N=1, n=2) in number. Cirrus 13–17 (15.0, N=1, n=2) wide. Cirrus-sac oval, 101–149 (123.5, N=1, n=2) long by 55–87 (71.0, N=1, n=2) wide. Vas deferens coiled at median of proglottid. Genital pores located lateral side, 60.5–65.4 (63.0, N=1, n=2)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 10–15 (12.5, N=1, n=2) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 106–144 (125.0, N=1,

- 87 - n=2) long by 193–216 (204.5, N=1, n=2) wide. Uterus saccate, median, running anteriorly結果については,5年以内に雑誌等で刊行予定のため,非公開. up to genital pore level, 409–670 (539.5, N=1, n=2) long by 28–30 (29.0, N=1, n=2) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles not overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 793–1,133 (963.0, N=1, n=2) long by 19–29 (24.0, N=1, n=2) wide.

Remarks

Scyphophyllidium yogore has testes sparsely arranged in 1–2 rows on each side similar to Sc. angustum, Sc. exiguum, Sc. filiforme, Sc. roberti, and Sc. sinuspersicense (Ruhnke, 1994; 2011, Ruhnke & Thompson, 2006; Malek et al., 2010). Vitelline follicles of this species are not interrupted by the ovary, and that distinguishes Sc. yogore from these species. This species is oioxenous, parasitic in only Carcharhinus longimanus.

Genus Thysanocephalum Linton, 1890

Type species: Thysanocephalum thysanocephalum (Linton, 1889). Other species: Thysanocephalum rugosum Chandler, 1942; Th. karachii Zaidi & Khan, 1976.

Incertae sedis– Thysanocephalum ridiculum Linton, 1901.

Diagnosis

Worms craspedote, euapolytic. Scolex small, composed of four crumpled bothridia with one accessory sucker and metascolex. Accessory sucker oblong. Metascolex large, crumpled. Testes round, irregularly arranged. Cirrus-sac oval. Vas deferens coiled. Genital pores located lateral side. Ovary near the posterior end of proglottid, H-shaped in dorsoventral view. Uterus saccate, median, running anteriorly up to genital pore level. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac and ovary. Eggs filament shape. Parasites of Carcharhinid sharks.

- 88 - Remarks 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Thysanocephalum has a metascolex, and it has been never observed in any other phyllobothriidean genera. A total of five species have been described in the genus Thysanocephalum, but only three species, Th. thysanocephalum, Th. rugosum and Th. karachii, were treated as species in this genus in this study. Thysanocephalum ridiculum from Isurus oxyrinchus does not have a metascolex (Linton, 1901). This species is considerably similar to another tetraphyllidean species, Ceratobothrium xanthocephalum, described from the same host species (Monticelli, 1892). However, the author could not judge the synonymy of Th. ridiculum with Ce. xanthocephalum because the drawings of the former species by Linton (1901: figs. 294, 295) were not good enough to identify the order even. This species should be treated as incertae sedis until the type specimens are re-examined (Appendix Table 1). Ruhnke (2011) indicated Th. crispum was nomen nudum and used Th. thysanocephalum as a valid name because Linton (1890) changed the name of Phyllobothrium thysanocephalum to Th. crispum without any correct nomenclatural reasons when he transferred Ph. thysanocephalum to his new genus Thysanocephalum (see remarks of Thysanocephalum thysanocephalum). The genus Thysanocephalum is reported from two elasmobranch species. Three species, Th. thysanocephalum, Th. rugosum, and Th. karachii, are parasitic in Galeocerdo cuvier, and Th. karachii is also parasitic in Ga. cuvier as well as Himantura uarnacoides (= Hi. bleekeri).

Thysanocephalum thysanocephalum (Linton, 1889)

Phyllobothrium thysanocephalum Linton, 1889: 464–468, Pl.2 Figs.1–12. Thysanocephalum crispum: Linton, 1890: 823–824; Southwell, 1925: 120–124, Figs. 71–74. Thysanocephalum thysanocephalum: Braun, 1900: 1700, Pl. 38 Fig. 12; Euzet, 1959: 136–138, Figs. 155–156.

Type host: Galeocerdo cuvier (Péron & Lesueur, 1822) (Carcharhiniformes: Carcharhinidae). Type locality: off Woods Hole, Massachusetts, U.S.A. Site of infection: Spiral intestine. Distribution: Atlantic Ocean– off Woods Hole, Massachusetts, U.S.A. (Linton, 1889): Mediterranean Sea– off Sète, France (Euzet, 1959): Pacific Ocean– off Iburi, Kochi

- 89 - Prefecture, Japan (this study); off Yaeyama, Okinawa Prefecture, Japan (this study). 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Material examined: No. Galeocerdo cuvier 1–2, 8–9, 12 (four whole mounted adult specimens and three whole mounted free proglottid specimens, host Ga. cuvier, off Iburi, Kochi Prefecture, Japan, 7.xii.2012). No. Galeocerdo cuvier 24 (a whole mounted adult specimen, host Ga. cuvier, off Yaeyama Islands, Okinawa Prefecture, Japan, 19.vii.2013).

Description (Fig. 47)

Adults Based on five whole mounted adult specimens and three whole mounted free proglottid specimens. Worms craspedote, euapolytic 510.0 (N=1) mm, maximum wide 14.5 (N=1) mm at level of scolex or proglottid; 1720 (N=1) proglottids per worm. Scolex small, 544 (N=1) long by 610 (N=1) wide, composed of four bothridia with one accessory sucker and metascolex (Fig. 47A). Bothridium crumple, 397–456 (412.0, N=1, n=4) long by 237–268 (252.5, N=1, n=4) wide (Fig. 47B). Accessory sucker oblong, 126– 147 (136.5, N=1, n=4) long by 206–217 (212.2, N=1, n=4) wide. Metascolex large, crumpled, 2,102–11,178 (5,867, N=5) long by 2,533–17,570 (9,539.2, N=5) wide. Neck 1,423–10,066 (6,159.8, N=5) wide. Mature proglottids 1,538–2,706 (2,347.6, N=3, n=5) long by 3,172–3,391 (3,236.8, N=3, n=5) wide (Fig. 47C). Gravid proglottid 7,264–7,752 (7,508.0, N=1, n=2) long by 12,324–12,329 wide, observed in terminally proglottids. Free proglottid 4,694–5,500 (5,098.3, n=3) long by 3,758–4,928 (4,252.0, n=3) wide. Testes round, irregularly arranged, 395–531 (479.4, N=3, n=8) in total number per proglottid, 54– 98 (79.5, N=3, n=16) long by 57–103 (75.3, N=3, n=16) wide, post-vaginal testes 79– 112, (91.4, N=3, n=8) in number. Cirrus-sac oval, 690–2,431 (1,625.8, N=3, n=8) long by 256–724 (458.5, N=3, n=8) wide. Vas deferens coiled at median. Genital pores located lateral side, 27.3–44.8 (34.1, N=4, n=10)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 57–196 (95.5, N=3, n=8) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 364–1,051 (662.0, N=3, n=8) long by 1,316–2,309 (1,732.6, N=3, n=8) wide. Uterus saccate, median, running anteriorly up to genital pore level. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac and ovary,

- 90 - 1,045–3,264 (2,013.4, N=3, n=8) long by 117–445 (245.8, N=3, n=8) wide. Gravid uterus結果については,5年以内に雑誌等で刊行予定のため,非公開. 6,631–6,727 (6,679.0, N=1, n=2) long by 6,400–7,015 (6,707.5, N=1, n=2) wide. Eggs filament, 69–123 (101.1, N=1, n=8) long by 6–11 (8.1, N=1, n=8) wide (Fig. 47D).

Remarks

Eggs of Thysanocephalum thysanocephalum were observed for the first time in this study. Filament form eggs (Fig. 47D) were unique among Phyllobothriidea. In my molecular analysis, the ssrDNA and lsrDNA sequences of Thysanocephalum thysanocephalum was identical to those of Th. crispum reported by Caira et al. (2014) indicating that Th. crispum was conspecific with Th. thysanocephalum (Fig. 3). Linton (1890) proposed the name Th. crispum for Th. thysanocephalum because Th. thysanocephalum was tautonymous. According to International Code of Zoological Nomenclature (Art. 23.3.7), however, this nomenclatural action was wrong. Hence, Thysanocephalum crispum is a nomen nudum, and the specimens of Caira et al. (2014) should be Th. thysanocephalum. This species is oioxenous, parasitic in only Galeocerdo cuvier. This study was the first report of this genus from Japanese waters.

Genus Vertebraeovicestus n. gen.

Type species: Vertebraeovicestus dobukasube n. sp.

Etymology: The species is named for eggs morphology. Vertebrae (L.) = Vertebra; ovi (L.) = egg; cestus (L.) = cestoda.

Diagnosis

Worms slightly craspedote, euapolytic. Scolex composed of four crumpled bothridia with one round accessory sucker. Testes medullary, densely arranged. Cirrus flatted surface. Cirrus-sac oval. Vas deferens coiled, median. Genital pores lateral, irregularly alternating. Vagina median, Ovary H-shaped in dorsoventral view, Uterus saccate. Eggs shells ornamented, connected to the vertebrae form. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac. Parasites of rajiform skate.

- 91 - Remarks 結果については,5年以内に雑誌等で刊行予定のため,非公開. Vertebraeovicestus was the most closely related to Yamaguticestus in molecular phylogenetic analysis (Figs. 3, 6). Morphologically, this genus shares crumpled bothridium with Phyllobothrium, Alexandercestus, a part of Pelichnibothrium (Pe. montaukensis and Pe. tumidum) and Yamaguticestus. However, this genus completely differs from these genera in egg morphology (Table 14). Vertebraeovicestus dobukasube had eggs connected with each other (Fig. 48D). Eggs of the other phyllobothriideans have usually separated eggs, and the eggs of this species are unique morphologically.

Vertebraeovicestus dobukasube n. sp.

Type host: Bathyraja smirnovi (Soldatov & Pavlenko, 1915) (Rajiformes: Arhynchobatidae). Type locality: Off Oki, Shimane Prefecture, Japan. Site of infection: Spiral intestine. Intermediate host: Lycodes nakamurae (Tanaka, 1914) (Perciformes: Zoarcidae). Distribution: Sea of Japan– off Oki, Shimane Prefecture, Japan (this study). Plerocercoid; Sea of Japan– off Oki, Shimane Prefecture, Japan (this study). Etymology: The species is named for Japanese name of its type host.

Material examined: No. Bathyraja smirnovi 11 (Holotype: a whole mounted adult specimen, host Ba. smirnovi, off oki, Shimane Prefecture, Japan, 29.v.2012), No. Bathyraja smirnovi 2, 4–5 (Paratype: three whole mounted adult specimens, host Ba. smirnovi, off oki, Shimane Prefecture, Japan, 25.v.2012), No. Bathyraja smirnovi 7 (Paratype: a whole mounted adult specimen, host Ba. smirnovi, off oki, Shimane Prefecture, Japan, 26.v.2012), No. Bathyraja smirnovi 12, 13 (Paratype: two whole mounted adult specimens, host Ba. smirnovi, off oki, Shimane Prefecture, Japan, 29.v.2012).

Description (Fig. 48)

Adults Based on seven whole mounted adult specimens. Worms craspedote, euapolytic 63.9–68.9 (66.7, N=4) mm, maximum width 2524–3627 (2984.9, N=9) at the level of scolex; 171–354 (247.8, N=4) proglottids per

- 92 - worm (Fig. 48A). Scolex 1702–2881 (2253.1, N=7) long by 2524–3627 (2984.9. N=9) wide,結果については,5年以内に雑誌等で刊行予定のため,非公開. composed of four bothridia with one accessory sucker (Fig. 48B). Bothridium crumpled, 464–1979 (896.0, N=7, n=26) long by 865–2144 (1421.2, N=7, n=26) wide, Accessory sucker round, 94–232 (155.7, N=7, n=26) long by 80–203 (144.5, N=7, n=26) wide. Neck 509–905 (713.7, N=7) wide. Terminal proglottid 1793–4113 (2952.0, N=5) long by 1734–2110 (1914.0, N=7) wide. Mature proglottid 1474–3027 (1876.4, N=2, n=5) long by 1734–2021 (1914.0, N=2, n=5) wide (Fig. 48C). Gravid proglottid 2–3 (2.7, N=3) proglottid per gravid worm, 1989–4113 (2742.3, N=3, n=6) long by 1946–2117 (2043.3, N=3, n=6) wide. Testes oblong, densely arranged, 179–204 (193.8, N=5, n=11) in total number per proglottid, 56–112 (82.6, N=5, n=22) long by 84–156 (117.9, N=5, n=22) wide, post- vaginal testes 45–59 (51.9, N=5, n=11) in number. Cirrus flatted surface, 33–122 (71.5, N=5, n=11) wide Cirrus-sac oval, 370–825 (5893.4, N=5, n=11) long by 277–505 (351.7, N=5, n=11) wide. Vas deferens coiled, median. Genital pores lateral, 53–81 (67.4, N=5, n=11)% of proglottid length from posterior end, irregularly alternating. Vagina median, 30–80 (54.3, N=5, n=11) wide. Ovary near the posterior end of proglottid, H- shaped in dorsoventral view, 356–1746 (636.0, N=5, n=11) long by 762–1308 (996.7, N=5, n=11) wide. Uterus saccate, median, running anteriorly up to genital pore level, 608–1060 (808.2, N=2, n=11) long by 391–472 (437.2, N=2, n=5) wide at mature proglottid, 620–3045 (1591.3, N=3, n=6) long by 442–890 (686.0, N=5, n=11) wide at gravid proglottid. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 389–3747 (1829.8, N=5, n=11) long by 342–3019 (814.0, N=5, n=11) wide. Eggs shells ornamented, connected to the vertebrae form in the uterus, 19–34 (27.5, N=3, n=12) long by 11–19 (15.5, N=3, n=12) wide (Fig. 48D).

Plerocercoids See Chapter II.

Remarks

See remarks of the genus for the unique morphology of eggs. This species is oioxenous, parasitic in only Bathyraja smirnovi. Plerocercoid larvae of this species identified by molecular analysis were described in this study (Chapter II). This species was parasitic in Lycodes nakamurae as an intermediate host.

- 93 - Genus Yamaguticestus n. gen. 結果については,5年以内に雑誌等で刊行予定のため,非公開.

Type species: Yamaguticestus squali (Yamaguti, 1952) n. comb.

Etymology: The species was named in honor of Dr. Satyu Yamaguti who described the monotypic species of this genus.

Diagnosis

Worms craspedote, euapolytic, robust. Scolex composed of four flatted or crumpled bothridia with one round accessory sucker. Testes medullary, densely arranged. Cirrus flatted surface. Cirrus-sac oval. Vas deferens coiled at a median of proglottid. Genital pores located lateral side, irregularly alternating. Vagina median, Ovary H-shaped in dorsoventral view, Uterus saccate. Eggs semispherical, egg shell with longitudinal fiber. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac. Parasites of Squalidae and Scyliorhinidae.

Remarks

The new genus Yamaguticestus was elected to accommodate Phyllobothrium squali (see remarks of genus Monorygma). In the molecular phylogenetic analysis, Phyllobothrium squali and Monorygma megacotyla constructed a clade and these two species were considered synonymous (see remarks of Yamaguticestus squali). This clade was separated from the lineages of other species of Phyllobothrium and Monorygma (Figs. 3, 6). Yamaguticestus was the most closely related to Vertebraeovicestus in phylogenetic tree (Figs. 3, 6). This new genus is also morphologically very similar to Vertebraeovicestus and the species of the former Paraorygmatobothrium sharing four simple or slightly crumple bothridia each to bear one round accessory sucker. However, Yamaguticestus is clearly distinguished from Vertebraeovicestus by its semispherical eggs and from the Paraorygmatobothrium species by its more robust body.

Yamaguticestus squali (Yamaguti, 1952) n. comb.

Phyllobothrium squali Yamaguti, 1952: 21–22, Pl. 5 Fig. 25, pl. 20 Figs. 22–23;

- 94 - McCullough & Fairweather, 1983: 660, Figs. 9–12; Vasileva et al., 2002: 49– 結果については,5年以内に雑誌等で刊行予定のため,非公開.59, Figs. 1–15; Ruhnke, 2011: 51–52, Fig. 26. Monorygma megacotyla Yamaguti, 1952: 30–31, Pl. 7 Figs. 37–38, pl. 21 Fig. 33; Williams, 1968: 265; Ruhnke, 2011; 83, Fig. 56. Crossobothrium squali: Euzet, 1959: 83–84, Figs. 75–76; Williams, 1968: 259.

Type host: Squalus acanthias Linnaeus, 1758 (Squaliformes: Squalidae). Type locality: off Onahama, Fukusima Prefecture, Japan (Yamaguti, 1952). Site of infection: Spiral intestine. Additional host: Cephaloscyllium umbratile Jordan & Fowler, 1903 (Carcharhiniformes: Scyliorhinidae); Galeus nipponensis Nakaya, 1975 (Carcharhiniformes: Scyliorhinidae); Etmopterus spinax (Linnaeus, 1758) (Squaliformes: Etmopteridae); Squalus mitsukurii Jordan & Snyder, 1901 (Squaliformes: Squalidae); Squalus japonicus (Ishikawa, 1908) (Squaliformes: Squalidae). Distribution: Pacific Ocean– off Onahama, Fukusima Prefecture, Japan (Yamaguti, 1952); off Kanaya, Chiba Prefecture, Japan (this study); off Heda, Shizuoka Prefecture, Japan (this study); off Mimase, Kochi Prefecture, Japan (this study): East China Sea– off Nagasaki, Nagasaki Prefecture, Japan (Yamaguti, 1952): Atlantic Sea– Irish Sea, U.K. (McCullough & Fairweather): Mediterranean Sea– off Concameau, France (Euzet, 1959); Off Naples, Italy (Euzet, 1959): Black Sea– off Krapets, Bulgaria (Vasileva et al., 2002).

Material examined: No. Squalus mitsukurii 1–5, 9, 11 (five whole mounted adult specimens and three whole mounted free proglottid specimens, host Sq. mitsukurii, off Kanaya, Chiba Prefecture, Japan, 16.iii.2007), No. Squalus mitsukurii 18–20 (three whole mounted adult specimens, host Sq. mitsukurii, off Kanaya, Chiba Prefecture, Japan, 22.iii.2007), No. Squalus mitsukurii 33–36, 44, 46–47 (six whole mounted adult specimens, host Sq. mitsukurii, off Kanaya, Chiba Prefecture, Japan, 27.iv.2007), No. Squalus mitsukurii 65–66 (a whole mounted adult specimen and a whole mounted free proglottid specimen, host Sq. mitsukurii, off Heda, Shizuoka Prefecture, Japan, 9.v.2007), No. Squalus mitsukurii 117 (a whole mounted adult specimen, host Sq. mitsukurii, off Kanaya, Chiba Prefecture, Japan, 28.i.2008), No. Squalus mitsukurii 138–139 (two whole mounted adult specimens, host Sq. mitsukurii, off Kanaya, Chiba Prefecture, Japan, 26.iii.2008), No. Squalus mitsukurii 145 (two whole mounted adult specimens, host Sq. mitsukurii, off

- 95 - Kanaya, Chiba Prefecture, Japan, 17.iv.2008), No. Squalus mitsukurii 203, 206– 結果については,5年以内に雑誌等で刊行予定のため,非公開. 207 (four whole mounted adult specimens, host Sq. mitsukurii, off Kanaya, Chiba Prefecture, Japan, 10.iv.2013), No. Squalus japonicus 1 (a whole mounted adult specimen, host Sq. japonicus, off Kanaya, Chiba Prefecture, Japan, 27.iv.2007), No. Squalus japonicus 2, 8, 11 (three whole mounted adult specimens and a whole mounted free proglottid specimen, host Sq. japonicus, off Mimase, Kochi Prefecture, Japan, 11.xi.2012). Material examined: No. Cephaloscyllium umbratile 56 (a whole mounted adult specimen, host Ce. umbratile, off Kanaya, Chiba Prefecture, Japan, 31.i.2006), No. Cephaloscyllium umbratile 1–3, 7 (three whole mounted adult specimens and two whole mounted free proglottid specimens, host Ce. umbratile, off Heda, Shizuoka Prefecture, Japan, 18.iv.2007), No. Cephaloscyllium umbratile 9 (a whole mounted adult specimen, host Ce. umbratile, off Heda, Shizuoka Prefecture, Japan, 9.v.2007), No. Cephaloscyllium umbratile 11, 15–16, 19 (four whole mounted adult specimens, host Ce. umbratile, off Heda, Shizuoka Prefecture, Japan, 25.ix.2007), No. Cephaloscyllium umbratile 24, 26, 28 (two whole mounted adult specimens and a whole mounted free proglottid specimen, host Ce. umbratile, off Heda, Shizuoka Prefecture, Japan, 18.x.2007), No. Galeus nipponensis 19–21 (three whole mounted adult specimens, host Ga. nipponensis, off Kanaya, Chiba Prefecture, Japan, 17.xi.2006), No. Galeus nipponensis 13 (a whole mounted adult specimen, host Ga. nipponensis, off Mimase, Kochi Prefecture, Japan, 13.xii.2012).

Description (Figs. 49, 50)

Adults Based on 43 whole mounted adult specimens and eight whole mounted free proglottid specimens. Worms craspedote, euapolytic 28.4–95.9 (62.6, N=15) mm, maximum width 2,099–6,810 (3,921.5, N=15) at level of scolex or mature proglottid; 121–291 (181.9, N=14) proglottids per worm (Figs. 49A, 50A). Scolex 894–6,649 (2,889.4, N=42) long by 1,332–10,114 (4,111.5. N=42) wide, composed of four bothridia with one accessory sucker (Figs. 49B, 50B). Bothridium flatted or crumpled, 519–6,369 (1,666.3, N=40, n=160) long by 383–4,968 (1,490.9, N=40, n=160) wide, Accessory sucker round, 99– 473 (258.3, N=40, n=160) long by 91–552 (271.0, N=40, n=160) wide. Neck 765–4,783 (2,648.8, N=27) wide. Terminal proglottid 1,018–3,892 (2,923.6, N=14) long by 1,225–3,140 (2,093.1, N=14) wide. Mature proglottids 846–3,892 (2,234.2, N=19, n=30) long by

- 96 - 634–3,448 (2,093.1, N=19, n=30) wide (Figs. 49C, 50C). Gravid proglottids 2,035 – 結果については,5年以内に雑誌等で刊行予定のため,非公開. 3,892 (3,235.9, N=7, n=10) long by 1,916–3,140 (2,469.8, N=7, n=10) wide. Free proglottids 4,534–7,807 (6,252.0, N=8) long by 1,877–3,254 (2,645.6, N=8) wide. Testes oblong, densely arranged, 134–263 (205.8, N=25, n=40) in total number per proglottid, 31–128 (64.8, N=28, n=96) long by 31–109 (62.4, N=28, n=96) wide, post- vaginal testes 18–66 (42.1 N=25, n=40) in number. Cirrus flatted surface, 40–186 (75.1, N=30, n=46) wide. Cirrus-sac oval, 338–2,621 (97.1, N=17, n=48) long by 66– 431 (201.9, N=31, n=48) wide. Vas deferens coiled, median. Genital pores lateral, 34– 89 (63.3, N=31, n=48)% of proglottid length from posterior end, irregularly alternating. Vagina median, 28–177 (67.5, N=30, n=47) wide. Ovary near posterior end of proglottid, H-shaped in dorsoventral view, 236–1,779 (761.1, N=31, n=48) long by 289–1,548 (903.9, N=31, n=48) wide. Uterus saccate, median, running anteriorly up to genital pore level, 251–3,022 (1,291.7, N=31, n=48) long by 131–2,125 (621.9, N=31, n=48) wide. Vitellarium follicular, vitelline follicles in two lateral fields, follicles overlapping testicular field, extending to the top from end of proglottid, interrupted by cirrus-sac, 875–7,209 (2,807.8, N=31, n=48) long by 140–3,339 (4734.0, N=31, n=48) wide. Eggs semispherical, egg shell with longitudinal fiber, 14–48 (30.3, N=6, n=33) long by 13–30 (19.7, N=6, n=33) wide (Figs. 49D, 50D).

Remarks

This species was originally described as a species of Phyllobothrium by Yamaguti (1952). This species does not have bifid bothridium, different from Phyllobothrium. Euzet (1959) transferred this species to Crossobothrium and Ruhnke (2011) treated it as incertae sedis. In this study, this species was far from above genera, and not included in any clades (Figs. 3, 6). Hence, this species was transferred to the new genus Yamaguticestus. Monorygma megacotyla was morphologically similar to this species. In molecular analyses, three genotypes found in Phyllobothrium squali matched with three found in Mo. megacotyla (Table 11) indicating that these species were considered synonymous. Hence, Mo. megacotyla was regarded as a junior synonym of Yamaguticestus squali in this study. However, slight morphological differences were observed. In large specimens (larger than ca. 70 mm in worm length) of Phyllobothrium squali has crumple bothridium (Fig. 49B), while Monorygma megacotyla has flat bothridium (Fig. 50B). Accessory sucker of Mo. megacotyla is larger than that of Ph. squali. The average

- 97 - ratio of accessory sucker length to bothridium length was 24.9% in Mo. megacotyla and結果については,5年以内に雑誌等で刊行予定のため,非公開. 15.5% in Ph. squali (Table 22). Phyllobothrium squali from another host species Etmopterus spinax has flat bothridium and large accessory sucker, similar to Mo. megacotyla (Euzet, 1959). Because their ancestral genus Vertebraeovicestus has slightly crumple bothridium (Figs. 3, 6), this species might originally have slightly crumple bothridium. These morphological differences may have brought differences in host taxa. Host specificity of Ph. squali was lower than the other phyllobothriid species. This species was reported from five species of Squalidae, Etmopteridae, and Scyliorhinidae. This species has slightly crumpled bothridium when parasitizing Squalidae, while it has flatted bothridium when parasitizing the other taxa. If the morphology of bothridium is originated from ancestor genus, this species might have been parasitic originally in Squalidae expanded the host range to Etmopteridae.

Order Tetraphyllidea Carus, 1863 Family incertae sedis Genus Rosebothrium n. gen.

Type species: Rosebothrium ootenjikuzame n. sp. Etymology: The species is named for scolex morphology. Rose (L.) = Rose; bothrios (L.) = pit.

Diagnosis

Worms acraspedote, euapolytic, robust. Scolex composed of four flatted and bifid bothridia with one round accessory sucker. Small flaps at the inner part of invagination of bothridium. Testes medullary, densely arranged. Cirrus covered microtriches. Cirrus-sac oval. Vas deferens coiled at a median of proglottid. Genital pores located lateral side, irregularly alternating. Vagina median, Ovary H-shaped in dorsoventral view, not extend to the side of proglottid. Uterus saccate. Vitellarium follicular, vitelline follicles in two lateral fields, follicles slightly overlapping testicular field, extending to the top from end of proglottid, not interrupted by cirrus- sac. Parasites of Ginglymostomatidae.

Remarks

The new genus was elected to accommodate a new species, Ro.

- 98 - ootenjikuzame . In the molecular analyses, Ro. ootenjikuzame was located in Tetraphyllidea結果については,5年以内に雑誌等で刊行予定のため,非公開. clade (Figs. 3, 6), and Rosebothrium belonged to Tetraphyllidea. Proglottid morphology of this species was similar to two tetraphyllidean genera, Pachbothrium and Pedibothrium, in having proglottids without post vaginal testes (Caira & Pritchard, 1986; Caira et al., 2004). Rosebothrium and these genera constructed a clade in this phylogenetic analyses (Figs. 3, 6). Hence, this character reflected their phylogeny. While Pachbothrium and Pedibothrium have a hook in the scolex, this species had no hook. Because this genus was the most derivative in the clade (Figs. 3, 6), this genus was considered to lose the hook in their evolution. The bothridium of Rosebothrium ootenjikuzame was morphologically more similar to that of Phyllobothrium of Phyllobothriidea than those of any other genera of Tetraphyllidea. The bothridium was bifid with accessory sucker, similar to Phyllobothrium. However, it was not crumpled but flatted, and had two small flaps on the inner part of invagination, and it was clearly different from the bothridium of Phyllobothrium.

Rosebothrium ootenjikuzame n. sp.

Type host: Nebrius ferrugineus (Lesson, 1831) (Orectolobiformes: Ginglymostomatidae). Type locality: off Yaeyama, Okinawa Prefecture, Japan. Site of infection: Spiral intestine. Distribution: Pacific Ocean– off Yaeyama, Okinawa Prefecture, Japan (this study). Etymology: The species is named for Japanese name of its type host.

Material examined: No. Nebrius ferrugineus 1, 2, 4, 5 (seven whole mounted adult specimen, host Ne. ferrugineus, off Yaeyama, Okinawa Prefecture, Japan, 30.vii.2013). Description (Fig. 51)

Adults Based on seven whole mounted adult specimens. Worms acraspedote, euapolytic 71.0–148.0 (96.9, N=6) mm, maximum wide 2,665–4,360 (3,383.0, N=6) at level of scolex; 210–324 (255.4, N=5) proglottids per worm (Fig. 51A). Scolex 1,621–4,486 (2,856.3, N=7) long by 2,665–5,351 (3,667.0, N=7) wide, composed of four bifid bothridia with one accessory sucker (Fig. 51B). Bothridium flat, bifid, observed small flaps at inner part of invagination, 647–2,468

- 99 - (1,474.1, N=4, n=15) long by 613–3,209 (1,690.1, N=4, n=15) wide. Accessory sucker 結果については,5年以内に雑誌等で刊行予定のため,非公開. small, round, 95–191 (143.9, N=4, n=15) long by 102–200 (163.0, N=4, n=15) wide. Neck 653–1,174 (842.4, N=7) wide. Terminal proglottid 1,653–3,062 (2,166.8, N=6) long by 811–1,310 (1,071.0, N=6) wide. Mature proglottids 1,653–3,062 (2,166.8, N=6, n=14) long by 811–1,310 (1,084.7, N=6, n=14) wide (Fig. 51C). Testes spherical, irregularly arranged, 231– 278 (253.8, N=6, n=14) in number per proglottid, 42–72 (51.8, N=6, n=28) long by 39–62 (50.0, N=6, n=28) wide, post-vaginal testes nothing. Cirrus-sac oblong, 291– 689 (465.2, N=6, n=14) long by 139–418 (234.5, N=6, n=14) wide. Cirrus covered microtriches (Fig. 51D). Vas deferens coiled at median of proglottid. Genital pores locating lateral side, 37.9–45.5 (42.4, N=6, n=14)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 40–70 (51.6, N=6, n=14) wide. Ovary near posterior end of each proglottids, not extend to side of proglottid, H-shaped in dorsoventral view, 244–535 (395.6, N=6, n=14) long by 390– 681 (570.7, N=6, n=14) wide. Uterus saccate, median, running anteriorly up to anterior region of proglottids, 529–1,032 (721.9, N=6, n=14) long by 56–127 (98.9, N=6, n=14) wide at mature proglottid. Gravid uterus not observed. Vitellarium follicular, vitelline follicles in two lateral fields, follicles slightly overlapping on testicular field, extending to the top from laciniations, not interrupted by cirrus-sac and vagina, 1,467–3,015 (1,981.1, N=6, n=14) long by 38–117 (82.6, N=6, n=14) wide in mature proglottid.

Remarks

See remarks of genus Rosebothrium.

Order Rhinebothriidea Healy, Caira, Jensen, Webster & Littlewood, 2009 Family Anthocephallidae Ruhnke, Caira & Cox, 2015 Genus Anthocephalum Linton, 1890

Anthocephalum biacetabulatum (Yamaguti, 1960) n. comb.

Phyllobothrium biacetabulatum Yamaguti, 1960: 41–43, Pl. 3 Figs. 1–2; Ruhnke, 2011: 36, Fig. 18.

- 100 - Type host: Rhinobatos schlegelii Müller & Henle, 1841 (Rajiformes: Rhinobatidae). Type結果については,5年以内に雑誌等で刊行予定のため,非公開. locality: Inland sea of Japan, Okayama Prefecture, Japan. Site of infection: Spiral intestine. Distribution: Inland sea of Japan– Okayama Prefecture, Japan (Yamaguti, 1960): Pacific Ocean– off Chigasaki, Kanagawa Prefecture, Japan (this study).

Material examined: No. Rhinobatos schlegelii 3–6 (seven whole mounted adult specimen, host Rh. schlegelii, off Chigasaki, Kanagawa Prefecture, Japan, 29.vi.2008), No. Rhinobatos schlegelii 31 (four whole mounted adult specimen, host Rh. schlegelii, off Chigasaki, Kanagawa Prefecture, Japan, 16.v.2009).

Description (Fig. 52)

Adults Based on 11 whole mounted adult specimens. Worms craspedote, euapolytic 3.9–10.5 (6.2, N=11) mm, maximum wide 835–1,136 (952.1, N=11) at scolex; 11–23 (15.8, N=11) proglottids per worm (Fig. 43A). Scolex 701–979 (836.0, N=11) long by 835–1,136 (952.1, N=11) wide, composed of four stalked bothridia with one accessory sucker (Fig. 43B). Bothridium margin loculate, 122–634 (441.6, N=11, n=44) long by 196–582 (364.7, N=11, n=44) wide. Accessory sucker small, round, 33–93 (56.4, N=11, n=44) long by 30–87 (56.9, N=11, n=44) wide. Stalk 43–173 (114.9, N=11, n=44) long by 160–416 (322.9, N=11, n=44) wide. Neck 101–291 (172.2, N=11) wide. Terminal proglottid 868–1.475 (1,177.1, N=11) long by 182–367 (280.4, N=11) wide. Mature proglottids 533–1,475 (1028.9, N=11, n=21) long by 182–367 (272.6, N=11, n=21) wide (Fig. 43C). Testes oblong, consisting 2 or 3 rows at anterior region of genital pore level, 18–24 (21.8, N=11, n=21) in number per proglottid, 24– 61 (39.0, N=11, n=84) long by 40–94 (69.4, N=11, n=84) wide. Cirrus-sac oval, 87– 237 (142.4, N=11, n=21) long by 52–158 (91.0, N=11, n=21) wide. Vas deferens coiled at posterior region of testes. Genital pores locating lateral side, 26.7–50.8 (39.8, N=11, n=21)% of proglottid length from posterior end, locating irregularly alternating at left side or right side. Vagina 13–50 (27.2, N=11, n=21) wide. Ovary near posterior end of each proglottids, U-shaped in dorsoventral view, 147–568 (321.8, N=11, n=21) long by 135–337 (201.2, N=11, n=21) wide. Uterus median, running anteriorly up to genital pore level, 186–554 (338.5, N=11, n=21) long by 18–70 (36.0, N=11, n=21) wide at mature proglottid. Vitellarium follicular, vitelline follicles in two lateral

- 101 - fields, follicles widely overlapping on testicular field, interrupted by cirrus-sac, 488– 1,374結果については,5年以内に雑誌等で刊行予定のため,非公開. (940.0, N=11, n=21) long by 16–64 (33.0, N=11, n=21) wide in mature proglottid.

Remarks

This species was originally described as a species of Phyllobothrium by Yamaguti (1960). Ruhnke (2011) treated it as incertae sedis but suggested a morphological similarity to Anthocephalum having marginal loculi and accessory suckers on bothridia. Moreover, in the molecular analyses, this species constructed a monophyletic clade with Anthocephalum of Rhinebothriidea (Figs. 3, 6). Therefore, this species was transferred to Anthocephalum.

Key to the valid species of the order Phyllobothriidea

This dichotomous key to the all valid species of Phyllobothriidea is based on the new systematics in this study. The tabular key to the genera is also given (Table 14). Morphological information of the species not described in this study was adopted from the original descriptions and Ruhnke (2011).

Key to the genera of Phyllobothriidea

1. Hooks present in bothridium……………….….…………………………..…………..2 Hooks absent in bothridium...……….…….………….……………………………….3 2. Proglottid margins laciniate…………….……………..Calliobothrium (p. 27, 104) Proglottid margins non-laciniate……….…………………………Symcallio (p. 108) 3. Metascolex present………....Thysanocephalum (Th. thysanocephalum; p. 88, 89) Metascolex absent…………………….………………………………………….………4 4. Ovary extended to side of proglottid…………...... Scyphophyllidium (p. 64, 106) Ovary not extended to side of proglottid………..…………………………………….5 5. Longitudinal muscle bands well developed…..…….Pelichnibothrium (p. 47, 105) Longitudinal muscle bands unremarkable or absent……….….…………………..6 6. Proglottid margins laciniate…………………………………...……….…..…………..7 Proglottid margins non-laciniate………………………...………………….…………8

- 102 - 7. Accessary sucker small, account for less than 10% of length of bothridium 結果については,5年以内に雑誌等で刊行予定のため,非公開. ……………...………..……..…Crossobothrium (p. 32, 104) Accessary sucker large, account for over than 20% of length of bothridium …………..….Chimaerocestos (Chimaerocestos prudhoei) 8. Bothridium stalked………………….…………………………..………….……………9 Bothridium sessile…………………..…………………………………………….……10 9. Accessary sucker triangular……………...…………………Monorygma (p. 40, 105) Accessary sucker round ..…..Mitsukuricestus (Mitsukuricestus gobelinus; p. 38) 10. Central sucker present………..……….……………Orygmatobothrium (p. 43, 105) Central sucker absent……………………………………………….…..…………..…11 11. Bothridium divided into three loculi……….…………………..Trilocularia (p. 109) Bothridium lacking loculi……………..……….………………………………………12 12. Accessary sucker large, account for over than 50% of bothridium length.....…..13 Accessary sucker small, account for less than 50% of bothridium length.…..…14 13. Accessory sucker widely covered with flaps….……Calyptrobothrium (p. 31, 104) Accessory sucker slightly covered with flaps ……...Bilocularia (Bilocularia hyperapolytica; p. 24, 25) 14. Bothridium bifid……………………...…………….…….Phyllobothrium (p. 16, 103) Bothridium not bifid………………….…………………………………….…………..15 15. Bothridium strikingly crumpled………..…………….Alexandercestus (p. 22. 104) Bothridium slightly crumpled or flatted……...…………………………….……….16 16. Eggs connected in a row, cylindrical ……..Vertebraeovicestus (Vertebraeovicestus dobukasube; p. 91, 92) Eggs not connected, semispherical …....………………..…..Yamaguticestus (Yamaguticestu squali; p. 94)

Key to the species of Phyllobothrium

1. Testes 37–60 in number in cross-section at anterior to cirrus sac ………………..Ph. serratum (p. 20) Testes <42 in number in cross-section at anterior to cirrus sac……………………2 2. Accessory sucker 160–239 μm……………………………….…Ph. hoshizame (p. 18) Accessory sucker <160μm………………………………..………………………………3 3. Worm length 100–250 mm……………………...……………………..…….Ph. lactuca Worm length 65–105 mm………………………………………………………Ph. riseri

- 103 - Key to the species of Alexandercestus 結果については,5年以内に雑誌等で刊行予定のため,非公開.

1. Worm length 128.2–132.2 mm……………………………..Al. ootenjikuzame (p. 23) Worm length <45 mm………………………………...…………………………………..2 2. Vitelline follicles high densely……...………………………………………Al. manteri Vitelline follicles low densely……………………………………………..…Al. gibsoni

Key to the species of Calliobothrium

1. Muscular pad with single apical sucker…………………………Ca. tylotocephalum Muscular pad with 3 apical suckers……………………………………………………2

2. All proglottids with 4 laciniations……………………………………………………...3 Number of laciniations change by maturation of proglottid……………………….4 3. Hooks short and thick……………………………………………………..Ca. nodosum Hooks long and thin……………………………………...... Ca. creeveyae 4. Number of laciniation change, 4–8–6–4 laciniations……..…Ca. shirozame (p. 28) Number of laciniation change, 4–8–4 laciniations…………………………………5 5. Worm length 33–60 mm………………………………………………………Ca. euzeti Worm length >60 mm…………………………………………………………………….6 6. Testes 110–130 in number…………………………………………...Ca. verticillatum Testes 129–208 in number…………………………………………...…...Ca. australis

Key to the species of Calyptrobothrium

1. Worm length 250 mm…………………….……………..……….…………….Ca. minus Worm length <57 mm…………………………………………………………………….2 2. Neck merges imperceptibly into strobila…………………………………….Ca. riggii Neck thicker than strobili…………………………………………..…..Ca. occidentale

Key to the species of Crossobothrium

1. Bothridium having flat margin…………………………………………Cr. laciniatum Bothridium having marginal loculi…………………………………………………….2 2. Laciniations in mature proglottids not so large…….………...…..Cr. dohrni (p. 36) Laciniations in mature proglottids large…………………………...... 3

- 104 - 3. Testes 692–771 in number……………………………….…………………Cr. antonioi 結果については,5年以内に雑誌等で刊行予定のため,非公開.Testes <247 in number……………………………………………………………………4 4. Worm length 394–840 mm…………………………………Cr. campanulatum (p. 34) Worm length 63–138 mm……………………………….……………….….Cr. pequeae

Key to the species of Monorygma

1. Worm length 43–75 mm…………………………………Mo. chlamydoselachi (p. 41) Worm length >30 cm……………………………………………………………………...2 2. Worm length >50 cm……………………………………………………Mo. macquariae Worm length <48 cm……………………………………………………………………...3 3. Testes round……………………………………………..…………..…..….Mo. magnum Testes oblong……………………………………….……………..………Mo. perfectum

Key to the species of Orygmatobothrium

1. Testes 198–287 in number.………………………………………………...Or. schmittii Testes <262 in number……………………………………………………………………2 2. Testes length 36–124 μm…………………………………….……...Or. musteli (p. 44) Testes length 30–40 μm…………………………………………………………Or. juani

Key to the species of Pelichnibothrium

1. Apical sucker present……………..……………..……………………………………….2 Apical sucker absent……………………………………………………………………5 2. Bothridium flatted………………………………………………………………………3 Bothridium slightly crumpled…………………………………………………………4 3. Accessory sucker large………………………………………….…Pe. grimaldii (p. 57) Accessory sucker small…………………………………..………Pe. speciosum (p. 49) 4. Having merocercoid as larval stage………………………………Pe. delphini (p. 55) Having plerocercoid as larval stage……………………………Pe. caudatum (p. 53) 5. Bothridium flatted………………………………….…………Pe. carcharodoni (p. 51) Bothridium crumpled…………………………………………………………………….6 6. Cirrus sac length 316–411 μm……………………………..…....Pe. tumidum (p. 62) Cirrus sac length 519–737 μm…………..……………..….Pe. montaukensis (p. 59)

- 105 - Key to the species of Scyphophyllidium 結果については,5年以内に雑誌等で刊行予定のため,非公開. 1. Bothridium divided…………………………………….………….…………….Sc. latipi Bothridium with marginal loculi……………………………………………………….2 Bothridium sac-like…………………………………….…………………………………8 Bothridium cup-like…………………………….……….………………..………………9 Bothridium disk-like…………………………………….………………………………10 2. Vitelline follicles circum-medullary……………………………………..Sc. guariticus Vitelline follicles lateral………………………………………………………………….3 3. Worm length 12 mm………………………………………………..……..Sc. chiloscyllii Worm length <9.8 mm……….…………………………………………………………...4 4. Testes consisting 1 dorsal and 1 ventral rows………….……………………………..5 Testes consisting 2 dorsal and 2 ventral rows………………………………………...6 5. Proglottids 7–17 in number………………………………..…………………..Sc. tyleri Proglottids 27–38 in number……………………………….………………Sc. kelleyae 6. Worm length 5.7–9.8 mm……………….…………………………………….Sc. randyi Worm length <5.8 mm……………………………………………………………………7 7. Ovary length 179–306 μm………...…………………………………...……Sc. lorettae Ovary length 105–109 μm…………………………………….………..Sc. mukahensis 8. Worm length 95–120 mm…………………………………….…………..Sc. giganteum Worm length 155–258 mm…………………………………………….Sc. uruguayense 9. Testes consisting 1 dorsal and 1 ventral rows…………….……...Sc. paulum (p. 80) Testes consisting 3 dorsal and 3 ventral rows………………..……………Sc. alopias 10.Circular band of muscles present at bothridium…………………………………...11 Circular band of muscles absent………………………………………………………12 11.Vitelline follicles interrupted by ovary………………………………….…Sc. barberi Vitelline follicles not interrupted by ovary…………………………………Sc. taylori 12.Testes densely arranged…………………………………….………………………….13 Testes consisting 1 dorsal and 1 ventral rows……………………………………….18 Testes consisting 2 dorsal and 2 ventral rows……………………………………….23 Testes sparsely arranged……………………………………………………………….29 13.Vitelline follicles greatly covered testes field……………………...... 14 Vitelline follicles slightly covered testes field or not……………………………….15 14.Maximum width 561–1,021 μm……………………………………………Sc. janineae Maximum width 372–489 μm………………………………………….…Sc. kirstenae

- 106 - 15. Proglottids 90 in number…………………………………………….……Sc. orectolobi 結果については,5年以内に雑誌等で刊行予定のため,非公開.Proglottids <27 in number………………………………….………………………….16 16.Testes 176–238 in number………………………………….………..Sc. triakis (p. 85) Testes <153 in number……………………………………….…………………………17 17.Testes 128–153 in number…………………………………..………………Sc. musteli Testes 89–130 in number…………………………………..….…Sc. hanazame (p. 70) 18.Worm length 2–4.5 mm………………………………………………….Sc. floraformis Worm length >5.7 mm…………………………………………………………………..19 19.Testes 107–121 in number………………………….….Sc. longiproglottidum (p. 73) Testes <102 in number………………………………………………………………….20 20.Apical sucker length up to 118 μm……………….………………Sc. prionacis (p. 82) Apical sucker length <59 μm……………………………..……………………………21 21.Strobila with constriction at junction of mature proglottids present…...... 22 Strobila with constriction absent………………….……..Sc. ogasawaraensis (p. 78) 22.Maximum width 188–238 μm…………………………………………...….Sc. mobedii Maximum width 240–454 μm………………………..…..…….Sc. maritimum (p. 75) 23.Worm length 33.1–56.1 mm………………………………....…Sc. eirakubuka (p. 68) Worm length 3.3–4.1 mm………………………………….…………...... Sc. typicum Worm length 6–29 mm……………………………………..………………………...…24 24.Vitelline follicles covered the most lateral testes rows…..…….…………………..25 Vitelline follicles not covered testes field…………………………….………………26 25.Testes 55–84 in number…………………………………....Sc. sumitsukizame (p. 83) Testes 100–145 in number……………………………………………………..…Sc. bai 26.Worm length 6.2–8.4 mm…………………………………………………….Sc. arnoldi Worm length >9.5 mm…………………………………………………………………..27 27.Proglottids up to 44 in number………………………….……...Sc. insulaeum (p. 72) Proglottids <27 in number……………………………………………………………..28 28.Maximum width 374–630 μm…………………….…………………Sc. nicaraguensis Maximum width 631–1,248 μm..……………………….………………….Sc. rodmani 29.Testes consisting 1–2 dorsal and 1–2 ventral rows…………………………………30 Testes consisting 2–3 dorsal and 2–3 ventral rows…………………………………35 30.Vitelline follicles interrupted by ovary……………………………………………….31 Vitelline follicles not interrupted by ovary…………….………..…Sc. yogore (p. 87) 31.Mean testes number >100…………………………….………………………………..32 Mean testes number <100……………………………………………………………...33

- 107 - 32. Mean proglottids number >30……………………………………..………Sc. filiforme 結果については,5年以内に雑誌等で刊行予定のため,非公開.Mean proglottids number <30……………………….…………………….…Sc. roberti 33.Cirrus sac elongate oval……………………………………………Sc. sinuspersicense Cirrus sac oval……………………………………………………………………………34 34.Testes 33–59 in number…………………………………………………….Sc. exiguum Testes 67–83 in number…………………………………………………..Sc. angustum 35.Accessory sucker length 68–82 μm………………….…………………………Sc. leuci Accessory sucker length <64 μm………………………………………………………36 36.Scolex length up to 448 μm (range 279–448 μm), accessory sucker length up to 31 μm (range 16–31 μm)…………………………………...….Sc. nemuribuka (p. 77) Scolex length up to 710 μm (range 346–710 μm), accessory sucker length up to 64 μm (range 22–64 μm)………………………..…...…….....Sc. carcharhinus (p. 66)

Key to the species of Symcallio

1. Accessory piece absent……………………………..……………………………………2 Accessory piece present………………………………………………………………….7 2. Worm length >2 cm………………………………….……………………..Sy. leuckarti Worm length <2 cm……………….……………………………………………………...3 3. Proglottids up to 31 in number (range 10–31)…..…….……………….Sy. barbarae Proglottids <12 in number………………………………………………………………4 4. Scolex length 571–637 μm………………………………………….…Sy. schneiderae Scolex length <545 μm………………………..…………………………………………5 5. Eggs length 10 μm…………………………………………………...……Sy. eschrichti Eggs length >12 μm………………………………………………………………………6 6. Abxial hook length (D) 88–138 μm…………………………………….…Sy. hayhowi Abxial hook length (D) 133–169 μm…………………………………………Sy. peteri 7. Axial hooks distinctly asymmetrical with respect to one another………Sy. evani Axial hooks symmetrical with respect to one another….…………………………..8 8. Axial hook base length (C) 84–110 μm..………………….…………………Sy. violae Axial hook base length (C) <80 μm..……………………….…………………………..9 9. Axial hook length (B) 88–114 μm………………………….………..………..Sy. riseri Axial hook length (B) >115 μm…………………………………..……………………10 10. Axial hook length (B) 148–204 μm……………………………………….…Sy. lintoni Axial hook length (B) <135 μm………………………………………………………..11

- 108 - 11.  Worm length 5.0–8.0 mm……………………………………………….Sy. pellucidum 結果については,5年以内に雑誌等で刊行予定のため,非公開.Worm length 2.2–5.0 mm………………………………………...……………Sy. lunae

Key to the species of Trilocularia

1. The anterior loculus width < the posterior loculi width (1: 1.7–2.5)...... Tr. gracilis The anterior loculus width = the posterior loculi width (1: 0.7–1.7)….…Tr. eberti

3.4 Phyllobothriidea fauna in the coastal seas of Japan

In this study, 322 specimens of Phyllobothriidea from 27 elasmobranch species of 20 genera were collected from the coastal seas of Japan. A total of 34 species of 14 genera, including 14 new species, and three new genera were found from Japanese waters and 12 species and five genera were new to Japan (Table 23). Phyllobothrium biacetabulatum was transferred from Phyllobothriidea to Rhinebothriidea. Consequently, Phyllobothriidea from Japan was composed of 47 species of 15 genera (Table 23). The phyllobothriidean fauna of the coastal seas of Japan was species rich. The number of species accounts for approximately 30% of the Phyllobothriidea worldwide.

4. Discussion

4.1 Taxonomic revision of Phyllobothriidea 考察については,5年以内に雑誌等で刊行予定のため,非公開.

Taxonomically, the family Phyllobothriidae is very confusing. Although 80 genera have been reported in Phyllobothriidae so far, many of them were treated as incertae sedis by two major revisions of the family (Ruhnke, 2011; Caira et al., 2014). Ruhnke (2011) included only 17 genera in Phyllobothriidae of Tetraphyllidea and treated many genera originally described in Phyllobothriidae as incertae sedis of Tetraphyllidea. Caira et al. (2014) established the order Phyllobothriidea with the monotypic family Phyllobothriidae. They included only 11 genera in Phyllobothriidae, and many genera were left as incertae sedis in Tetraphyllidea. After these revisions, Bernot et al. (2015) described Symcallio as incertae sedis in Tetraphyllidea. In this study, molecular analyses revealed that nine genera treated as incertae sedis by Caira et al. (2014) and Bernot et al. (2015), namely Alexandercestus, Bilocularia, Calliobothrium, Clistobothrium, Crossobothrium, Monorygma, Pelichnibothrium,

- 109 - Symcallio , and Trilocularia, included in Phyllobothriidae. Among these 20 genera, 考察については,5年以内に雑誌等で刊行予定のため,非公開.Clistobothrium, Marsupiobothrium, Nandocestus, Orectolobicestus, Paraorygmatobothrium, and Ruhnkecestus were treated as junior synonyms of phyllobothriidean genera. As a result, Phyllobothriidea was successfully revised to have 17 genera. However, many genera still remained incertae sedis. Doliobothrium considered incertae sedis of Tetraphyllidea by Caira et al. (2014), may be synonymous with Scyphophyllidium because their ovaries extending side to side are very similar to those of Scyphophyllidium species. When establishing the taxon of Doliobothrium, Caira et al. (2011) also suggested that scolex and proglottid of Doliobothrium were similar to those of Orectolobicestus, Paraorygmatobothrium, and Ruhnkecestus, all of which were synonymized with Scyphophyllidium in this study. Bibursibothrium, Cardiobothrium, and Flexibothrium were included in Phyllobothriidae by Ruhnke (2011). These genera bear accessory suckers, similar to many Phyllobothriidea species. However, the phylogenetic positions of these genera were not clarified in my molecular analyses, and they were not included in this order in this study. Further studies involving molecular analyses of these genera should be performed to reveal their taxonomic status.

4.2 Host specificity

Host specificity of phyllobothriidean species is high, and many species are oioxenous, i.e., parasitic in a single host species. At the genus level, phyllobothriidean genera also have high host specificity, and in many genera, congeneric species are parasitic in only closely related host species. For example, Orygmatobothrium and Symcallio are parasitic in Mustelus sharks (Ruhnke, 2011; Bernot et al., 2015; this study) and Trilocularia in Squalus sharks (Olsson, 1867; Pickering & Caira, 2012). Phyllobothrium and Calliobothrium are only parasitic in Triakidae sharks (Ruhnke, 1996b, 2011; Nasin et al., 1997; Bernot et al., 2015; this study), Alexandercestus in Carcharhinidae sharks (Ruhnke & Workman, 2013; this study), Calyptrobothrium in Torpedinidae rays (Monticelli, 1893; Linton, 1900, 1907; Caira et al. 2014; this study), Bilocularia in Squaliformes sharks (Obersteiner, 1914; Southwell, 1925; Williams, 1958; Alexander, 1963; this study), and Chimaerocestos in Chimaeriformes chimaeras (Williams & Bray, 1984; Ruhnke, 2011; Caira et al. 2014). Hence, these phyllobothriidean genera may have diversified in only closely related host species.

- 110 - On the other hand, some other genera are parasitic in widely separated host 考察については,5年以内に雑誌等で刊行予定のため,非公開. taxa. For example, Crossobothrium is parasitic in Hexanchidae and Odontaspididae sharks (Linton, 1889; Klaptocz, 1906; Southwell, 1925; Ruhnke, 1996a, 2011; Ivanov, 2009; Caira et al., 2014; this study), Monorygma is parasitic in Somniosidae and Chlamydoselachidae sharks (Ruhnke, 2011; this study), Pelichnibothrium is parasitic in Carcharhinidae and Lamnidae sharks (Linton, 1922; Southwell, 1925; Yamaguti, 1934, 1952; Euzet, 1952, 1959; Williams, 1968; Dailey & Vogelbein, 1990; Ruhnke, 1993, 2011; Scholz et al., 1998; this study), Scyphophyllidium is parasitic in many families of elasmobranchs (Ruhnke, 2011; this study), and Yamaguticestus is parasitic in Squalidae and Scyliorhinidae sharks (this study). In these genera, however, the frequency of use of the host tended to differ. Many Crossobothrium species are mainly parasitic in Hexanchidae, Monorygma in Somniosidae, Pelichnibothrium in Lamnidae, Scyphophyllidium in Carcharhinidae, and Yamaguticestus in Squalidae. These genera may have originally had host specificity for a major host taxon. Several of these species may have speciated by host switching to a minor host taxon.

4.3 Diversity of species within a genus

The number of species within each genus markedly differs. Scyphophyllidium is the largest genus in Phyllobothriidea, containing 43 species, whereas the other genera have only 1–12 species. Scyphophyllidium species mainly use carcharhinid sharks as their final host. Carcharhinidae is one of the most diverse families in elasmobranchs, with 56 species (Ebert et al., 2013). Eichler (1942) observed a positive correlation between the taxonomic richness of hosts and that of their parasites, which was later called “Eichler’s rule” (Stammer, 1957). It is possible that the high species diversity of Scyphophyllidium is due to the diversity of carcharhinid sharks.

4.4 Scolex morphology

The morphology of scolex is very diverse in Phyllobothriidea and has traditionally been used as one of the most important taxonomic characters. Molecular analyses in this study, however, showed that the morphology of scolex does not reflect the phylogeny of Phyllobothriidea (Figs. 9–11, 13). In particular, hooks in the scolex were a critical character for classifying Phyllobothriidea and its related orders. Onchobothriidae of Tetraphyllidea was

- 111 - characterized by the hook (Braun, 1900; Southwell, 1925; Yamaguti, 1959; Euzet, 考察については,5年以内に雑誌等で刊行予定のため,非公開.1994), but it was revealed to be polyphyletic and divided into three lineages by Caira et al. (2014). Also in molecular trees, the genera with hooks were separated into three lineages, and each lineage also included non-hooked genera (Fig. 9). That suggested that acquiring and losing the hook occurred frequently during the evolution of Phyllobothriidea. Loss of the hook was clearly observed in Onchoproteocephalidea and Tetraphyllidea. Among Onchoproteocephalidea, the non-hooked genus Prosobothrium was nested in the hooked genus Platybothrium in their phylogeny (Fig. 9), suggesting that Prosobothrium lost its hook during its evolution. Furthermore, the species of old Proteocephalidae having no hook were nested within old Onchobothriidae having a hook, which also lost the hook (Fig. 9). Among Tetraphyllidea, Rosebothrium was derived from the hooked genera, Balanobothrium, Pachbothrium, and Pedibothrium. Pedibothrium, sister genus of Rosebothrium in molecular analyses, has an exceptionally non-hooked species, Pe. puerobesus. Caira et al. (2004) proposed that the lack of hooks should be interpreted as reflecting their loss and that hooked tetraphyllidean species evolved into non- hooked taxa. Therefore, the hook is not a robust taxonomic character for higher taxa, as previously expected (Southwell, 1925; Yamaguti, 1959; Euzet, 1994) and may only be useful as a character at the genus level or lower. Bothridia in the scolex was also used for classifying genera in Phyllobothriidea (Southwell, 1925; Yamaguti, 1959; Euzet, 1994). However, each type of bothridia, including crumpled, divided, flat, and loculate-margin types, was observed in several genera in separate lineages (Fig. 10), suggesting that these types of bothridium independently evolved in several lineages. In the taxonomy of Phyllobothriidea, it was suggested that the bothridium type is not a definitive character to define the genera. Apical sucker in the scolex is a larval character in Phyllobothriidea (Euzet, 1994). Only one species, Pelichnibothrium speciosum, uniquely has the apical sucker even in adults, and Yamaguti (1934) established a new subfamily, Pelichnibothriinae, to accommodate this genus. In this study, however, Pelichnibothrium speciosum was nested in the clade of Clistobothrium (Figs. 3, 6) together with many species having no apical sucker in adults. It is possible that Pelichnibothrium speciosum is a neotenic species and that the apical sucker in this species is a remnant from the larval stage. It is unstable as a taxonomic character for taxa at a higher hierarchical level than species. In further studies, it will be necessary to identify larvae in order to reveal the morphological changes during growth from larva to adult.

- 112 - 4.5 Phyllobothriidea fauna in the coastal seas of Japan 考察については,5年以内に雑誌等で刊行予定のため,非公開. According to the new systematics of Phyllobothriidea in this study, 47 species of 15 genera distributed in the coastal waters of Japan were recognized in Phyllobothriidea (Table 19). However, some species incertae sedis and inquirenda found in Japanese waters were not examined in this study, and their taxonomic status remained unclarified. Yoshida (1917) described Calliobothrium nodosum from Mustelus manazo. However, this species has never been reported in any investigation since then. Unfortunately, type specimens are missing (this study), and obtaining new material is necessary to confirm the status of this species. Three more Japanese species, Phyllobothrium dasybati, Ph. loculatum, and Ph. marginatum, which were treated as incertae sedis by Ruhnke (2011), were not collected in this study. These species lack crumple and bifid bothridium (Yamaguti, 1934, 1952) and are morphologically different from Phyllobothrium. Further investigations of parasitism of the host species via the collection of these species are required. Based on the specimens collected by my intensive field investigations in this study, 12 species and five genera were newly recorded in Japan and three new genera and 14 new species were described. Host specificity of Phyllobothriidea is high (Ruhnke, 2011; this study). Most of the new species were discovered from the elasmobranchs, the parasites of which had not been investigated. There should still be many undescribed species because out of approximately 205 elasmobranch species distributed in the coastal seas of Japan (Nakabo, 2013), only 37% have been studied. The species richness of Phyllobothriidea in this area should thus be even greater. In this study, six species (Crossobothrium campanulatum, Cr. dohrni, Pelichnibothrium montaukensis, Pe. tumidum, Scyphophyllidium paulum, and Thysanocephalum thysanocephalum) were newly recorded in the Pacific Ocean. These species were already reported from the Atlantic Ocean or Mediterranean Sea (see distributions of each species), suggesting that they have a very wide, probably cosmopolitan distribution. Their host elasmobranchs also have a cosmopolitan distribution (Ebert et al., 2013), and the distribution range of phyllobothriidean parasites may usually cover the entire distribution of the host.

- 113 - Chapter II Identification of phyllobothriidean larvae and their development

1 . Introduction 本章については,5年以内に雑誌等で刊行予定のため,非公開. Phyllobothriidea and its related orders exhibit the plerocercoid or merocercoid stage in their life cycles (Caira & Reyda, 2005). Plerocercoids and Merocercoids are morphologically similar, except for the presence of an invaginated scolex in the merocercoids (Chervy, 2002). Plerocercoids have been frequently reported (Linton, 1897b, 1901; Curtis, 1911; Dollfus, 1923, 1929, 1964, 1974; Yamaguti, 1934; Anantaraman, 1963; Regan, 1963; Friedl & Simon, 1970; Vivares, 1971; Cake, 1976, 1977; Stunkard, 1977; Chambers et al., 2000; Brickle et al., 2001; Agustí et al., 2005a; Aznar et al., 2007; Jensen & Bullard, 2010). However, most of these plerocercoids are unidentified because of the lack of taxonomic characters in the larvae. Thus, the life history of each species of Phyllobothriidea is scarcely known. The genus Scolex has been used for some forms of plerocercoid larvae. Müller (1788) used the name Scolex pleuronectis for non-segmented worms with four divided acetabula, and Rudolphi (1819) named non-segmented worms with four non- divided acetabula and an apical sucker as Sc. polymorphus. At that time, however, the identity of these “worms” was not known. Later, Linton (1901) indicated that Scolex was the plerocercoid larvae of Phyllobothriidea and its related orders, and some subsequent studies used this name to report plerocercoids of Phyllobothriidea (Curtis, 1911; Dollfus, 1923, 1929, 1964, 1974; Yamaguti, 1934; Anantaraman, 1963). Because few morphological characteristics of plerocercoids are known, these studies did not define the species, genus, or family status of these plerocercoids. Therefore, the genus Scolex and the two species are ‘‘collective group names” for larvae and should not be regarded as valid genus or species names (International Commission on Zoological Nomenclature, 1999). In particular, some plerocercoids were identified at genus or species levels based on their morphology. Plerocercoids of Pelichnibothrium were determined on the basis of their four bothridia, an accessory sucker on each bothridium, and an apical sucker (Monticelli, 1889; Zschokke & Heitz, 1914; Fujita, 1922; Yamaguti, 1934, 1952; Joyeux & Baer, 1961; Bikhovskaya-Pavlovskaya et al., 1962; Scholz et al., 1998). However, the apical sucker is commonly observed in many larvae of the Phyllobothriidea and related orders (Jensen & Bullard, 2010) and is not a critical

- 114 - character for Pelichnibothrium (Chapter I). Therefore, the previous identification of Pelichnibothrium本章については,5年以内に雑誌等で刊行予定のため,非公開. may be partly doubtful. Plerocercoids of Thysanocephalum were identified as having two minute muscular prongs at the anterior loculi of each bothridium (Linton, 1897b). However, this morphology was also matched with the morphology of adult Dinobothrium of Tetraphyllidea. Stunkard (1977) identified similar-shaped plerocercoids with Dinobothrium. Recently, Jensen & Bullard (2010) confirmed that plerocercoids identified by Stunkard’s (1977) were Dinobothrium, and not Thysanocephalum. Additionally, they suggested the need for further studies to verify the identification of plerocercoids identified by Linton (1897b). On the other hand, the merocercoids have only been known for two Phyllobothriidea species, Pelichnibothrium delphini and Pe. grimaldii. These species were described based only on their merocercoid larvae, and their adults were never reported. These two species are recognized as valid species because the sequences of these merocercoids did not match any of those from the species in the molecular analysis (Chapter I). Although many phyllobothriidean species have a plerocercoid stage, whether the above two species have plerocercoid stages in their life cycle has not yet been revealed. In vitro cultures were attempted to facilitate genus identification of plerocercoid larvae (Hamilton & Byram, 1974; Avdeeva & Aveev, 1980; Carvajal et al., 1982; Chambers et al., 2000), but these did not develop into adults, and their identification remained uncertain. Caira & Ruhnke (1991) compared the morphology of consecutive developmental stages of plerocercoids and adults of Calliobothrium verticillatum and identified the plerocercoids. They concluded that plerocercoids changed their morphology after they entered the final host. However their morphological observations do not suffice for unequivocal species assignation. As reported in this study (Chapter I), Ca. verticillatum and Ca. shirozame have similar morphologies. The morphology of these plerocercoids also matched that of Ca. shirozame. These larvae should be treated as unidentified plerocercoids of Calliobothrium. No key morphological characteristics connecting the plerocercoids to the adults have been found thus far; therefore, exact morphological identification of plerocercoids is required. Molecular identification has been a more promising tool. Based on partial lsrDNA (D2) sequence analysis, Brickle et al. (2001) reported sequence similarity between the plerocercoid larva from a and an adult Pelichnibothrium montaukensis. Using the same approach, Agustí et al. (2005b) and Aznar et al. (2007) reported two merocercoid and two plerocercoid larvae belonging to the genus

- 115 - Clistobothrium (junior synonym of Pelichnibothrium). However, these two studies 本章については,5年以内に雑誌等で刊行予定のため,非公開. failed to identify the species level because they did not include sequence data from a sufficient number of species. Subsequently, Randhawa (2011) succeeded in identifying one of the plerocercoids reported by Aznar et al. (2007) as Pe. carcharodoni, using partial lsrDNA (D2) sequence analysis. Randhawa & Brickle (2011) also identified the plerocercoid reported by Brickle et al. (2001) as an undescribed species of Pelichnibothrium (Pe. cf. montaukensis). Recently, through the comparison of partial lsrDNA (D1–3) sequences, Kuris et al. (2015) established that a plerocercoid from Regalecus russellii was genetically identical to that reported by Randhawa & Brickle (2011), i.e., Pe. cf. montaukensis. Jensen & Bullard (2010) performed an extensive molecular analysis covering a comprehensive number of plerocercoid larvae and adult species; however, they only included a small number of phyllobothriidean genera and species. They identified 10 species of plerocercoid larvae of Phyllobothriidea, Tetraphyllidea, Onchoproteocephalidea, and Rhinebothriidea, and only two species within the Phyllobothriidean genus, Scyphophyllidium. They categorized 15 types of plerocercoid larvae of Phyllobothriidea, Tetraphyllidea, Onchoproteocephalidea, and Rhinebothriidea by molecular phylogeny and morphological data, but several categories included two or more genera, and sometimes even very distinct ones (e.g., Type II with Calliobothrium and Acanthobothrium). Jensen & Bullard’s (2010) categorization does not seem good enough for plerocercoid identification. The satisfactory determination of larval worms will require a more comprehensive molecular study that includes more and more species of identified adults across various genera and species. In Chapter II, the author analyzed partial lsrDNA sequences of plerocercoid larvae collected from the coastal seas of Japan and attempted to identify them by comparison with the sequences of adult worms also addressed in that chapter. Further, the author also used mitochondrial DNA, i.e., partial sequences of the cytochrome c oxidase subunit 1 (COI), to verify the validity of the species identification within the genus Pelichnibothrium, as obtained via lsrDNA sequence analyses. Lastly, by describing the detailed morphology of successfully identified plerocercoid larvae, the key morphological changes from plerocercoids to adults were established. Based on the species whose larvae were revealed, the characteristics of the life cycle of Phyllobothriidea were discussed.

- 116 - 2. Materials and Methods 本章については,5年以内に雑誌等で刊行予定のため,非公開. 2.1 Sampling and treatment of specimens

The investigation of larvae of Phyllobothriidea and its related orders was conducted in all possible intermediate animal hosts. A total of 212 individuals of 75 species of teleost fishes, mollusks, and decapod crustaceans were collected and examined (Table, 24). Further, phyllobothriidean larvae were collected from four species of elasmobranchs, teleost fishes, and cetaceans in Chapter I (Tables, 5, 24). The collection sites included, coastal waters of Hokkaido (Station 1), the Sea of Japan (Stations 6 and 20), coastal waters of Toshima Island (Station 14), Tosa Bay (Station 25), and coastal waters of the Ogasawara Islands (Station 30 and 31) (Fig. 1, Table 4). Host dissections and parasite extirpations were performed following the method described in Chapter I. A total of 731 plerocercoids collected from 25 host species were determined to be Phyllobothriidea or Tetraphyllidea because of the presence of four acetabula and an apical sucker (Table 24). These larvae were preserved in 99.5% ethanol for molecular analyses or fixed in AFA fixative on microscopic slides under a cover slip for morphological observations. In some specimens, an anterior fraction of the body was used for molecular analyses and the remaining posterior fraction was used for morphological observations. Specimens on slides were stained with Heidenhain’s iron hematoxylin or alum carmine. All specimens were deposited in the National Museum of Nature and Science (NSMT-Pl).

2.2 DNA extraction, PCR amplification, and DNA sequencing

Out of the collected plerocercoid larvae of Phyllobothriidea and Tetraphyllidea, 42 larvae from 25 host species were selected for molecular analyses (Table 25). Partial lsrDNA sequences (861–1,047 bp) were obtained for comparison with adult sequences. In Pelichnibothrium species and Monorygma chamydoselachi, partial mitochondrial DNA COI sequences (357–420 bp) were also obtained. DNA extraction was performed using the methods described in Chapter I. Partial lsrDNA and COI were amplified using the primers LSU and 1500R (Waeschenbach et al., 2007; Table 7) and CO1A2 (5’-CAT ATG TTT TGA TTT TTT GG-3’) and CO1B2 (5’- AKA ACA TAA TGA AAA TGA GC-3’) (Bouzid et al., 2008). PCR amplifications and DNA sequencing were performed following the methods described in Chapter I.

- 117 - 2.3 Sequence alignment and tree construction 本章については,5年以内に雑誌等で刊行予定のため,非公開. For larval identification, 37 OTUs of larvae in this study and 19 OTUs of larvae from GenBank were compared with 122 OTUs of 95 adult taxa (Table 25). Partial lsrDNA (560–1,049 bp) were available for 178 OTU sequences of larvae and adults (Dataset 3). The lsrDNA sequences were aligned to 1,149 positions, using multiple alignments using MAFFT with the option L-INS-i. Phylogenetic trees were constructed using the ML with IQ-TREE and the BI method implemented with MrBayes. Litobothriidea and Lecanicephalidea were used as outgroups as in the analyses in Chapter I. The GTR + G model was selected as the best-fitting evolutionary model by IQ-TREE for all analyses. Gaps and sequence positions with missing data were treated as unknown characters. In the ML analysis, clade support values were estimated using the UFBoot method implemented in IQ- TREE. The UFBoot was estimated from 1,000 replicates. In the BI analysis, BPPs were obtained with MrBayes. The MCMC process was run until the average standard deviation of split frequencies became less than 0.01. The MCMC process was run with four chains sampled every 100 generations for 2,500,000 generations, and the first 25% trees were discarded as burn-in. In the above analyses, 33 larvae were contained in a clade of adult Pelichnibothrium species of Phyllobothriidea (see Results). Sequence differences among the Pelichnibothrium species were smaller than those observed among other genera. Therefore, two additional analyses using partial lsrDNA and COI sequences were performed on Pelichnibothrium larvae and adults. To confirm intraspecific variation, the sequences of one specimen of Pe. delphini, Pe. grimaldii, Pe. tumidum, and Pe. carcharodoni; two specimens of Pe. speciosum; and three specimens of Pe. caudatum and Pe. montaukensis were obtained. In addition, the sequences from the specimens used in the analysis of Dataset 3 were also included and the sequences of Mitsukuricestus gobelinus were used as the outgroup. For the additional analysis, partial lsrDNA (560–690 bp) and the COI (357– 421 bp) were available from 54 and 39 OTU sequences, respectively (Datasets 4 and 5; Table 25). ML and BI trees were constructed as in the analyses of Datasets 4 and 5. The lsrDNA and COI sequences were used to generate multiple alignments of 690 and 421 positions, respectively, using MAFFT with the option L-INS-i. The Hasegawa- Kishino-Yano plus Gamma distribution model (HKY + G) and the GTR + G model were selected as the best-fitting evolutionary models by IQ-TREE for Dataset 4 and 5, respectively. The MCMC process was run with four chains sampled every 100

- 118 - generations, lasting for 1,000,000 generations for Dataset 4 and 500,000 generations for本章については,5年以内に雑誌等で刊行予定のため,非公開. Dataset 5. In both analyses, the first 25% of the trees were discarded as burn-in.

2.4 Morphological observations

Detailed morphological study of the 103 larval specimens was performed following the same methods used for adults in Chapter I. When the whole body was used for DNA extraction, other undoubtedly conspecific specimen collected from the same individual host was used for morphological study. The author basically followed Chervy (2002) and Jensen & Bullard (2010) for morphological terms (Fig. 53).

3. Results

3.1 Molecular identification of the larvae

In the trees using Dataset 3, all of the 37 unnamed plerocercoids and merocercoids collected in this study were located in Phyllobothriidea and Tetraphyllidea clades (Fig. 54). Among them, 27 plerocercoids and merocercoids (Larvae 11–35, 39, 41) were located in several separate clades of the phyllobothriidean genera. The sequence of a plerocercoid found in a Coryphaena hippurus (Larva 34) matched that of a Scyphophyllidium carcharhinus adult, and the sequence of a plerocercoid from Lycodes nakamurae (Larva 32) was identical to that of Vertebraeovicestus dobukasube. Hence, the species of these two plerocercoids was identified to that of their corresponding adult matches. Four plerocercoids from Xiphias gladius (Larvae 28, 29) and Taractichthys steindachneri (Larvae 30, 31) had the exact same sequence and were considered as conspecifics. These plerocercoids did not belong to any genera and formed a clade with Mitsukuricestus gobelinus, Monorygma chamydoselachii, and the Pelichnibothrium species. Another plerocercoid from Dasycottus setiger (Larva 33) did not belong to any of clades of the phyllobothriidean genera and formed a clade with Bilocularia hyperapolytica, Calyptrobothrium sp., Ca. sp.1, Yamaguticestus squali, and Vertebraeovicestus dobukasube. These plerocercoids were treated as incertae sedis (named “Phyllobothriidea gen. sp. L1” and “Phyllobothriidea gen. sp. L2”, respectively) in this study. The remaining 17 plerocercoids (Larvae 11–27) were located in the Pelichnibothrium clade. This analysis was not informative enough to identify the larvae of Pelichnibothrium to the species level. Therefore, additional analyses

- 119 - focusing on this Pelichnibothrium clade were also performed using partial lsrDNA (Dataset本章については,5年以内に雑誌等で刊行予定のため,非公開. 4) and COI (Dataset 5). In the analysis of the unresolved Pelichnibothrium clade using partial lsrDNA sequences (Dataset 4), the following sequences were also included: four plerocercoids of Pe. caudatum (Larvae 35–38), two merocercoids of Pe. delphini (Larvae 39, 40), and two merocercoids of Pe. grimaldii (Larvae 41, 42) were analyzed with the adult sequences of five species, including an undescribed species Pe. cf. montaukensis (Randhawa & Brickle, 2011) (Fig. 55). Nine clades were observed in Pelichnibothrium phylogeny (Fig. 55). Two plerocercoids from Alepisaurus ferox (Larvae 24, 25) formed a clade with Pe. montaukensis. The Pelichnibothrium sequence was identical to that of three adult specimens and was different by only one nucleotide from the other two adult specimens (Table 26). The sequence of two plerocercoids from Todarodes pacificus and Berryteuthis magister (Larvae 26, 27) matched that of an undescribed species of adult Pelichnibothrium (Pe. cf. montaukensis by Randhawa & Brickle, 2011) and also that of two plerocercoids found in the hosts Doryteuthis gahi (Brickle et al., 2001) and Regalecus russelii (Kuris et al., 2015) (Fig. 55, Table 26). The sequences of thirteen plerocercoids from nine host species (Larvae 11–23) were identical to that of four plerocercoids of Pe. caudatum isolated from the host Oncorhynchus keta (larvae 35–38) (Fig. 55, Table 26). The sequence of two merocercoids (Larvae 39, 40) located in the clade of Pe. delphini. The sequence of two merocercoids (Larvae 41, 42) matched that of Pe. grimaldii. The sequences of the other three larvae of Pe. sp. did not match any from the adults or identified larvae (Fig. 55). In the analysis of Pelichnibothrium using partial COI sequences (Dataset 5), a total of seven clades were recognized (Fig. 56). Among them, two plerocercoids (Larvae 24. 25) were located in a clade with adults Pe. montaukensis. Thirteen plerocercoids (Larvae 11–23) were in a clade with Pe. caudatum from Onchorhynchus keta (Larvae 35–38). The smallest plerocercoid clade, consisting of Larvae 26 and 27, had very little identity with the sequences of named adults or larvae, i.e., Pe. cf. montaukensis. Two adults of Pe. carcharodoni, four adults of Pe. speciosum, two adults of Pe. tumidum, and two merocercoids of Pe. grimaldii constituted, each pair, four well supported clades. However, the two P. delphini merocercoids formed a monophyletic clade with Pe. tumidum, but two Pe. delphini were paraphyletic to Pe. tumidum. Considering the results of the Pelichnibothrium analyses using Datasets 4 and 5, two plerocercoid (Larvae 24, 25) could be identified as Pe. montaukensis; two

- 120 - plerocercoid larvae 26 and 27 could be identified as Pe. cf. montaukensis; and a total of本章については,5年以内に雑誌等で刊行予定のため,非公開. 17 plerocercoids (Larvae 11–23, 35–38) were identified as Pe. caudatum. The 10 plerocercoids (Larvae 1–10) in the analysis using Dataset 3 were located in the Tetraphyllidea clade (Fig. 54). Five sequences were obtained from them, and they constituted a well supported sub-clade of the genus Anthobothrium (Fig. 54). The five larval sequences did not match any sequences of adults. According to the grouping observed within this Anthobothrium clade, the 10 plerocercoids were regarded as five distinct unidentified Anthobothrium species (named “Anthobothrium sp. L1–L5”). The sequences of plerocercoids reported in other studies (Agustí et al., 2005b; Aznar et al. 2007; Jensen & Bullard, 2010; Kuris et al., 2015) were also included in the analyses of Dataset 3 and 4. Although many new sequences of adult Pelichnibothrium species were added in the analyses, none of them were identical with those obtained from the plerocercoids (Figs. 54, 55).

3.2 Morphology of the larvae

Plerocercoids of Phyllobothriidea and Anthobothrium of Tetraphyllidea were morphologically distinguished. All plerocercoids of Phyllobothriidea had four bothridia with an accessory sucker, whereas those of Anthobothrium (Tetraphyllidea) had four acetabula. Two types of bodies were observed in plerocercoids of Phyllobothriidea. Plerocercoids of Scyphophyllidium carcharhinus, Vertebraeovicestus dobukasube, and “Phyllobothriidea gen. sp. L2” had a single-piece body structure (Figs. 34D, 48E, 57C). On the other hand, plerocercoids of Pelichnibothrium and “Phyllobothriidea gen. sp. L1” had a body consisting of anterior and posterior parts (Figs. 29A–E, 32E, 57A, B). The latter type of body structure was also observed in merocercoids of two Pelichnibothrium species. The anterior and posterior parts were called filament and bladder, respectively. The invaginating and projecting behaviors of the scolex were observed in a plerocercoid of Pelichnibothrium caudatum (Fig. 29A, B). The plerocercoid started to invaginate the scolex by retracting it into the body. Therefore, the scolex turns inside out (Fig. 59). Following that, the edges of the body were extended, and their body completely wrapped the inverted scolex. This behavior was also observed in plerocercoids of “Anthobothrium sp. L5” (Fig. 57G). Plerocercoids with invaginated scolex look similar to merocercoids. However, the invaginated scolex of merocercoids

- 121 - is never projected. These worms were indeed plerocercoid and not merocercoid; they 本章については,5年以内に雑誌等で刊行予定のため,非公開. had four acetabula and one apical sucker. This behavior of the scolex was observed here for the first time. The morphological characters of plerocercoids and merocercoids of Phyllobothriidea were too scarce to assist genus classification. Plerocercoids of Scyphophyllidium carcharhinus, Vertebraeovicestus dobukasube, and “Phyllobothriidea gen. sp. L2” had a flattened and sessile bothridium and could not be distinguished based on their bothridium morphology. On the other hand, a slightly crumpled bothridium was observed in plerocercoids of Pe. caudatum (Fig. 29) and of Pe. cf. montaukensis (Fig. 57A) and in merocercoids of Pe. delphini (Fig. 30). Stalked bothridium was observed in plerocercoids of Pe. montaukensis (Fig. 32F) and Pe. cf. montaukensis (Fig. 57A).

Morphological description of larvae

Order Phyllobothriidea Caira, Jensen, Waeschenbach, Olson & Littlewood, 2014

Diagnosis of larvae

Plerocercoid or merocercoid. Scolex composed of four bothridia with one or three accessory suckers, and one apical sucker. Bothridium undivided or divided, flatted or slightly crumpled, sessile or stalked. Accessory sucker round. Apical sucker round. Bladder present or absent.

Remarks

The larvae of Phyllobothriidea collected in this study were morphologically different from larvae of Anthobothrium of Tetraphyllidea and had bothridium with an accessory sucker. Jensen & Bullard (2010) reported that plerocercoid of Paraorygmato- bothrium (= Scyphophyllidium) species have no bothridium with an accessory sucker. In this study, however, bothridium with accessory sucker were observed in plerocercoid of Sc. carcharhinus although this structure was not well developed. Scyphophyllidium plerocercoid might potentially have accessory sucker as well as other phyllobothriidean larvae. In these phyllobothriidean larvae, two types were recognized by presence or absence of bladder. Pelichnibothrium larvae and “Phyllobothriidea gen. sp. L1” had a bladder, while other phyllobothriidean larvae did not.

- 122 - On the other hand, Calliobothrium larvae have greatly different morphology 本章については,5年以内に雑誌等で刊行予定のため,非公開. among phyllobothriidean larvae. The typical phyllobothriidean larvae have undivided bothridium, while the bothridium of Calliobothrium larvae are divided into four loculi (Caira & Ruhnke, 1991). Calliobothrium larvae were morphologically close to larvae of Acanthobothrium of Onchoproteocephalidea than the other phyllobothriidean larvae. Although the difference was not observed among these larvae belonging different orders, the type of Calliobothrium larvae was considered one of phyllobothriidean larvae types.

Family Phyllobothriidae Braun, 1900

Diagnosis of larvae

The same as a diagnosis of the order Phyllobothriidea.

Remarks

See remarks of order Phyllobothriidea.

Genus Pelichnibothrium Monticelli, 1889

Diagnosis of larvae

Plerocercoid or merocercoid. Scolex composed of four bothridia with one accessory sucker, and one apical sucker. Bothridium flatted or slightly crumpled, sessile or stalked. Accessory sucker round. Apical sucker round. Bladder present.

Remarks

Jensen & Bullard (2010) categorized larvae of this genus to Type XV based on crumple bothridium. In this study, it was revealed that larvae having flatted bothridium were also contained in this genus. Hence, it needs a revision of Jensen & Bullard’s (2010) category. Larvae of Pelichnibothrium were classified from the larvae of the other phyllobothriidean in having a bladder. The bladder was also observed in “Phyllobothriidea gen. sp. L1”. However, this species could not be determined to

- 123 - belong to this genus. At least, this species should not be treated as Pelichnibothrium 本章については,5年以内に雑誌等で刊行予定のため,非公開. until adult specimens are collected (Remarks of Phyllobothriidea gen. sp. L1). Larvae of this genus had variable morphologies as compared with the larvae of the other genera. Larvae of this genus had flatted or slightly crumpled bothridium, while larvae of the other genera had only flatted bothridium. Furthermore, merocercoids was only reported from this genus among Phyllobothriidea. This larval stage was similar to plerocercoid stage, and these stages may be essentially the same stage. Merocercoids was also one of the variable morphology of this genus.

Pelichnibothrium caudatum Zschokke & Heitz, 1914

Intermediate host: see Chapter I. Site of infection: Digestive system. Distribution: see Chapter I.

Material examined: No. others 7, 55, 61 (three whole mounted plerocercoid specimen, host Be. magister, off Oki, Shimane Prefecture, Japan, 23.v.2012), No. others 22 (a whole mounted plerocercoid specimen, host Ap. ventricosus, off Oki, Shimane Prefecture, Japan, 23.v.2012), No. others 29 (a whole mounted plerocercoid specimen, host Ca. trachysoma, off Oki, Shimane Prefecture, Japan, 22.v.2012), No. others 48 (a whole mounted plerocercoid specimen, host Hi. dubius, off Oki, Shimane Prefecture, Japan, 27.v.2012), No. others 68 (a whole mounted plerocercoid specimen, host Eu. asperrimus, off Oki, Shimane Prefecture, Japan, 24.v.2012), No. others 101 (a whole mounted plerocercoid specimen, host Ga. macrocephalus, off Oki, Shimane Prefecture, Japan, 27.v.2012), No. others 485, 486, 488, 492, 493, 496, 511–523 (48 whole mounted plerocercoid specimen, host On. keta, off Erimo, Hokkaido Prefecture, Japan, 17.x.2015), No. Bathyraja smirnovi 15 (a whole mounted plerocercoid specimen, host Ba. smirnovi, off Oki, Shimane Prefecture, Japan, 29.v.2012).

Description (Fig. 29)

Plerocercoids Based on 57 whole mounted plerocercoids specimens. Plerocercoid worms 1.0–52.0 mm (16.5 mm, N=47), maximum wide 522–3,673 (2,441.6, N=47) at level of scolex or body. Scolex composed of four bothridia with one

- 124 - accessory sucker, and one apical sucker. Scolex 349–2,861 (1,705.0, N=57) long by 522– 3,673本章については,5年以内に雑誌等で刊行予定のため,非公開. (2,504.9, N=57) wide. Bothridium flatted or slightly crimpled, sessile, 171–1,762 (1,019.2, N=57, n=225) long by 119–1,756 (829.8, N=57, n=225) wide. Accessory sucker round, 67–625 (298.5, N=57, n=225) long by 24–557 (288.3, N=57, n=225) wide. Apical sucker round, 84–291 (187.0, N=57) long by 99–932 (210.3, N=57) wide. Neck 458– 3,096 (1,593.3, N=57) wide. Body with longitudinal muscle band, 58–354 (166.1, N=57) wide. Bladder 641–24,911 (9,143, N=41) long by 299–3,014 (1,397.6, N=41) wide.

Remarks

The large plerocercoids of Pelichnibothrium caudatum had slightly crumpled bothridium, similar to plerocercoid of Pe. cf. montaukensis. However, this larva had sessile bothridium, different from stalked ones of Pe. cf. montaukensis (characteristics of Pelichnibothrium cf. montaukensis). Small plerocercoids had flatted bothridium (Fig. 58), and the bothridium type of this species gradually changes with the growth of larvae. Initial proglottization was observed in the largest specimen from Eumicrotremus asperrimus (Fig. 29E, F). This proglottization was caused at the anterior part. However, this specimen was not matured and was not regard as an adult. Perhaps, this proglottization might accidentally cause. Plerocercoids of this species were collected from various hosts in addition to salmonid already reported as follows: i.e., other teleosts, Aptocyclus ventricosus, Careproctus trachysoma, Eumicrotremus asperrimus, and Hippoglossoides dubius; elasmobranch, Bathyraja smirnovi; and cephalopods, Berryteuthis magister and Watasenia scintillans. It revealed that this species has intermediate hosts of various taxa.

Pelichnibothrium delphini (Bosc, 1802)

Intermediate host: see Chapter I. Site of infection: Subcutaneous blubber. Distribution: see Chapter I.

Material examined: No. others 629 (a mounted merocercoid specimen, host St. coeruleoalba, the coast of Oarai, Ibaraki Prefecture, Japan, 23.iv.2016).

- 125 - Description (Fig. 30) 本章については,5年以内に雑誌等で刊行予定のため,非公開. Merocercoids Based on a whole mounted merocercoids specimens. Merocercoid worms, round, 22.9 mm (N=1) long by 14.7 mm (N=1). Scolex invaginated at end of shot filament, composed of four bothridia with one accessory sucker, and one apical sucker. Scolex 3,353 (N=1) long by 3,135 (N=1) wide. Bothridium slightly crumpled and sessile, 1,189–2,339 (1,736.7, N=1, n=3) long by 1,174–1,540 (1,384.7, N=1, n=3) wide. Filament 22.2 mm (N=1) long by 1,774 (N=1) wide. Accessory sucker round, 2279–367 (313.0, N=1, n=3) long by 342–386 (363.0, N=1, n=3) wide. Apical sucker round, 304 (N=1) long by 327 (N=1) wide.

Remarks

Merocercoids were found from only two Pelichnibothrium species, Pe. delphini and Pe. grimaldii. The filament of this species was shorter and wider than that of Pe. grimaldii (22.2 mm and 1,774 vs. 639.5–887.5 mm and 327–561). The two species were also different in infection site although they are parasitic in cetaceans. Pelichnibothrium delphini infect in subcutaneous blubber, while Pe. grimaldii in the peritoneum of the abdominal cavity. Agustí et al. (2005b) reported initial proglottization of this species. In this study, the proglottization were not observed. Perhaps, this proglottization might accidentally cause.

Pelichnibothrium grimaldii (Moniez, 1899)

Intermediate host: see Chapter I. Site of infection: Peritoneum of the abdominal cavity. Distribution: see Chapter I.

Material examined: No. others 633 (a mounted merocercoid specimen, host St. coeruleoalba, the coast of Oarai, Ibaraki Prefecture, Japan, 23.iv.2016), No. others 409 (a mounted merocercoid specimen, host St. coeruleoalba, off Mikame, Ehime Prefecture, Japan, 10.ix.2015).

- 126 - Description (Fig. 31) 本章については,5年以内に雑誌等で刊行予定のため,非公開. Merocercoids Based on two whole mounted merocercoids specimens. Merocercoid worms, round, 23.5–38.3 mm (30.9 mm, N=2) long by 20.2–22.5 mm (21.4 mm, N=2). Scolex invaginated at the end of the long filament, composed of four bothridia with one accessory sucker, and one apical sucker. Scolex 970 (N=1) long by 675 (N=1) wide. Bothridium flatted and sessile, 404–586 (515.0, N=2, n=3) long by 224–407 (330.7, N=2, n=3) wide. Filament 639.5–887.5 mm (763.5 mm, N=2, n=3) long by 327–561 (444.0, N=2, n=3) wide. Accessory sucker round, 163–199 (178.3, N=2, n=3) long by 149–209 (184.3, N=2, n=3) wide. Apical sucker round, 55– 63 (59.0, N=2) long by 41–80 (60.5, N=2) wide.

Remarks

Merocercoids were found from only two Pelichnibothrium species, Pe. delphini and Pe. grimaldii. The filament of this species was longer and thinner than Pe. delphini (639.5–887.5 mm and 327–561 vs. 22.2 mm and 1,774). Both species were also different in infection site although they were parasitic in cetaceans. Pelichnibothrium grimaldii infect at peritoneum of the abdominal cavity, while Pe. delphini at subcutaneous blubber.

Pelichnibothrium montaukensis (Ruhnke, 1993)

Intermediate host: see Chapter I. Site of infection: Digestive system. Distribution: see Chapter I.

Material examined: No. others 343, 371, 376 (16 mounted plerocercoid specimen, host Al. ferox, off Toshima, Shizuoka Prefecture, Japan, 20.viii.2014).

Description (Fig. 32E)

Plerocercoids Based on 16 whole mounted plerocercoids specimens. Plerocercoid worms 2,595–5,871 (4,556.0, N=16), maximum wide 427–939

- 127 - (695.6, N=16) at level of scolex or bladder. Scolex composed of four bothridia with one本章については,5年以内に雑誌等で刊行予定のため,非公開. accessory sucker, and one apical sucker. Scolex 302–868 (565.2, N=16) long by 536–1,038 (799.2, N=16) wide. Bothridium flatted and stalked, 167–320 (251.0, N=16, n=64) long by 120–350 (225.0, N=16, n=64) wide. Stem 47–148 (86.4, N=16, n=64) long by 147–311 (228.0, N=16, n=64) wide. Accessory sucker round, 29–89 (58.8, N=16, n=64) long by 32–99 (58.8, N=16, n=64) wide. Apical sucker round, 39–98 (68.0, N=16) long by 43–98 (70.4, N=16) wide. Bladder 1,962–5,101 (3,902.1, N=16) long by 331–939 (589.3, N=16) wide.

Remarks

Plerocercoid of this species was different from other Pelichnibothrium larvae, does not have a bladder. Further, this plerocercoid was also different from the other larvae of phyllobothriidean genera. Scholz et al. (1998) was reported plerocercoid which morphologically similar to my specimens. They considered presumably conspecific with Pelichnibothrium speciosum because similar morphology with adult Pe. speciosum, which oval bothridium with an accessory sucker. In this study, however, these plerocercoids were identified as Pe. montaukensis based on molecular analyses (Figs. 54–56).

Pelichnibothrium cf. montaukensis

Intermediate host: Todarodes pacificus Steenstrup1880 (Teuthida: Ommastrephidae), Berryteuthis magister (Berry, 1913) (Teuthida: Ommastrephidae), Doryteuthis gahi (d’Orbigny, 1835) (Myopsida: Loliginidae), Regalecus russelii (Cuvier, 1816) (: Regalecidae). Final host: Lamna nasus (Lamniformes: Lamnidae). Site of infection: Digestive system. Distribution: Plerocercoid; Sea of Japan– off Oki, Shimane Prefecture, Japan (this study), Santa Catalina I., U.S.A. (Kuris et al., 2015): Atlantic Ocean– Falkland Islands, United Kingdom (Brickle et al., 2001)

Material examined: No. others 52 (a mounted plerocercoid specimen, host To. pacificus, off Toshima, Shizuoka Prefecture, Japan, 22.v.2012).

- 128 - Description (Fig. 57A) 本章については,5年以内に雑誌等で刊行予定のため,非公開.

Plerocercoids Based on a whole mounted plerocercoids specimens. Plerocercoid worms 13.5 mm (N=1), maximum wide 4,498 (N=1) at level of scolex. Scolex composed of four bothridia with an accessory sucker, and one apical sucker. Scolex 349–2,861 (1,705.0, N=57) long by 522–3,673 (2,504.9, N=57) wide. Bothridium slightly crimpled, stalked, 1,368–1,910 (1667.5, N=1, n=4) long by 830– 1,205 (1,031.5, N=1, n=4) wide. Accessory sucker round, 265–319 (297.3, N=1, n=4) long by 257–317 (289.3, N=1, n=4) wide. Apical sucker round, 306 (N=1) long by 329 (N=1) wide. Neck 750 (N=1) wide. Body with longitudinal muscle band, 270 (N=1) wide. Bladder 8.6 mm (N=1) long by 2.8 mm (N=1) wide.

Remarks

An adult of Pelichnibothrium cf. montaukensis was reported from Lamna nasus by Randhawa & Brickle (2011). However, they did not describe as new species, only reported a partial sequence of lsrDNA and a picture by SEM (Fig. 2A in Randhawa & Brickle, 2011). The scolex of this species was morphologically similar to Pe. montaukensis and Pe. tumidum, these species have strikingly crumpled bothridium. In molecular analyses, its sequence did not match with any other adult species (Figs. 54, 55, Table 26). Hence, this species should be considered an undescribed species but it needs further morphological studies to describe this species. Plerocercoids of this species were reported from Doryteuthis gahi and Regalecus russelii by Brickle et al. (2001) and Kuris et al. (2015), respectively. In this study, plerocercoids of this species were also found from two Berryteuthis magister and Todarodes pacificus (Figs. 54, 55). Plerocercoids of this species had a slightly crumpled bothridium, similar to that of the plerocercoids of Pelichnibothrium caudatum. However, they had a stalked bothridium which was different from that of Pe. caudatum.

Genus Scyphophyllidium Woodland, 1927

Diagnosis of larvae

Plerocercoid. Scolex composed of four bothridia with one accessory sucker,

- 129 - and one apical sucker. Bothridium flatted, and sessile. Accessory sucker round, not 本章については,5年以内に雑誌等で刊行予定のため,非公開. well developed. Apical sucker round. Bladder absent.

Remarks

Plerocercoids of this genus were reported by Jensen & Bullard (2010) for the first time. Jensen & Bullard (2010) mentioned Scyphophyllidium plerocercoids were similar to Anthobothrium plerocercoids; these plerocercoids had four acetabula. In this study, however, Scyphophyllidium plerocercoid had not acetabula but bothridium and accessory sucker like the other phyllobothriidean larvae. Because bothridium and accessory sucker of Scyphophyllidium plerocercoid were not well developed in this study, these characters might not observe in Jensen & Bullard (2010). Plerocercoids of Scyphophyllidium did not have a bladder like Vertebraeovicestus larvae and Phyllobothriidea gen. sp. L2. It is difficult to identify these larvae without molecular analysis.

Scyphophyllidium carcharhinus n. sp.

Intermediate host: see Chapter I. Site of infection: Digestive system. Distribution: see Chapter I.

Material examined: No. others 426 (a mounted plerocercoid specimen, host Co. hippurus, off Maizuru, Shimane Prefecture, Japan, 18.ix.2015).

Description (Fig. 34D)

Plerocercoids Based on a whole mounted plerocercoids specimens. Plerocercoid worms elongated, 1,979 (N=1), maximum wide 520 (N=1) at scolex. Scolex composed of four bothridia with one accessory sucker, and one apical sucker. Scolex 404 (N=1) long by 520 (N=1) wide. Bothridium flatted and sessile, 197–216 (205.3, N=1, n=4) long by 94–128 (110.0, N=1, n=4) wide. Accessory sucker round, 86–96 (90.3, N=1, n=4) long by 65–91 (75.5, N=1, n=4) wide. Apical sucker round, 121 (N=1) long by 112 (N=1) wide. Neck 268 (N=1) wide.

- 130 - Remarks 本章については,5年以内に雑誌等で刊行予定のため,非公開. The sequence of this plerocercoid completely matched that of adult Scyphophyllidium carcharhinus (Fig. 54). Hence, this larva was identified to be Sc. carcharhinus in this study.

Genus Vertebraeovicestus n. gen.

Diagnosis of larvae

Plerocercoid. Scolex composed of four bothridia with one accessory sucker, and one apical sucker. Bothridium flatted, and sessile. Accessory sucker round. Apical sucker round. Bladder absent.

Remarks

Plerocercoid of Vertebraeovicestus did not have a bladder like Scyphophyllidium larvae and “Phyllobothriidea gen. sp. L2”. It was difficult to identify these larvae without molecular analysis.

Vertebraeovicestus dobukasube n. sp.

Intermediate host: see Chapter I. Site of infection: Digestive system. Distribution: see Chapter I.

Material examined: No. others 34 (a mounted plerocercoid specimen, host Ly. nakamurae, off Oki, Shimane Prefecture, Japan, 25.v.2012).

Description (Fig. 48E)

Plerocercoids Based on a whole mounted plerocercoids specimens. Plerocercoid worms round, 1,216 (N=1), maximum wide 552 (N=1) at the bladder. Scolex composed of four bothridia with one accessory sucker, and one apical sucker. Scolex 352 (N=1) long by 441 (N=1) wide. Bothridium flatted and sessile,

- 131 - 177–217 (204.5, N=1, n=4) long by 79–115 (96.0, N=1, n=4) wide. Accessory sucker round,本章については,5年以内に雑誌等で刊行予定のため,非公開. 86–96 (90.3, N=1, n=4) long by 65–91 (75.5, N=1, n=4) wide. Apical sucker round, 75 (N=1) long by 72 (N=1) wide. Neck 451 (N=1) wide.

Remarks

The sequence of this plerocercoid completely matched that of Vertebraeovicestus dobukasube (Fig. 54). Hence, this larva was identified to be Ve. dobukasube in this study.

Unidentified species

Phyllobothriidea gen. sp. L1

Intermediate host: Xiphias gladius (Linnaeus, 1758) (Perciformes: Xiphiidae), Taractichthys steindachneri (Döderlein,1883) (Perciformes: Bramidae). Site of infection: Digestive system. Distribution: Plerocercoid; Pacific Ocean– off Ogasawara Is., Tokyo Metropolitan, Japan (this study).

Material examined: No. others 577 (eight mounted plerocercoid specimen, host Xi. gladius, off Ogasawara Is., Tokyo Metropolitan, Japan, 19.ii.2016).

Description (Fig. 57B)

Plerocercoids Based on eight whole mounted plerocercoids specimens. Plerocercoid worms elongated, 922–2,580 (1,748.8, N=8), maximum wide 289–561 (415.1, N=8) at scolex. Scolex composed of four bothridia with one accessory sucker, and one apical sucker (Fig.). Scolex 285–430 (357.7, N=7) long by 447–690 (534.4, N=7) wide. Bothridium flatted and sessile, 200–311 (254.1, N=8, n=32) long by 119–246 (193.0, N=8, n=32) wide. Accessory sucker round, 58–120 (85.3, N=8, n=32) long by 73–130 (99.0, N=8, n=32) wide. Apical sucker round, 54–86 (68.8, N=8) long by 58–102 (76.1, N=8) wide. Neck 264–428 (374.1, N=8) wide. Body with longitudinal muscle band, 17–41 (32.1, N=8) wide. Bladder 1,646–2,058 (1,850.0, N=4) long by 304–526 (413.0, N=4) wide.

- 132 - Remarks 本章については,5年以内に雑誌等で刊行予定のため,非公開.

This plerocercoid had a bladder and a longitudinal muscle band, and these morphological characteristics agreed well with the diagnosis of Pelichnibothrium. Phyllobothriidea gen. sp. L1 was closely related with Pelichnibothrium in molecular analyses. However, this species was polytomy with a clade of Pelichnibothrium and a clade of Monorygma and Mitsukuricestus. Hence, this species could not be determined to belong to Pelichnibothrium. At least, this species should not be treated as Pelichnibothrium until adult specimens are collected. It needs morphological comparison with adults to identify this species.

Phyllobothriidea gen. sp. L2

Intermediate host: Dasycottus setiger Bean 1890 (Scorpaeniformes: Psychrolutidae). Site of infection: Digestive system. Distribution: Plerocercoid; Sea of Japan– off Maizuru, Kyoto Prefecture, Japan (this study).

Material examined: No. others 99 (a mounted plerocercoid specimen, host Da. setiger, off Oki, Shimane Prefecture, Japan, 25.v.2012).

Description (Fig. 57C)

Plerocercoids Based on a whole mounted plerocercoids specimens. Plerocercoid worms round, 1,033 (N=1), maximum wide 397 (N=1) at scolex. Scolex composed of four bothridia with one accessory sucker, and one apical sucker. Scolex 264 (N=1) long by 397 (N=1) wide. Bothridium flatted and sessile, 145–177 (156.5, N=1, n=4) long by 91–114 (106.8, N=1, n=4) wide. Accessory sucker round, 67–90 (75.3, N=1, n=4) long by 71–88 (79.0, N=1, n=4) wide. Apical sucker round, 83 (N=1) long by 85 (N=1) wide. Neck 346 (N=1) wide.

Remarks

Phyllobothriidea gen. sp. L2 did not have a bladder like Scyphophyllidium and Vertebraeovicestus larvae. It was difficult to classify these larvae without

- 133 - molecular analysis. 本章については,5年以内に雑誌等で刊行予定のため,非公開. Order Tetraphyllidea Carus, 1863 Family incertae sedis Genus Anthobothrium van Beneden, 1850

Diagnosis of larvae

Plerocercoid. Scolex composed of four acetabula and one apical sucker. Apical sucker round. Bladder absent.

Remarks

Plerocercoids of Anthobothrium have no bothridium or accessory sucker. Jensen & Bullard (2010) categorized them as Type VI and suggested the type was similar to Type IV which was found in Scyphophyllidium larvae. However, bothridium and accessory sucker were observed in Scyphophyllidium larvae, and they were clearly different from larvae of this genus (Remarks of Genus Scyphophyllidium). Plerocercoids of this genus were very similar in morphology between species.

Anthobothrium sp. L3

Intermediate host: Trichiurus japonicus Temminck et Schlegel, 1844 (Perciformes: Trichiuridae). Site of infection: Digestive system. Distribution: Plerocercoid; Pacific Ocean– off Kubotsu, Kochi Prefecture, Japan (this study).

Material examined: No. others 390 (two mounted plerocercoid specimen, host Tr. japonicus, off Kubotsu, Kochi Prefecture, Japan, 6.xi.2012).

Description (Fig. 56D)

Plerocercoids Based on two mounted plerocercoids specimens. Plerocercoid worms elongated, 1,204–1,287 (1,245.5, N=1), maximum wide

- 134 - 335–406 (370.5, N=2) at scolex. Scolex composed of four acetabula and one apical sucker.本章については,5年以内に雑誌等で刊行予定のため,非公開. Scolex 195–235 (215.0, N=2) long by 335–406 (370.5, N=2) wide. Acetabula round, 110–136 (124.9, N=2, n=8) long by 80–104 (92.1, N=2, n=8) wide. Apical sucker round, 61–98 (79.5, N=2) long by 94–107 (100.5, N=2) wide.

Remarks

Anthobothrium sp. L3 was genetically similar to Anthobothrium sp. L4 (Fig. 54), and there was only a different site of 1,272 passions between the two species. It could not be determined whether these species were conspecific or not in this study because they have no characteristic morphology.

Anthobothrium sp. L4

Intermediate host: Coryphaena hippurus Linnaeus, 1758 (Perciformes: Coryphaenidae), Trachurus japonicus Temminck et Schlegel, 1844 (Perciformes: Carangidae). Site of infection: Digestive system. Distribution: Plerocercoid; Sea of Japan– off Maizuru, Kyoto Prefecture, Japan (this study).

Material examined: No. others 430 (four mounted plerocercoid specimen, host Co. hippurus, off Maizuru, Shimane Prefecture, Japan, 18.ix.2015), No. others 435, 436 (seven mounted plerocercoid specimen, host Tr. japonicus, off Maizuru, Shimane Prefecture, Japan, 18.ix.2015).

Description (Fig. 57E)

Plerocercoids Based on 11 mounted plerocercoids specimens. Plerocercoid worms elongated, 592–1,968 (1,245.3, N=11), maximum wide 193–356 (266.9, N=11) at scolex. Scolex composed of four acetabula and one apical sucker. Scolex 124–239 (191.1, N=11) long by 193–359 (267.2, N=11) wide. Acetabula round, 61–127 (90.1, N=11, n=44) long by 44–103 (73.0, N=11, n=44) wide. Apical sucker round, 44–87 (61.1, N=11) long by 47–97 (60.4, N=11) wide.

- 135 - Remarks 本章については,5年以内に雑誌等で刊行予定のため,非公開.

Anthobothrium sp. L4 was genetically similar to Anthobothrium sp. L3 (Fig. 54), and there was only a different site of 1,272 passions between the two species. It could not be determined whether these species were conspecific or not in this study because they have no characteristic morphology.

Anthobothrium sp. L5

Intermediate host: Epinephelus fasciatus (Forsskål, 1775) (Perciformes: Serranidae), Coris aygula Lacepède, 1801 (Perciformes: Labridae), Thalassoma lutescens (Lay & Bennett, 1839) (Perciformes: Labridae). Site of infection: Digestive system. Distribution: Plerocercoid; Pacific Ocean– off Ogasawara Is., Tokyo Metropolitan, Japan (this study).

Material examined: No. others 132 (a mounted plerocercoid specimen, host Ep. fasciatus, off Ogasawara Is., Tokyo Metropolitan, Japan, 13.ii.2014), No. others 553 (a mounted plerocercoid specimen, host Co. aygula, off Ogasawara Is., Tokyo Metropolitan, Japan, 9.vii.2015).

Description (Fig. 57F, G)

Plerocercoids Based on two mounted plerocercoids specimens. Plerocercoid worms elongated, 782–1,617 (1,199.5, N=2), maximum wide 521–748 (634.5, N=2) at body. Scolex composed of four acetabula and one apical sucker. Scolex 189–209 (199.0, N=2) long by 277–294 (285.5, N=2) wide. Acetabula round, 100–128 (111.4, N=2, n=8) long by 59–114 (84.5, N=2, n=8) wide. Apical sucker round, 45–53 (49.0, N=2) long by 68–86 (77.0, N=2) wide.

Remarks

These plerocercoids were genetically far from any other Anthobothrium species. These larvae were collected from three hosts living in the Ogasawara Islands. However, their adult was not found.

- 136 - 3.3 Morphological differences between plerocercoid and adult scolex 本章については,5年以内に雑誌等で刊行予定のため,非公開.

Plerocercoids of three phyllobothriidean species, i.e., Pelichnibothrium montaukensis, Scyphophyllidium carcharhinus, and Vertebraeovicestus dobukasube, were clearly identified in this study. These plerocercoid larvae had an apical sucker (Figs. 32E, 34D, 48E), while in their adults this structure was absent (Figs. 32B, 34B, 48B). In the case of Pe. montaukensis, the bothridium was flat in the plerocercoid (Fig. 32E), while it was strikingly crumpled in the adult (Fig. 32B), and although the apical region was not developed in the plerocercoid (Fig. 32E), it was expanded in the adult (Fig. 32B). For Scyphophyllidium carcharhinus, the size of the bothridium increased from plerocercoid (Fig. 34D) to adult (Fig. 34B), but the morphology did not change. For Vertebraeovicestus dobukasube, the bothridium was flat in the plerocercoid (Fig. 48E), while it was slightly crumpled in the adult (Fig. 48B).

3.4 Intermediate host of the Phyllobothriidea

Plerocercoids of the three phyllobothriidean species were parasitic in two or more animal taxa as the intermediate hosts. Plerocercoids of Pe. caudatum were found in 10 teleosts (Aptocyclus ventricosus, Arctoscopus japonicus, Careproctus trachysoma, Eumicrotremus asperrimus, Gadus macrocephalus, Hippoglossoides dubius, Onchorhynchus keta, On. masou, On. nerca, and On. taschawytcha), an elasmobranch (Bathyraja smirnovi), and two cephalopods (Berryteuthis magister and Watasenia scintillans). Plerocercoids of Pe. cf. montaukensis were found in three cephalopods (Be. magister, Doryteuthis gahi, and Todarodes pacificus) and a teleost (Regalecus russelii). Phyllobothriidea gen. sp. L1 was isolated from two teleosts (Xiphias gladius and Taractichthys steindachneri). On the other hand, plerocercoids of four species were exclusively isolated from a given teleost species, i.e., plerocercoids of Pe. montaukensis were found in Alepisaurus ferox, that of Scyphophyllidium carcharhinus in Coryphaena hippurus; that of Vertebraeovicestus dobukasube in Lycodes nakamurae, and that of Phyllobothriidea gen. sp. L2 in Dasycottus setiger. Merocercoids of two phyllobothriidean species were only parasitic in cetacean species. Merocercoids of Pelichnibothrium delphini were found from in 11 cetaceans (Delphinus delphis, Arctocephalus australis, Balaena mysticetus, Globicephala melas, Grampus griseus, Kogia sima, Leptonychotes weddellii, Mesoplodon bidens, Physeter macrocephalus, Stenella coeruleoalba, and Tursiops

- 137 - truncatus ). Merocercoids of Pe. grimaldii were found in five cetaceans (De. delphis, Gl.本章については,5年以内に雑誌等で刊行予定のため,非公開. melas, Lagenorhynchus acutus, St. coeruleoalba, and Tu. truncatus).

4. Discussion

4.1 Molecular identification of Phyllobothriidea larvae

In this study, several plerocercoids were identified into the order Phyllobothriidea by molecular phylogenetic analyses: Scyphophyllidium carcharhinus, Vertebraeovicestus dobukasube, Pelichnibothrium montaukensis, an unidentified form Pe. cf. montaukensis by Randhawa & Brickle (2011), and Pe. caudatum only known from the larval form. This indicates that sequence comparisons are a useful tool to link plerocercoids with adult forms. Because sequence data of adult cestodes are still limited, many plerocercoids remain unidentified, although Pe. sp., Phyllobothriidea gen. sp. L1 and L2, and Tetraphyllidea Anthobothrium sp. L1–L5 have been identified. For the present analysis, Dataset 3 was prepared that consisted of partial lsrDNA sequences from 37 larval OTUs collected in this study, 19 larval OTUs from GenBank, and 123 adult OTUs from 95 taxa. Generally, lsrDNA is considered unsuitable to discriminate species because of its low evolutionary rate. To compensate for the low evolutionary rate, an analysis of mitochondrial COI sequences of species from the genus Pelichnibothrium was conducted. This analysis resulted in conservation of topology between mtDNA COI and partial lsrDNA sequences. In the phylogeny studies of the order Phyllobothriidea to date, analysis of ssrDNA and lsrDNA sequences has been restricted mostly to adult tapeworms. Therefore, previous reports have used partial lsrDNA sequences to identify phyllobothriidean larvae (Brickle et al., 2001; Agustí et al., 2005b; Aznar et al., 2007; Jensen & Bullard, 2010; Randhawa, 2011; Randhawa & Brickle, 2011; Kuris et al., 2015). The present study has shown that phylogenic analysis using partial lsrDNA sequences is a useful strategy when assigning phyllobothriidean larvae to species.

4.2 Morphology of the larvae

Phyllobothriidea has two larval forms, plerocercoid and merocercoid (Chervy, 2002). Plerocercoids and merocercoids are morphologically similar, differing only in whether the scolex is invaginated into the body. In this study, it was observed that

- 138 - plerocercoids changed their form to the merocercoid form. On the other hand, it has not本章については,5年以内に雑誌等で刊行予定のため,非公開. been reported that merocercoids transform to the plerocercoid form (Chervy, 2002). Merocercoids are parasitic in tissues, i.e., subcutaneous blubber or peritoneum of the abdominal cavity, and make a cyst (Agustí et al., 2005b; Aznar et al., 2007). Worms in a cyst do not need the scolex for attachment. Hence, merocercoids are larvae with an invaginated scolex into the body, demonstrating the merocercoid form adapts to the infection sites. Jensen & Bullard (2010) categorized plerocercoid and merocercoid larvae of Phyllobothriidea and related orders to 15 morphological types. They identified only three types in Phyllobothriidea, and their categorization is not thorough enough to identify larval phyllobothriideans. Pelichnibothrium plerocercoids and merocercoids were categorized as Type XV by their crumpled bothridium (Jensen & Bullard, 2010). Larvae bearing flattened bothridium were found in Pelichnibothrium (Scholz et al., 1996; Agustí et al., 2005a; 2005b; Aznar et al., 2007; this study); however this categorization did not include larvae. Further, morphological change of bothridium with growth was observed in plerocercoids from Pe. caudatum. Larger plerocercoid larvae of Pe. caudatum have slightly crumpled bothridium, but smaller plerocercoids have flattened bothridium. Therefore, Jensen & Bullard’s (2010) Type XV is not complete enough to include Pelichnibothrium larvae. Jensen & Bullard (2010) classified plerocercoids of Scyphophyllidium larvae as Type IV and plerocercoids of Anthobothrium of Tetraphyllidea as Type VI. These types both have four acetabula and an apical sucker. However, in this study, plerocercoids of Sc. carcharhinus had four bothridia with an accessory sucker (Fig. 34D). Jensen & Bullard (2010) reported that the body length of Type IV is 113–321, but the specimen from this study was much larger (1,979). This suggests Jensen & Bullard’s (2010) Type IV includes only the early-stage plerocercoids of Scyphophyllidium. Additionally, Scyphophyllidium develops four bothridia and an apical sucker. On the other hand, large (592–1,968) plerocercoids of Anthobothrium sp. L3–5 had four acetabula and an apical sucker (Fig. 57D–G) and agreed well with the Type VI definition (439–1,023). Therefore, Scyphophyllidium plerocercoids are clearly distinguished from Anthobothrium plerocercoids when they are large. Calliobothrium and Acanthobothrium have Type II plerocercoids, distinguished by the bothridium, which is divided into four loculi (Jensen & Bullard, 2010). Among these four loculi, an accessory sucker is located in the anterior loculus. Jensen & Bullard (2010) did not examine Calliobothrium plerocercoids in their report but classified them as Type II according to observations by Caira & Ruhnke

- 139 - (1991), mentioning that Calliobothrium plerocercoids were morphologically similar to 本章については,5年以内に雑誌等で刊行予定のため,非公開.Acanthobothrium plerocercoids. Analogously, Calliobothrium and Acanthobothrium adults are very similar in morphology; however, molecular analysis (Chapter I) confirmed that these two genera belonged to different orders, Phyllobothriidea and Onchoproteocephalidea, respectively. Caira & Ruhnke (1991) identified Type II plerocercoids as Ca. verticillatum by its three accessory suckers on each bothridium. This characteristic has only been observed in Ca. verticillatum adults. In contrast, this study found this morphology in the adults of Ca. shirozame (Fig. 19). Therefore, the correct identification of this species should be confirmed by molecular analysis. These observations clearly demonstrate that the morphological identification of phyllobothriidean larvae is difficult, even at the genus level, because of scarce taxonomic characteristics. In this study, phyllobothriidean plerocercoid and merocercoid larvae were categorized into three morphological types. The first type has a scolex bearing four flattened bothridia with an accessory sucker, an apical sucker, and body with a single part. Plerocercoids of Scyphophyllidium carcharhinus, Vertebraeovicestus dobukasube, and Phyllobothriidea gen. sp. L2 were categorized as this first type. Although the three species belonged to different genera by molecular analyses (Fig. 54), there was no observable difference in morphology between these plerocercoids. The second type, similar to Pelichnibothrium, has characteristic phyllobothriidean scolexes and a bladder. Plerocercoids of all five species of Pelichnibothrium and Phyllobothriidea gen. sp. L1 were categorized in this type. Phyllobothriidea gen. sp. L1 was closely related to Pelichnibothrium (Fig. 54). The morphological variation is so diverse that the bothridium can be slightly crumpled or flattened and sessile or stalked. The species could be distinguished based on morphology. Further, all merocercoids were categorized in this type. Third is the Calliobothrium type, with scolex bearing bothridium divided into four parts and an apical sucker and body. Although no molecular analysis of plerocercoids of Calliobothrium has been performed, Caira & Ruhnke’s (1991) plerocercoids were classified as this type. Symcallio can also be categorized in this type because adults of Symcallio species were morphologically similar to Calliobothrium. Linton (1897b) identified plerocercoids of Thysanocephalum, but Stunkard (1977) mentioned these plerocercoids were morphologically similar to plerocercoids of Dinobothrium of order Tetraphyllidea in their study. The scolex of Linton’s (1897b) plerocercoids has two muscular prongs at the top of the anterior loculi of bothridia, more similar to the scolex of adult Dinobothrium than that of adult

- 140 - Thysanocephalum . Jensen & Bullard (2010) assigned Dinobothrium plerocercoids to Type本章については,5年以内に雑誌等で刊行予定のため,非公開. XIV, and Linton’s (1897b) plerocercoids match with the Type XIV morphology. Therefore, Linton’s (1897b) plerocercoids, together with Stunkard’s (1977) ones, probably do not belong to Phyllobothriidea. The morphological identification of plerocercoids is still doubtful, and accurate comparisons with adults by molecular analysis are required for the identification of phyllobothriidean plerocercoids.

4.3 Morphological changes from plerocercoids to adults

Because plerocercoids have never been classified to specific species, morphological differences between adults and plerocercoids of identical species of Phyllobothriidea have not been described. In plerocercoids, only the scolex was used for morphological classification because plerocercoids develop no proglottid. However, in the order , hooks develop in plerocercoids, and the morphology does not change when the larvae grow to adult; therefore, the plerocercoids of many species have been identified to species (Palm, 2004). In this study, the morphologies between adults and plerocercoids in the order Phyllobothriidea are compared based on molecular identification. Morphology of phyllobothriideans changes considerably from plerocercoid to adult. The apical sucker is observed in all phyllobothriidean larvae (Agustí et al., 2005a, 2005b; Jensen & Bullard, 2010; Kuris et al., 2015; this study), while adults of almost all phyllobothriidean species have no apical sucker. The plerocercoids of Pelichnibothrium carcharodoni, Pe. montaukensis, Pe. cf. montaukensis, Scyphophyllidium carcharhinus, and Vertebraeovicestus dobukasube were identified in this study, and it was confirmed that these species have an apical sucker in plerocercoids but lose it in adults (Figs. 60–62, 64, 65). Remarkably, Pe. speciosum has an apical sucker in the adult (Fig. 63). Although the plerocercoid of Pe. speciosum was not found in this study, Pe. speciosum may have an apical sucker consistently from plerocercoid to adult. The morphology of bothridium also changes considerably by growth. In Pelichnibothrium montaukensis and Vertebraeovicestus dobukasube, the flatted bothridium in plerocercoids changes to crumpled bothridium in adults (Figs. 60, 65). Scyphophyllidium carcharhinus keeps flattened bothridium consistently from plerocercoid to adult, although the size increases (Fig. 64). Therefore, morphological changes in the bothridium during growth make morphological identification of plerocercoids more difficult.

- 141 - 4.4 Life cycle of Phyllobothriidea 本章については,5年以内に雑誌等で刊行予定のため,非公開. The exact identification of the species of larvae by molecular analyses has enabled intermediate hosts to be identified and the life cycle of Phyllobothriidea to be revealed. Among Phyllobothriidea, the life cycles of Pelichnibothrium species have been the most well understood. In this study, adults of Pelichnibothrium montaukensis were parasitic in the Isurus oxyrinchus, and plerocercoids were found in Alepisaurus ferox. Scholz et al. (1998) reported plerocercoids from Al. ferox and categorized them as Pe. speciosum. However, in this study, plerocercoids from Al. ferox were identified as Pe. montaukensis based on molecular analyses (Figs. 54–56). Plerocercoids of Pe. montaukensis were only parasitic in Al. ferox. High host specificity is seen in the plerocercoid stage as well as in the adult. As frequently seen in the final host, Alepisaurus ferox is consumed by Is. oxyrinchus (Strasburg, 1958; Stillwell & Kohler, 1982; Maia et al., 2006) (Fig. 60). Plerocercoids of Pelichnibothrium cf. montaukensis were reported from Doryteuthis gahi and Regalecus russellii (Brickle et al., 2001; Kuris et al., 2015). In this study, plerocercoids of this species were also isolated from two cephalopods, Todarodes pacificus and Berryteuthis magister in Japanese waters (Fig. 61). Plerocercoids of these species exclusively parasitize cephalopods. Adults are parasitic in the shark Lamna nasus, which includes cephalopods in its diet (Gauld, 1989; Ellis & Shackley, 1995; Joyce et al., 2002; Francis et al., 2008). Although plerocercoids of this species were collected from the coastal seas of Japan, La. nasus is only found in the North Atlantic and southern hemisphere (Ebert et al., 2013). This suggests the final host of Pe. cf. montaukensis is not only La. nasus. Another final host species, cephalopod eating elasmobranchs, should be found in the North Pacific because the intermediate hosts, Todarodes pacificus and Berryteuthis magister, are distributed only in the North Pacific (Jereb & Roper, 2010). Several papers have represented the life cycle of Pelichnibothrium carcharodoni in part. Agustí et al. (2005a) and Aznar et al. (2007) reported unidentified plerocercoids from Stenella coeruleoalba and Grampus griseus, and Randhawa (2011) identified these larvae as Pe. carcharodoni based on molecular analysis. The final host of this species, Carcharodon carcharias, is carnivorous and eats various cetaceans, including St. coeruleoalba and Gr. griseus (Arnold, 1972; Cockcroft et al., 1987; Cliff et al., 1989; Fergusson, 1996; Long & Jones, 1996; Fergusson et al., 2000). Predator-prey relationships must allow plerocercoids of Pe.

- 142 - carcharodoni to move from the intermediate host to the final host (Fig. 62). Larvae 本章については,5年以内に雑誌等で刊行予定のため,非公開. of this species have not been isolated from any organisms other than dolphins, and intermediate host specificity of this species seems high. Pelichnibothrium speciosum has a more complicated life cycle than the above three species. Final hosts of phyllobothriideans are elasmobranchs (Monticelli, 1889; Scholz et al., 1998). However, adults of Pe. speciosum were reported not only from the elasmobranch Prionace glauca but also from the teleost Alepisaurus ferox. Development of Pe. speciosum is different between these two hosts. Gravid proglottid is observed in Pr. glauca but not in Al. ferox. Proglottids become gravid after secession from strobila; therefore, gravid proglottids are only seen in free proglottids. All specimens from Al. ferox bear the bladder at the terminal of strobila and no gravid proglottids. These suggest that this species does not reproduce in Al. ferox, therefore not indicating it is the final host. Scholz et al. (1998) suggested that adults of Pe. speciosum change its host from Al. ferox to Pr. glauca through predation based on the fact that Al. ferox are consumed by Pr. glauca frequently (Kohler, 1987; Yatsu, 1995; Vaske Jr. et. al., 2009; Markaida & Sosa-Nishiozaki, 2010). However, there are some differences in morphology between the adults in Al. ferox and those in Pr. glauca (Figs. 26, 27); in particular, the number of testes was far higher in Al. ferox than in Pr. glauca (Table 17). The number of testes in mature proglottids does not differ among adults. Therefore, these differences are considered to be caused by the different hosts. If adults move from Al. ferox to Pr. glauca, the number of testes must be equal between the proglottids from Al. ferox and from Pr. glauca. However, the number of testes in these specimens did not overlap. Hence, it is not considered that adults of this species move from Al. ferox to Pr. glauca. Alepisaurus ferox seems to be a dead-end host (Fig. 63). Pelichnibothrium caudatum was only previously identified in the plerocercoid stage. Plerocercoids of this form were isolated from 10 species of teleosts and cephalopods in this study. Intermediate host specificity of Pe. caudatum was lower than the other Pelichnibothrium species. Among these hosts, Onchorhynchus keta was the most heavily infected by Pe. caudatum (Zschokke & Heitz, 1914; Fujita, 1922; this study). Onchorhynchus keta is an important prey for Lamna ditropis (Sano, 1960, 1962; Kubodera et. al. 2007). It is highly possible that La. ditropis is a final host of this species. However, no phyllobothriidean species have been isolated from La. ditropis. Pelichnibothrium delphini and Pe. grimaldii may have a considerably different life cycle than the other Pelichnibothrium species. They have a merocercoid

- 143 - larvae stage, and merocercoids have never been found in any other species of 本章については,5年以内に雑誌等で刊行予定のため,非公開. Phyllobothriidea. These two species have only been identified in the merocercoid stage (Agustí et al., 2005b), and their life cycle is not well understood. Agustí et al. (2005b) reported proglottization of merocercoids of Pe. delphini, suggesting that the merocercoid is the final larval stage before adults, in addition to the plerocercoid stage. Aznar et al. (2007) inferred that the shark Carcharodon carcharias was a final host because this shark was known to eat cetaceans frequently, and these merocercoids were closely related to Pelichnibothrium species parasitic in sharks of the family Lamnidae. However, adults of these two species have not been isolated from the shark. Norman (1997) suggested Pe. delphini, parasitic in the subcutaneous blubber, uses Isistius brasiliensis as the final host. This shark has a unique feeding behavior where they attack large animals such as cetaceans, leaving behind a crater- like wound (Ebert et al., 2013). This wound reaches the subcutaneous blubber, and it may enable infection of these sharks (Norman, 1997). On the other hand, Norman (1997) reported Pe. grimaldii, parasitic in the peritoneum of the abdominal cavity, uses predatory sharks such as Ca. carcharias or scavenging sharks such as Galeocerdo cuvier. However, it is highly possible that the final hosts of these merocercoids are not predatory but scavenging sharks. The putrefaction rate of blubbers and peritonea is slower than that of digestive canals where plerocercoids live (Arthur, 1895). Merocercoids may live longer than plerocercoids after the death of the intermediate host. Baylis (1919) noted the survival of Pe. grimaldii to be at least 11 days after the death of their host. Merocercoids may adapt to this life cycle using scavenging sharks as a final host. The life cycle of Scyphophyllidium carcharhinus has also been revealed in this study. A plerocercoid of Sc. carcharhinus was isolated from the intermediate host Coryphaena hippurus (Fig. 64). Adults of Sc. carcharhinus are parasitic in three Carcharhinus sharks: Ca. leucas, Ca. limbatus, and Ca. galapagensis. Because these are carnivorous (Evert et al., 2013), Carcharhinus leucas eats Co. hippurus (Cliff & Dudley, 1991) and it is probable the other two species also eat it. Plerocercoids of Vertebraeovicestus dobukasube parasitize Lycodes nakamurai. Fishes of the genus Lycodes were directly observed in stomach contents of the final host Bathyraja smirnovi in this study. The intermediate and final hosts are benthic. Further, their eggs are serially arranged and connected with each other (Fig. 48D). The eggs may adapt to attach some substrates and may hatch on the sea bottom. The life cycle of this species is likely restricted to the benthic environment (Fig. 65).

- 144 - General discussion

1. Evolution of Phyllobothriidea 総合考察については,5年以内に雑誌等で刊行予定のため,非公開.

The evolution of a parasite is significantly associated with the evolution of its host. In general, phyllobothriidean species have high host specificity, with almost species being oioxenous, and parasitic to a single host species (see Chapter I). Such host specificity may be a powerful driver of speciation in parasites, stimulating their co-speciation (Poulin, 1992; Brooks & McLennan, 1993; Kearn, 1994). According to Fahrenholz’s Rule (Eichler, 1948), parasites and their hosts generally evolve in parallel by co-speciation, which results in their phylogenetic trees being exact mirror images of each other. However, co-speciation is actually rare, with other processes also occurring during the evolution of parasites. The processes that are involved in the evolution of hosts and parasites are summarized in Fig. 66 (Clayton et al., 2003; Page, 2003), among which host switching (i.e., host switching and host range expansion) is a frequent event in the evolution of parasites (Clayton et al., 2003). To clarify the phylogenetic relationships between phyllobothriideans and their final hosts, the phylogenetic tree that was produced in this study was compared with the phylogeny of their host elasmobranchs and chimaeras that was produced by Naylor et al. (2012; see Appendix Figs 7–9) (Fig. 14). The phylogenetic relationships between phyllobothriideans and their hosts were rather weak (Fig. 67), which suggests that co-speciation does not predominate in the diversification of Phyllobothriidea, but rather host switch and host range expansion may play an important role. Some interesting relationships were particularly observed in Pelichnibothrium and Scyphophyllidium. The final hosts of Pelichnibothrium species were sharks belonging to the families Lamnidae and Carcharhinidae. All species except Pe. speciosum were parasitic in lamnids and had diversified. The phylogeny of four of these species corresponded with the phylogeny of the host lamnids, suggesting co-speciation and independent speciation (Figs. 68, 69). By contrast, Pe. speciosum was parasitic in Prionace glauca in family Carcharhinidae (Fig. 68). Pelichnibothrium speciosum was found to be the most derived species in this genus, and may have speciated from Pe. montaukensis as a result of host switch from Lamnidae to Carcharhinidae (Fig. 69). Scyphophyllidium species parasitized varius elasmobranch families as their final hosts, including Alopiidae, Carcharhinidae, Triakidae, and Potamotrygonidae (Fig. 70). More than half of the species in this genus and their ancestral genera

- 145 - Alexandercestus and Thysanocephalum were parasitic in carcharhinids, suggesting 総合考察については,5年以内に雑誌等で刊行予定のため,非公開. that this may be the ancestral condition for the species in this clade. By contrast, eight Scyphophyllidium species were parasitic in the other remotely related elasmobranch families, and so may have undergone several rounds of speciation via host switch. Finally, four Scyphophyllidium species (Sc. insulatum, Sc. ogasawaraensis, Sc. carcharhinus, and Sc. marittimum) were parasitic in multiple host species, lacking strict host specificity (Fig. 70). Thus, it is highly possible that host range expansion led to their speciation (Fig. 66G). Host switching events (i.e., host range expansion followed by host switch) were also observed in the other phyllobothriidean genera. All genera except Chimaerocestos were parasitic in elasmobranchs, while Chimaerocestos was parasitic in chimaeras. In this study, Chimaerocestos was clearly nested in the phyllobothriidean clade (Fig. 67). Chimaerocestos may have speciated from a phyllobothriidean by switching hosts from elasmobranchs to chimaeras. By contrast, host range expansion may have caused the speciation of Calliobothrium creeveyae, Ca. tylotocephalum, Ca. verticillatum, Crossobothrium laciniatum, Orygmatobothrium musteli, Symcallio hayhowi, and Yamaguticestus squali, all of which are parasitic in multiple host species (Table 27). It is also possible that speciation may occur in different host species in the future. Thus, host switching events may play an important role in the diversification of Phyllobothriidea. When parasites diversify by co-speciation and independent speciation, the parasite taxon becomes specific to a monophyletic host taxon. By contrast, host switching events create new parasite-host associations, reducing the level of host specificity and causing the parasite taxon to be parasitic in a range of host taxa. However, host range expansion was often observed between closely related hosts (Table 27) and expansion to more remotely related hosts is expected to be rare due to their different feeding habits (Ebert et al., 2013). Therefore, the new infection of a different final host may be caused by the host feeding on an intermediate host animal. The high host specificity of Phyllobothriidea may also have been created by speciation after host range expansion. It is also possible that phyllobothriidean diversification occurred in the intermediate host. In this study, the intermediate hosts of Pelichnibothrium species were clarified, and four species that were parasitic in cetaceans formed a clade. These four species are parasitic at different infection sites, however: Pe. delphini is parasitic in the subcutaneous blubber, Pe. grimaldii in the peritoneum of the abdominal cavity, and Pe. carcharodoni and Pelichnibothrium sp. in the digestive

- 146 - system (see Chapter I). Therefore, it may be this diversification of infection sites that 総合考察については,5年以内に雑誌等で刊行予定のため,非公開. triggered their speciation in the intermediate host.

2. Morphological diversity of Phyllobothriidea

As outlined above, host switch and host range expansion played a significant role in the diversification of Phyllobothriidea. In addition, these processes may also explain the morphological diversity of Phyllobothriidea. Even closely related species within the same genus tend to show large morphological differences when they parasitize different host taxa. For example, within the genus Scyphophyllidium, many of the species that parasitize Carcharhiniformes have a flat bothridium, whereas the species that parasitize Orectolobiformes and have a marginal loculated bothridium. This latter form may be derived from the flat bothridium of the ancestral species, having changed at the same time as they switched their final host from Carcharhiniformes to Orectolobiformes or Myliobatiformes. By contrast, two species that parasitize Orectolobiformes (i.e., Sc. tyleri and Sc. randyi) are sister species, both of which have similar-shaped marginal loculated bothridia (Fig. 10). Thus, these two species may have evolved by co- speciation, as morphology does not change greatly during co-speciation in closely related hosts. In the genus Pelichnibothrium, Pe. speciosum is thought to be derived from another Pelichnibothrium species as a result of host switch. Adults of Pe. speciosum retain an apical sucker, while the adults of all other species lose this larval characteristic, suggesting that paedomorphosis likely occurred in Pe. speciosum (Fig. 13). A large change in the host taxon by host switch may have caused paedomorphosis in Phyllobothriidea. Host range expansion also causes morphological change even within the same species; for example, the morphology of Yamaguticestus squali is different between individuals that parasitize Carcharhiniformes and Squaliformes (Fig. 10). A hook in the scolex was observed in Phyllobothriidea and its sister orders Onchoproteocephalidea and Tetraphyllidea. The phylogenetic trees that were produced by Caira et al. (2014) and in this study suggest that this hook is an ancestral characteristic, with its loss occurring during the evolution of Onchoproteocephalidea and Phyllobothriidea. The derived, non-hooked onchoproteocephalid species are parasitic in teleosts and may have evolved from the species that parasitize elasmobranchs by host switching (Fig. 9). In Phyllobothriidea,

- 147 - the hook was observed only in Calliobothrium and Symcallio. Thus, the other non- hooked総合考察については,5年以内に雑誌等で刊行予定のため,非公開. genera may also be derived from Calliobothrium or Symcallio, although the exact phylogenetic positions of these two hooked genera were not clear in this study (Figs. 3, 6). Therefore, the morphological diversification processes in Phyllobothriidea will be revealed by the production of a more detailed and robust phylogeny in the future.

- 148 - Conclusion

The primary objective of this study was to revise the taxonomy of Phyllobothriidea genera based on their molecular phylogeny. According to the molecular analyses, Phyllobothriidea is composed of 17 genera, three of which are newly described. Considerable morphological variation was observed in each genus. The form of the bothridium has traditionally been used as the primary characteristic for the classification of phyllobothriidean genera, but this did not reflect the molecular phylogeny. Based on these new systematics, the Phyllobothriidea fauna of the coastal seas of Japan were summarized. Phyllobothriidea from Japan are composed of 41 species belonging to 15 genera, which included 14 new species, and 12 species and five genera new to Japan. This suggests that the phyllobothriidean fauna of the coastal seas of Japan is rich in species diversity. The second objective of this study was to identify plerocercoid larvae using molecular techniques for better understanding of the life cycle of Phyllobothriidea. Seven species of phyllobothriidean plerocercoids were found in teleosts and cephalopods. Four of these were identified as Pelichnibothrium montaukensis, Pe. cf. montaukensis, Scyphophyllidium carcharhinus, and Vertebraeovicestus dobukasube based on lsrDNA and mtDNA COI, and their intermediate host species were found to be Alepisaurus ferox, Todarodes pacificus and Berryteuthis magister, Coryphaena hippurus, and Lycodes nakamurae, respectively. The remaining three species were not identified. These Phyllobothriidea larvae were categorized into three morphological types based on the present observations and information from previous reports. The evolution of Phyllobothriidea has resulted not only from co-speciation, but more importantly also from host switching events. Such events can readily occur between closely related hosts and also results in high host specificity at the genus level. Furthermore, host switching events may have caused the observed morphological diversification, resulting in phyllobothriidean morphology not reflecting their phylogeny.

- 149 - Acknowledgements

I am deeply grateful to Dr. Toshihiko Fujita (National Museum of Nature and Science, Tokyo) for his support and guidance throughout my study. I would like to thank Dr. Fumio Tajima and Dr. Rei Ueshima (the University of Tokyo), Dr. Toshiaki Kuramochi and Dr. Tsuyoshi Hosoya (National Museum of Nature and Science, Tokyo), for reviewing the manuscript. I greatly thank to Dr. Hitomi Hirose, Dr. Toru Taniuchi, Dr. Kiyoshi Yoshihara (Nihon University), Dr. Kazuo Ogawa (Meguro Parasitological Museum) for their supporting throughout my study; to Dr. Nobuhiro Mano, Toshiya Shimizu, Akiko Tsuchiya (Kitamura) (Nihon University) for their insightful comments and suggestions. Many people helped me to collect host specimens: Dr. Tadasu Yamada, Dr. Gento Shinohara, Dr. Kazunori Hasegawa, Dr. Yuko Tajima, Dr. Taiju Kitayama, Dr. Goro Tanifuji, Dr. Satoru Chiba, Dr. Eri Katayama (National Museum of Nature and Science, Tokyo), Dr. Fumihito Tashiro (Kyoto University), Dr. Takahito Kojima, Dr. Noriyuki Takai, Hideaki Takashiro, Genki Obara, Naoki Takamoto, Takashi Tamaru and Keisuke Tanabe, Naoke Tokisaki, Ayaka Hasaka (Nihon University), Ohkawa Toshiyuki, Taniguchi Masao and Saida Hisaki (Kochi Prefecture Fisheries Experiment Station), Dr. Hiromitsu Endo, Naohide Nakayama, Ryo Asaoka, Ryo Misawa (Kochi University), Hiroyuki Irino (Osaka Aquarium KAIYUKAN), Dr. Yuji Ueda (Japan Sea National Fisheries Research Institute), Dr. Kei Sakuma (National Research Institute of Far Seas Fisheries), Dr. Minoru Toda, Dr. Kei Miyamoto (Okinawa Churashima Foundation), Dr. Katsunori Tachihara, Shohei Koizumi (University of the Ryukyus), Dr. Sho Tanaka, Dr. Taku Horie and Asako Mumaguchi (Tokai University), Dr. Masahito Higuchi (Niigata Prefecture Fisheries Experiment Station), and Nobuaki Akao (Tokyo Medical and Dental University). The materials for this study were collected by R/V Soyo-Maru of the Fisheries Research Agency, F/S Chogoro-Maru of Kanaya Fishing Port, F/S Marukin-Maru of Nagai Fishing Port, Tokuami Inc., Akazawa Gyogyou Inc., T/S Suzaki II of the Nihon University, F/S Shojin-Maru of Heda Fishing Port, T/S Tanshu-Maru of the Hyogo Prefectural Kasumi Fishery High School, Kochi Prefectural Fisheries Experimental Station, Mimase Fishing Port, Tosasaga Fishing Port, Iburi Triangular Set Nets Cooperative, Tosashimizu Fisheries Cooperative, Tosashimizu Fisheries Cooperative, Yomitan Fisheries Cooperative, Yaeyama Fisheries Cooperative, Fishing boat Aippara II. I would like to thank the following scientists for their comments to my study

- 150 - and help in collecting samples: Dr. Keiichi Matsuura, Dr. Masanori Nakae, Dr. Takuya Kiyoshi, Dr. Hiromori Komatsu, Dr. Takashi Sato, Dr. Shinpei Ohhashi, Dr. Takuma Haga (National Museum of Nature and Science, Tokyo), Dr. Masaaki Machida, Dr. Jun Araki and Dr. Takashi Iwaki (Meguro Parasitological Museum), Dr. Sho Shirakashi (Kindai University), Dr. Tetsuya Yanagida (Yamaguchi University), Dr. Yuzo Ota (Lake Biwa Museum), Dr. Daisuke Ueno (University of Florida), Dr. Kenta Suda (Okabe Co. Ltd.). Thanks are also due to my colleagues: Dr. Masato Hirose (the University of Tokyo), Dr. Masanori Okanishi (Ibaraki University), Junko Inoue, Mayumi Masuda, Mikihito Arai, Ikumi Tahara, Takato Izumi, Akito Ogawa (the University of Tokyo), Woo Sau Pinn (Hokkaido University), Suguru Ujino (Fukuoka Prefectural Office), Dr. Noko Kuze (National Museum of Nature and Science, Tokyo), Akito Ogawa (Toho University), Dr. Yoshiaki Ishida, Dr. Seiichi Irimura, Hiromi Takeuchi, Tomoko Iida (National Museum of Nature and Science, Tokyo), Rie Tajiri (Waseda University). The authors would like to thank Enago (www.enago.jp) for the English language review. This study is partly supported by the project studies conducted by the National Museum of Nature and Science, ‘‘Integrated research on biodiversity of interspecies relationships’’, ‘‘Research on the Earth’s surface processes and biota in and near the Sea of Japan” and “Biodiversity hot spots in Japan’’.

- 151 - References

Adam, W. (1938). Sur une larve de Cestode de Mesoplodon bidens (Sowerby). Bulletin du Musee Royal d'Histoire Naturelle de Belgique, 14, 1–17.

Agustí, C., Aznar, F. J. & Raga, J. A. (2005a). Tetraphyllidean plerocercoids from Western Mediterranean cetaceans and other marine mammals around the world: A comprehensive morphological analysis. Journal of Parasitology, 91, 83–92.

Agustí, C., Aznar, F. J., Olson, P. D., Littlewood, D. T. J., Kostadinova, A. & Raga J. A. (2005b). Morphological and molecular characterization of tetraphyllidean merocercoids (Platyhelminthes: Cestoda) of striped dolphins (Stenella coeruleoalba) from the Western Mediterranean. Parasitology, 130, 461–474.

Alexander, C. G. (1963). Tetraphyllidean and diphyllidean cestodes of New Zealand selachians. Transactions of the Royal Society of New Zealand, 3, 117–142.

Anantaraman, S. (1963). Larval cestodes in marine invertebrates and fishes with a discussion of the life cycles of the Tetraphyllidea and the Trypanorhyncha. Zeitschrift für Parasitenkunde, 23, 309–314.

Arnold, P. W. (1972). Predation on harbour porpoise, Phocoena phocoena, by a white shark, Carcharodon carcharias. Journal of the Fisheries Research Board of Canada, 29, 1213–1214.

Arthur, L. (1895). Text-book of forensic medicine, and toxicology (volume 1 ed.). Longmans, Green and Company, 416 pp.

Avdeeva, N. V. & Avdeev, V. V. (1980). [Peculiarities of morphogenesis of adhesive organs of some plerocercoids of the collective genus Scolex (Tetraphyllidea) and their identification] (in Russian). Parazitologiya, 14, 242–250.

Aznar, F. J., Agustí, C., Littlewood, D. T. J., Raga, J. A. & Olson, P. D. (2007). Insight into the role of cetaceans in the life cycle of the tetraphyllideans (Platyhelminthes: Cestoda). International Journal for Parasitology, 37, 243–255.

- 152 - Baer, J. G. (1956). Parasitic helminthes collected in West Greenland. Meddelelser om Grønland Udgivne af Kommissionen for Videnskabelige Undersøgelser i Grønland, 124, 1–55.

Baylis, H. A., (1919). A remarkable Cysticercus from a rare dolphin (Cysticercus tcenice grimaldii, Moniez, 1889). Annals and magazine of natural history; Series 9, 3, 417–424.

Baylis, H. A., (1932). A list of worms parasitic in Cetacea. Discovery Reports, 6, 393–418.

Baylis, H. A., (1939). Further records of parasitic worms from British vertebrates. Journal of Natural History, 4, 473–498.

Bernot, J. P., Caira, J. N. & Pickering, M. (2015). The dismantling of Calliobothrium (Cestoda: Tetraphyllidea) with erection of Symcallio n. gen. and description of two new species. The Journal of parasitology, 101, 167–181.

Bikhovskaya-Pavlovskaya, I. E. (1962). Key to parasites of freshwater fish of the U.S.S.R. Jerusalem: Israel Program for Scientific Translations, 776 pp.

Bosc, L. A. G. (1802). Histoire naturelle des Vers, contenant leur description et leurs Moeurs; avec figures dessinées d'après nature. Paris, 324pp.

Bouzid, W., Štefka, J., Hypša, V., Lek, S., Scholz, T., Legal, L., Hassine, O. K. B. & Loot, G. (2008). Geography and host specificity: two forces behind the genetic structure of the freshwater fish parasite Ligula intestinalis (Cestoda: Diphyllobothriidae). International Journal for Parasitology, 38, 1465–1479.

Braun, M. (1894–1900). Vermes. Abteilung I. b. Cestodes. In: Dr. H. G. Bronn’s Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und Bild. Vierter Band. Leipzig, pp. 927–1731.

Brickle, P., Olson, P. D., Littlewood, D. T. J., Bishop, A. & Arkhipkin, A. I. (2001). Parasites of Loligo gahi from Waters off the Falkland Islands, with a phylogenetically based identification of their cestode larvae. Canadian Journal of Zoology, 79, 2289– 2296.

- 153 - Brooks, D. R., & McLennan, D. A. (1993). Parascript: parasites and the language of evolution. Smithsonian Institution Press, Washington, D.C. pp.429.

Brooks, D. R., Hoberg, E. P. & Weekes, P. J. (1991). Preliminary phylogenetic systematic analysis of the major lineages of the Eucestoda (Platyhelminthes: Cercomeria). Proceedings of the Biological Society of Washington, 104, 651– 668.

Butler, S. A. (1987). Taxonomy of some tetraphyllidean cestodes from elasmobranch fishes. Australian Journal of Zoology, 35, 343–71.

Caira, J. N. & Pritchard, M. H. (1986). A review of the genus Pedibothrium Linton, 1909 (Tetraphyllidea: Onchobothriidae) with description of two new species and comments on the related genera Pachybothrium Baer and Euzet, 1962 and Balanobothrium Hornell, 1912. Journal of parasitology, 62–70.

Caira, J. N. & Reyda, F. B. (2005). Eucestoda (true tapeworms). In: Rohde, K. (Ed.), Marine parasitology. CSIRO Publishing, Collingwood, pp. 92–104.

Caira, J. N. & Ruhnke, T. R. (1991). A comparison of scolex morphology between the plerocercoid and the adult of Calliobothrium verticillatum (Tetraphyllidea: Onchobothriidae). Canadian Journal of Zoology, 69, 1484–1488.

Caira, J. N. & Ruhnke, T. R. (1993). Two new tapeworms from the goblin shark Mitsukurina owstoni off Australia. Systematic Parasitology, 26, 81–90.

Caira, J. N. (1990). Metazoan parasites as indicators of elasmobranch biology. In: Pratt, H. L., Gruber, S. H., Taniuchi, T. (Eds), Elasmobranchs as living resources: advances in the biology, ecology, systematics, and the status of the fisheries, NOAA Technical Report NMFS 90, pp. 71–96.

Caira, J. N., Jensen K. & Healy C. J. (1999). On the phylogenetic relationships among tetraphyllidean, lecanicephalidean and diphyllidean tapeworm genera. Systematic Parasitology, 42, 77–151.

- 154 - Caira, J. N., Jensen, K. & Healy, C. J. (2001). Interrelationships among tetraphyllidean and lecanicephalidean cestodes. In: Littlewood, D. T .J. & Bray, R. A. (Eds.), Interrelationships of the Platyhelminthes. Taylor & Francis, London, pp. 135–158.

Caira, J. N., Jensen, K., Waeschenbach, A., Olson P. D. & Littlewood, T. D. J. (2014). Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. International Journal for Parasitology, 44, 55–73.

Caira, J. N., Malek, M. & Ruhnke, T. (2011). A new genus of Phyllobothriidae (Cestoda: Tetraphyllidea) in carcharhiniform sharks from Iran and Australia. Journal of helminthology, 85, 40–50.

Caira, J. N., Mega, J. & Ruhnke, T. R. (2005). An unusual blood sequestering tapeworm (Sanguilevator yearsleyi n. gen., n. sp.) from Borneo with description of Cathetocephalus resendezi n. sp. from Mexico and molecular support for the recognition of the order Cathetocephalidea (Platyhelminthes: Eucestoda). International Journal for Parasitology, 35, 1135–1152.

Caira, J. N., Tracy, R. & Euzet, L. (2004). Five new species of Pedibothrium (Tetraphyllidea: Onchobothriidae) from the tawny nurse shark, Nebrius ferrugineus, in the Pacific Ocean. Journal of Parasitology, 90, 286–300.

Cake Jr., E. W. (1976). A key to larval cestodes of shallow-water, benthic mollusks of the northern Gulf of Mexico. Proceedings of the Helminthological Society of Washington, 43, 160–171.

Cake Jr., E. W. (1977). Larval cestode parasites of edible mollusks of the northeastern Gulf of Mexico. Gulf Research Reports, 6, 1–8.

Canavan, W. P. (1928). A new species of Phyllobothrium van Ben., from an Alaska dog salmon with a note on the occurrence of Crossobothrium angustum Linton, in the Thresher Shark. Journal of Helminthology, 6, 51–55.

Carvajal, J., Barros, C. & Santander, G. (1982). In vitro culture of Rhodobothrium mesodesmatum (Cestoda: Tetraphyllidea), parasite of a chilean clam. Proceedings of the Helminthological Society of Washington, 49, 226–230.

- 155 - Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular biology and evolution, 17, 540– 552.

Chambers, C. B., Cribb, T. H. & Jones, M. K. (2000). Tetraphyllidean metacestodes of teleosts of the Great Barrier Reef, and the use of in vitro cultivation to identify them. Folia Parasitologica, 47, 285–292.

Chervy, L. (2002). The terminology of larval cestodes or metacestodes. Systematic Parasitology, 52, 1–33.

Clayton, D. H., Al-Tamimi, S., & Johnson, K. P. (2003). The ecological basis of coevolutionary history. In: Page, P. D. (Ed), Tangled trees: Phylogeny, cospeciation and coevolution, University of Chicago Press. pp. 310–341.

Cliff, G. & Dudley, S. F. J. (1991). Sharks caught in the protective gill nets off Natal, South Africa. 4. The bull shark Carcharhinus leucas Valenciennes. South African Journal of Marine Science, 10, 253–270.

Cliff, G., Dudley, S. F. J. & Davis, B. (1989). Sharks caught in the protective gill nets off Natal, South Africa. 2. The great white shark Carcharodon carcharias (Linnaeus). South African Journal of Marine Science, 8, 131–144.

Cockcroft, V. G., Cliff, G. & Ross, G. J. B. (1989). Shark predation on Indian Ocean bottlenose dolphins Tursiops truncatus off Natal, South Africa. South African Journal of Zoology, 24, 305–310.

Curtis, W. C. (1911). The life history of the Scolex polymorphus of the Woods Hole region. Journal of Morphology 22, 819–853.

Cutmore, S. T., Bennett M. B. & Cribb T. H. (2009). Paraorygmatobothrium taylori n. sp. (Tetraphyllidea: Phyllobothriidae) from the Australian weasel shark Hemigaleus australiensis White, Last & Compagno (Carcharhiniformes: Hemigaleidae). Systematic Parasitology, 74, 49–58.

- 156 - Dailey, M. D. & Vogelbein, W. (1990). Clistobothrium carcharodoni gen. et sp. n. (Cestoda: Tetraphyllidea) from the spiral valve of the great white shark (Carcharodon carcharias). Journal of the Helminthological Society of Washington, 57, 108–112.

Delyamure, S. L. (1955). Helminth fauna of marine mammals (ecology and phylogeny). Izdatel’stvo Akademii Nauk S.S.S.R., Moscow, Russia, 517 p. [English translation by M. Raveh, 1968. Israel Program for Scientific Translations, Jerusalem, Israel, 552 p.]

Deshmukh, R. A. & Shinde, G. B. (1975). On a new cestode Marsupiobothrium karbarii (Cestoda: Tetraphyllidea) from a marine fish from west coast of India. Journal of Indian Bioscientific Association, 1, 140–143.

Diesing, K. M. (1854). Über eine naturgemässe Vertheilung der Cephalocotyleen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Classe, 13, 556–616.

Diesing, K. M. (1863). Revision der Cephalocotyleen. Abtheilung: Paramecocotyleen. Sitzungsberichten der Akademie der Wissenschaften Wien Mathematische- Naturwissenschaften Klasse. Abtheilung I, 48, 200–345.

Dollfus, R.-P. (1923). Enumération des cestodes du plancton et des invertébrés marins. 2e. Mollusques céphalopodes et crustacés. Annales de Parasitologie Humaine et Comparée, 1, 363–394.

Dollfus, R.-Ph. (1929). Addendum à mon «Enumération des cestodes du plancton et des invertébrés marins». Annales de Parasitologie Humaine et Comparée, 7, 325–347.

Dollfus, R.-Ph., 1964. Énumération des cestodes du plancton et des invertébrés marins (6e contribution). Annales de Parasitologie Humaine et Comparée, 39, 329–379.

Dollfus, R.-Ph., 1974. Énumération des cestodes du plancton et des invertébrés marins. 8e Contribution. Avec un appendice sur le genre Oncomegas R.-Ph. Dollfus 1929. Annales de Parasitologie Humaine et Comparée, 49, 381–410.

- 157 - Ebert, D. A., Fowler, S. L., Compagno, L. J. & Dando, M. (2013). Sharks of the world: a fully illustrated guide. Wild Nature Press, 528 pp.

Eichler, W. (1942). Die Entfaltungsregel und andere Gesetzmäßigkeiten in den parasitogenetischen Beziehungen der Mallophagen und anderer ständiger Parasiten zu ihren Wirten. Zoologischer Anzeiger, 137, 77–83.

Eichler, W. (1948). XLI.–Some rules in Ectoparasitism. Journal of Natural History, 1, 588–598.

Ellis, R. J. & Shackley, S. E. (1995). Notes on porbeagle sharks, Lamna nasus, from the Bristol Channel. Journal of Fish Biology, 46, 368–370.

Euzet, L. (1952). Recherches sur les Cestodes Tétraphyllides. Vie et Milieu, 3, 396–411.

Euzet, L. (1959). Recherches sur les cestodes tétraphyllides des sélaciens des côtes de France. Thèse, University of Montpellier; published by Causse Graille Castelnau, Montpellier, 263 pp.

Euzet, L. (1994). Order Tetraphyllidea Carus, 1863. In: Khalil, L. F., Jones A. & Bray, R. A. (Eds.), Keys to the Cestode Parasites of Vertebrates, CAB International, Wallingford, England, pp. 149–194.

Euzet, L., Swiderski, Z. & Mokhtar-Maamouri, F. (1981). Ultrastructure comparée du spermatozoide des cestodes. Relations avec la phylogenèse. Annales de parasitologie humaine et compare, 56, 247–259.

Fergusson, I. K. (1996). Distribution and autecology of the white shark in the eastern North Atlantic Ocean and the Mediterranean Sea. In: Klimley A. P. & Ainley, D. G. (Eds.), Great white sharks: The biology of Carcharodon carcharias. Academic Press, San Diego, pp. 321–345.

Fergusson, I. K., Compagno, L. J. & Marks, M. A. (2000). Predation by white sharks Carcharodon carcharias (Chondrichthyes: Lamnidae) upon chelonians, with new records from the Mediterranean Sea and a first record of the ocean sunfish Mola mola (Osteichthyes: Molidae) as stomach contents. Environmental Biology of Fishes, 58, 447–453.

- 158 - Francis, M. P., Natanson, L. J., Campana, S. E. (2008). The biology and ecology of the porbeagle shark, Lamna nasus. In: Camhi, M. D., Pikitch, E. K., Babcock, E. A. (Eds), Sharks of the open ocean: Biology, fisheries and conservation. Blackwell Publishing, Oxford, pp. 105–113.

Friedl, F. E. & Simon, J. L. (1970). A tetraphyllidean tapeworm larva from the marine snail Fasciolaria tulipa in Florida. Journal of Parasitology, 56, 400–401.

Fuhrmann, O. (1931). Dritte Klasse des Cladus Plathelminthes: Cestoidea. In: Kükenthal, W. & Krumbach, T. (Eds), Handbuch der Zoologie, Walter de Gruyter & Co., Berlin, pp. 141–416.

Fujita, T. (1922). [On the parasites of Japanese fishes] (in Japanese). Zoological Magazine of Tokyo, 34, 577–584.

Gauld, J. A. (1989). Records of porbeagles landed in Scotland, with observations on the biology, distribution and exploitation of the species. DAFS Scottish Fisheries Research Report, 45, 1–15.

Guiart, J. (1933). Contribution a I'etude des cestodes de calmars avec description d'lme espece nouvelle Diplobothrium pruvoti. Archives de Zoologie Experimentale et Generate, 75, 465–473.

Guiart, J. (1935). Cestodes parasites provenant des campagnes scientifiquesde S. A. S. le Prince Albert ler de Monaco (1886–1913). Résultats des Campagnes Scientifiques accomplies sur son Yacht par Albert Ier Prince Souverain de Monaco publiés sous sa Direction avec le Concours de M. Jules Richard, 91, 1–100.

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology, 59, 307–321.

Hamilton, J. E. (1934). The southern sea lion, Otaria byronia (de Blainville). Discovery Reports, 8, 269–318.

- 159 - Hamilton, K. A. & Byram, J. E. (1974). Tapeworm development: The effects of urea on a larval tetraphyllidean. Journal of Parasitology, 60, 20–28.

Healy, C. J., Caira, J. N., Jensen, K., Webster, B. L. & Littlewood, D. T. J. (2009). Proposal for a new tapeworm order, Rhinebothriidea. International Journal for Parasitology, 39, 497–511.

Hoberg, E. P., Mariaux, J., Justine, J. L., Brooks, D. R. & Weekes, P. J. (1997). Phylogeny of the orders of the Eucestoda (Cercomeromorphae) based on comparative morphology: historical perspectives and a new working hypothesis. Journal of Parasitology, 83, 1128–1147.

Hsü, H. F. (1935). Contributions à L’étude des Cestodes de Chine. Revue Suisse de Zoologie, 42, 477–570.

Hyman, L. H. 1951. The invertebrates: Platyhelminthes and Rhynchocoela. The acoelomate Bilateria. Volume II. McGraw-Hill Book Company, Inc., New York, 550 pp.

Ivanov, V. A. (2009). New species of Crossobothrium (Cestoda: Tetraphyllidea) from the broadnose sevengill shark, Notorynchus cepedianus, in Argentina. Journal of Parasitology, 95, 1479–1488.

Ivanov, V. A., & Brooks D. R. (2002). Calliobothrium spp. (Eucestoda: Tetraphyllidea: Onchobothriidae) in Mustelus schmitti (Chondrichthyes: Carcharhiniformes) from Argentina and Uruguay. Journal of Parasitology, 88, 1200–1213.

Jensen, K. & Bullard, S. A. (2010). Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life-cycles. International Journal for Parasitology, 40, 889–910.

Jereb, P., & Roper, C. F. E. (2010). Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. FAO Species Catalogue for Fishery Purposes 4, 605pp.

Johnston, T. H., & Mawson, P. M. (1939). Internal parasites of the pigmy sperm whale. Records of the south Australian Museum, 6, 263–274.

- 160 - Joyce, W., Campana, S. E., Natanson, L. J., Kohler, N. E., Pratt, H. L. & Jensen, C. F. (2002). Analysis of stomach contents of the porbeagle shark in the Northwest Atlantic Ocean. ICES Journal of Marine Science, 59, 1263–1269.

Joyeux, C. & Baer, J. G. (1936). Les Cestodes. Faunae France, 613 pp.

Joyeux, C. & Baer, J. G. (1961). Classe des cestodes. In: Grasse, P. P. (Ed.), Traite de zoologies, Anatomie-systematique biologie, pp. 347–560.

Katoh, K. & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution, 30, 772–780.

Kearn G. C. (1994). Evolutionary expansion of the Monogenea. International Journal for Parasitology, 24, 1227–1271.

Khalil, L. F., Jones A. & Bray, R. A. (1994). Keys to the Cestode Parasites of Vertebrates, CAB International, Wallingford, England, 768 pp.

Klaptocz, B. (1906). Neue phyllobothriden aus notidanus (Hexanchus) griseus Gm. Arbeiten aus dem Zoologischen Institute der Universität Wien und der Zoologischen Station in Trieste, 16, 325–360.

Kodedová, I., Doležel, D., BrouĀková, M., JirkĪ, M. Hypša, V., Lukeš, J. & Scholz, T. (2000). On the phylogenetic positions of the Caryophyllidea, Pseudophyllidea and Proteocephalidea (Eucestoda) inferred from 18S rRNA. International Journal for Parasitology, 30, 1109–1113.

Kohler N. E. (1987). Aspects of the feeding ecology of the blue shark, Prionace glauca in the western North Atlantic. PhD thesis. University of Rhode Island, USA, 163 pp.

Kubodera, T., Watanabe, H., & Ichii, T. (2007). Feeding habits of the blue shark, Prionace glauca, and salmon shark, Lamna ditropis, in the transition region of the Western North Pacific. Reviews in Fish Biology and Fisheries, 17, 111–124.

- 161 - Kurashima, A., Shimizu, T., Mano, N., Ogawa, K. & Fujita, T. (2014). A new combination and a new species of onchobothriids tapeworm (Cestoda: Tetraphyllidea: Onchobothriidae) from triakid sharks. Systematic Parasitology, 88, 75–83.

Kuris, A. M, Jaramillo, A. G., McLaughlin, J. P., Weinstein, S. B., Garcia-Vedrenne A. E., George, O. P, Pickering M., Steinauer, M. L., Espinoza, M., Ashford, J. E., & Dunn G. L. P. (2015). Monsters of the sea serpent: parasites of an , Regalecus russellii. The Journal of Parasitology, 101, 41–44.

Linton, E. (1889). Notes on Entozoa of marine fishes of New England, with descriptions of several new species. Annual Report of the Commissioner of Fish and Fisheries, 14, 453–511.

Linton, E. (1890). Notes on Entozoa of marine fishes of New England, with descriptions of several new species. Part II. Annual Report of the Commissioner of Fish and Fisheries, 15, 718–899.

Linton, E. (1897a). Notes on Cestode parasites of fishes. Proceedings of the United States National Museum, 20, 423–456.

Linton, E. (1897b). Notes on larval cestode parasites of fishes. Proceedings of the United States National Museum, 19, 787–824.

Linton, E. (1900). Fish parasites collected at Woods Hole in 1898. U. S. Fish Commission Bulletin for 1899, 267–304.

Linton, E. (1901). Parasites offishes of the Woods Hole region. Bulletin of the United States Fish Commission, 19, 405–492.

Linton, E. (1907). Notes on Calyptrobothrium, a cestode genus found in the torpedo. Proceedings of The United States National Museum, 32, 275–284.

Linton, E. (1922). A new cestode from the maneater and mackerel sharks. Proceedings of the United States National Museum, 61, 1–16.

- 162 - Linton, E. (1924). Notes on cestode parasites of sharks and skates. Proceedings of the United States National Museum, 64, 1–114.

Long, D. J. & Jones, R. E. (1996). White shark predation and scavenging on cetaceans in the Eastern North Pacific Ocean. In: Klimley A. P. & Ainley, D. G. (Eds.), Great White Sharks: The Biology of Carcharodon carcharias. Academic Press, San Diego, pp. 293–307.

Lönnberg, E. (1889). Ein neuer Bandwurm (Monorygma chlamydoselachi, n. sp.) aus Chlamydoselachus anguineus, Garman. Archiv for Mathematik og Naturvidenskab, 20, 1–11.

MacCallum, G. A. (1921). Studies in helminthology. Part 1. Trematodes. Part 2. Cestodes. Part 3. Nematodes. Zoopathologica, 1, 135–284.

Maia, A., Queiroz, N., Correia, J. P. & Cabral, H. (2006). Food habits of the shortfin mako, Isurus oxyrinchus, off the southwest coast of Portugal. Environmental Biology of Fishes, 77, 157–167.

Malek, M., Caira J. N. & Haseli M. (2010). Two new species of Paraorygmatobothrium Ruhnke, 1994 (Cestoda: Tetraphyllidea) from the carcharhinid shark Carcharhinus cf. dussumieri (Müller & Henle) in the Persian Gulf. Systematic Parasitology, 76, 59–68.

Margolis, L. & Pike, G. C. (1955). Some helminth parasites of Canadian Pacific whales. Journal of the Fisheries Board of Canada, 12, 97–120.

Mariaux, J. (1998). A molecular phylogeny of the Eucestoda. Journal of Parasitology, 84, 114–124.

Markaida, U. & Sosa-Nishizaki, O. (2010). Food and feeding habits of the blue shark Prionace glauca caught off Ensenada, Baja California, Mexico, with a review on its feeding. Journal of the Marine Biological Association of the United Kingdom, 90, 977–994.

- 163 - McCullough, J. S. & Fairweather. I. (1983). A SEM study of the cestodes Trilocularia acanthiaevulgaris, Phyllobothrium squli and Gilquinia squli from the spiny dogfish. Parasitology Research, 69, 655–665.

Meggitt, F. J. (1924). The cestodes of mammals. London, privately published, 282 pp.

Mete, K. & Euzet, L. (1996). Prionacestus bipartitus n. gen., n. sp. (Cestoda, Tetraphyllidea), un cas de Néoténie. Parasite, 4, 363–366.

Minh, B. Q., Nguyen, M. A. T. & von Haeseler A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188–1195.

Moniez, R. N. (1889). Sur la larve du Taenia grimaldii nov. sp., parasite du Dauphin. Comptes rendus hebdomadaires des séances de l'Académie, 109, 825–827.

Monticelli, F. S. (1889). Notes on some Entozoa in the collection of the British Museum. Proceedings of the Zoological Society of London, 21–22, 321–325.

Monticelli, F. S. (1892). Nota intorno a due forme di cestodi. Bollettino dei Musei di Zoologia ed Anatomia comparata della Regia Universita di Genova, 7, 1–9.

Monticelli, F. S. (1893). Intorno ad alcuni elminti della collezione del Museo Zoologico della Reale Università di Palmero. Naturalista Siciliano, 12, 167– 180, 208–216.

Müller, O. F. 1788. Zoologica Danica Seu Animalium Daniae et Norvegiae Rariorum ac Minus Notorum Descriptiones et Historia. Havniae, 620 pp.

Nakabo, T. (2013). [Fishes of Japan with pictorial keys to the species. Third edition] (in Japanese). Tokai University Press, 2428 pp.

Nasin, C. S., Caira, J. N. & Euzet, L. (1997). Analysis of Calliobothrium (Tetraphyllidea: Onchobothriidae) with descriptions of three new species and erection of a new genus. Journal of Parasitology, 83, 714–733.

- 164 - Naylor, G. J., Caira, J. N., Jensen, K., Rosana, K. A. M., White, W. T., & Last, P. R. (2012). A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bulletin of the American Museum of Natural History, 367, 1–262.

Nguyen, L. T., Schmidt H. A. & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274.

Norman, R.J.de B. (1997). Tetraphyllidean cysticerci in the peritoneal cavity of the common dolphin. Journal of Wildlife Diseases, 33, 891–895.

Obersteiner, W. (1914). Über Eine Neue Cestodenform Bilocularia Hyperapolytica nov. gen. nov. spec., aus Centrophorus granulosus. Arbeiten aus den Zoologischen Zoologischen Instituten der Universität Wien und der Zoologischen Station in Trieste, 20, 109–124.

Oerley, L. (1885). A Czápáknak és Rájáknak Belférgei. Természetrajzi Füzetek az Allat-,Növény-, Asvány- és Földtan Köréböl, Evnegyedes Folyóirat. Kiadja a Magyar Nemzeti Múzeum, 9, 97–126.

Olson, P. D. & Caira, J. N. (1999). Evolution of the major lineages of tapeworms (Platyhelminthes: Cestoidea) inferred from 18S ribosomal DNA and elongation factor-1 alpha. Journal of Parasitology, 85, 1134–1159.

Olson, P. D. & Caira, J. N. (2001). Two new species of Litobothrium Dailey, 1969 (Cestoda: Litobothriidea) from thresher sharks in the Gulf of California, Mexico, with redescriptions of two species in the genus. Systematic Parasitology, 48, 159–177.

Olson, P. D., Littlewood, D. T. J., Bray, R. A. & Mariaux, J. (2001). Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Molecular Phylogenetics and Evolution, 19, 443–467.

Olsson, P. (1867). Entozoa, iakttagna hos Skandinaviska hafsfiskar. I. Platyelminthes. Lunds Universitatis Årsskrift Mathematik och Naturvetenskap, 4, 64 pp.

- 165 - Page, R. D. (2003). Tangled trees: phylogeny, cospeciation, and coevolution. University of Chicago Press. 378 pp.

Palm, H. W. (2004). The Trypanorhyncha Diesing, 1863. PKSPL-IPB Press, Bogor, 710 pp.

Pickering, M. & Caira, J. N. (2012). A new hyperapolytic species, Trilocularia eberti sp. n. (Cestoda: Tetraphyllidea), from Squalus cf. mitsukurii (Squaliformes: Squalidae) off South Africa with comments on its development and fecundity. Folia Parasitologica, 59, 107–114.

Poulin, R. (2002). The evolution of monogenean diversity. International Journal for Parasitology, 32, 245–254.

Randhawa, H. S. & Brickle, P. (2011). Larval parasite gene sequence data reveal cryptic trophic links in life cycles of porbeagle shark tapeworms. Marine Ecology Progress Series, 431, 215–222.

Randhawa, H. S. (2011). Insights using a molecular approach into the life cycle of a tapeworm infecting great white sharks. Journal of Parasitology, 97, 275–280.

Rasband, W. S. (1997–2014). ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/.

Rees, G. (1946). The Anatomy of Phyllobothrium dohrni (Oerley) from Hexanchus griseus (Gmelin). Parasitology, 37, 163–171.

Regan, J. D. (1963). A cestode plerocercoid from the crowned conch. Quarterly Journal of the Florida Academy of Sciences, 26, 184–187.

Robinson, E. S. (1959). Records of cestodes from marine fishes of New Zealand. Transactions of the Royal Society of New Zealand, 86, 143–153.

Ronquist, F. & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

- 166 - Rudolphi, C. A. (1819). Entozoorum synopsis, cui accedunt mantissa duplex et indices locupletissimi. Sumtibus Augusti Rücker, Berolini (Berlin), 811 pp.

Ruhnke, T. R. & Carpenter S. D. (2008). Two new species of Paraorygmatobothrium Ruhnke, 1994 (Tetraphyllidea: Phyllobothriidae) from the smooth-hound Mustelus mustelus (L.) and the gummy shark M. antarcticus Gunther (Carcharhiniformes: Triakidae). Systematic Parasitology, 71, 213–222.

Ruhnke, T. R. & Thompson V. A. (2006). Two new species of Paraorygmatobothrium (Tetraphyllidea: Phyllobothriidae) from the lemon sharks Negaprion brevirostris and Negaprion acutidens (Carcharhiniformes: Carcharhinidae). Comparative Parasitology, 73, 35–41.

Ruhnke, T. R. & Workman, R. E. (2013). Two new species and a new phyllobothriid cestode genus from sharks of the genus Negaprion Whitley (Carcharhiniformes), Systematic Parasitology, 85, 37–48.

Ruhnke, T. R. (1993). A new species of Clistobothrium (Cestoda: Tetraphyllidea), with an evaluation of the systematic status of the genus. Journal of Parasitology, 79, 37–43.

Ruhnke, T. R. (1994). Paraorygmatobothrium barberi n. g., n. sp. (Cestoda: Tetraphyllidea), with amended descriptions of two species transferred to the genus. Systematic Parasitology, 28, 65–79.

Ruhnke, T. R. (1996a). Systematic resolution of Crossobothrium Linton, 1889, and taxonomic information on four species allocated to that genus. Journal of Parasitology, 82, 793–800.

Ruhnke, T. R. (1996b). Taxonomic resolution of Phyllobothrium van Beneden (Cestoda: Tetraphyllidea) and a description of a new species from the leopard shark Triakis semifasciata. Systematic Parasitology, 33, 1–12.

Ruhnke, T. R. (2011). Tapeworms of elasmobranchs (Part III). A monograph on the Phyllobothriidae (Platyhelminthes, Cestoda). Bulletin of the University of Nebraska State Museum, 25, 208 pp.

- 167 - Ruhnke, T. R., Healy C. J. & Shapero S (2006). Two new species of Paraorygmatobothrium (Cestoda: Tetraphyllidea) from weasel sharks (Carcharhiniformes: Hemigaleidae) of Australia and Borneo. Journal of Parasitology, 92, 145–150.

Sano, O. (1960). [The investigation of salmon shark as a predator on salmon in the North Pacific, 1959] (in Japanese). Bulletin of the Hokkaido Regional Fisheries Research Laboratory, 22, 68–82.

Sano, O. (1962). [The investigation of salmon shark as a predator on salmon in the North Pacific, 1960] (in Japanese). Bulletin of the Hokkaido Regional Fisheries Research Laboratory, 24, 148–162.

Schmidt, G. D. 1986. Handbook of tapeworm identification. CRC Press, Boca Raton, Florida, 675 pp.

Scholz, T., Euzet, L. & Moravec, F. (1998). Taxonomic status of Pelichnibothrium speciosum Monticelli, 1889 (Cestoda: Tetraphyllidea), a mysterious parasite of Alepisaurus ferox Lowe (Teleostei: Alepisauridae) and Prionace glauca (L.) (Euselachii: Carcharhinidae). Systematic Parasitology, 41, 1–8.

Shinde, G. B. & Chincholikar, L. N. (1977). Schyphophyllidium arabiansis (Cestoda: Phyllobothriidae Braun, 1900) n. sp. from a marine fish at Ratnagiri, India. Rivista di Parassitologia, 38, 177–180.

Shinde, G. B. & Deshmukh, R. A. (1980). Two new species of Marsupiobothrium Yamaguti, 1952 (Cestoda: Phyllobothriidae) from marine fishes. Current Science, 49, 643–644.

Southwell, T. & Walker, A. J. (1936). Notes on a larval cestode from a fur-seal. Annals of Tropical Medicine and Parasitology, 30, 91–100.

Southwell, T. (1925). A monograph on the Tetraphyllidea with notes on related cestodes. Memoirs of the Liverpool School of Tropical Medicine (New Series), 2, 1–368.

- 168 - Stammer, H. J. (1957). Gedanken zu den parasitophyletischen Regeln und zur Evolution der Parasiten. Zoologischer Anzeiger, 159, 255–267.

Stillwell, C. E. & Kohler, N. E. (1982). Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the Northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences, 39, 407–414.

Strasburg, D. W. (1958). Distribution, abundance, and habits of pelagic sharks in the Central Pacific Ocean. United States Fish and Wildlife Service, 138, 335–361.

Stunkard, H. W. (1977). Studies on tetraphyllidean and tetrarhynchidean metacestodes from squids taken on New-England coast. Biological Bulletin, 153, 387–412.

Tseng, S. (1933). [A study of the cestode parasites of fishes.] (in Chinese). Journal of Science. National University of Shantung, 1, 327–350. van Beneden, P.-J. (1849). Les helminthes cestoïdes, considérés sous le rapport de leurs métamorphoses, de leur composition anatomique et de leur classification, et mention de quelques espèces nouvelles de nos poissons plagiostomes. Bulletins de l’Académie Royale des Sciences, des Lettres et Beaux-Arts de Belgique, 16, 269–282. van Beneden, P.-J. (1850). Recherches sur la faune littorale de Belgique. Les vers cestoides, considérés sous le rapport physiologique, embryogénique et zooclassique. Mémoires de l’Academie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique, 25, 1–199, 201–204 (Supplement). van Beneden, P.-J. (1868). Sur un scolex de cestoïde trouvé chez un Dauphin. Comptes rendus hebdomadaires des séances de l'Académie, 67, 1051–1052.

Vasileva, G. P., Dimitrov, G. I. & Georgiev, B. B. (2002). Phyllobothrium squali Yamaguti, 1952 (Tetraphyllidea, Phyllobothriidae): Redescription and first record in the Black Sea. Systematic Parasitology, 53, 49–59.

Vaske Jr, T., Lessa, R. P. & Gadig, O. B. F. (2009). Feeding habits of the blue shark (Prionace glauca) off the coast of Brazil. Biota Neotropica, 9, 55–60.

- 169 - Vivares, C. P. (1971). Etude des parasites des Crustacés Décapodea Brachyoures: Némertes et larves de Cestodes. Annales de Parasitologie Humaine et Comparée, 46, 1–9.

Waeschenbach, A., Webster, B. L. & Littlewood, D. T. J. (2012). Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Molecular Phylogeneticsa and Evolution, 63, 834–847.

Waeschenbach, A., Webster, B. L., Bray, R. A. & Littlewood, D. T. J. (2007). Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Molecular Phylogenetics and Evolution, 45, 311–325.

Wardle, R. A. & McLeod, J. A. (1952). The Zoology of Tapeworms. Minneapolis: University of Minnesota Press. 780 pp.

Watson, D. E., & Thorson, T. B. (1976). Helminths from elasmobranchs in Central American fresh waters. In: Thorson T. B. (Ed), Investigations of the Ichthyofauna of Nicaraguan Lakes, University of Nebraska-Lincoln, Lincoln, pp. 629–640.

Williams, H. H. & Bray, R. A. (1984). Chimaerocestos prudhoei gen. et sp. nov., representing a new family of tetraphyllideans and the first record of strobilate tapeworms from a holocephalan. Parasitology, 88, 105–116.

Williams, H. H. (1958). Some Phyllobothriidae (Cestoda: Tetraphyllidea) of elasmobranchs from the Western seaboard of the British Isles. Annual Magazine of Natural History, 1, 113–136.

Williams, H. H. (1968). The taxonomy, ecology, and host-specificity of some Phyllobothriidae (Cestoda: Tetraphyllidea), a critical revision of Phyllobothrium Beneden, 1849, and comments on some allied genera. Philosophical Transaetions of the Royal Societv of London. Series B, 58, 231–307.

Woodland, W. N. F. (1927). A revised classification of the tetraphyllidean cestoda, with descriptions of some Phyllobothriidae from Plymouth. Proceedings of the Zoological Society of London. Part 3, 95, 519–548.

- 170 - Yamaguchi, A., Yokoyama, H., Ogawa, K. & Taniuchi, T. (2000). Use of parasites as biological tags for separating stocks of the starspotted dogfish Mustelus manazo in Japan and Taiwan. Fisheries Science, 69, 337–342.

Yamaguti, S. (1934). Studies on the helminth fauna of Japan. Part 4. Cestodes of fishes. Japanese Journal of Zoology, 6, 1–112.

Yamaguti, S. (1952). Studies on the helminth fauna of Japan. Part 49. Cestodes of fishes, II. Acta Medicinae Okayama, 8, 1–76.

Yamaguti, S. (1959). Systema helminthum. volume II. The cestodes of Vertebrates. Interscience Publishers, Inc., New York, 860 pp.

Yamaguti, S. (1960). Studies on the helminth fauna of Japan. Part 56. Cestodes of fishes, III. Publications of the Seto Marine Biological Laboratory, 8, 41–50.

Yatsu, A. (1995). The role of slender tuna, Allothunnus fallai, in the pelagic ecosystems of the South Pacific Ocean. Japanese Journal of . 41, 367– 377.

Yoshida, S. (1917). Some cestodes from Japanese selachians. Including five new species. Parasitology, 9, 560–592.

Zschokke, F. & Heitz, A. (1914). Entoparasiten aus Salmoniden von Kamtschatka. Revue Suisse de Zoologie, 22, 15–256.

Zschokke, F. (1888). Recherches sur la Structure Anatomique et Histologique des Cestodes. Mémoirs de l’Institut National Genevois, 17, 1–396.

- 171 - 7DEOH  )DPLOLHV RI 7HWUDSK\OOLGHD LQ PDMRU WD[RQRPLFDO ZRUNV EHIRUH &DLUD HW DO   &LUFOHV GHQRWH WKDW WKH IDPLO\ ZDV LQFOXGHG LQ 7HWUDSK\OOLGHD LQ HDFK SDSHU 6HUHQGLSLGDH ZDV PRVW UHFHQWO\ D IDPLO\ RI 7HWUDSK\OOLGHD QR FRPSUHKHQVLYH WD[RQRPLFDO ZRUNV RI WHWUDSK\OOLGHDQIDPLOLHVH[LVWVLQFHWKHHVWDEOLVKPHQWRIWKLVIDPLO\ B B B B B B B B B B B B

)DPLO\ -R\HX[ %DHU  6FKPLGW  (X]HW  %UDXQ  0HJJLWW  6RXWKZHOO  )XKUPDQQ  (X]HW  

- 172 - 7DEOH3K\OORERWKULLGHDQVSHFLHVUHSRUWHGLQFRDVWDOVHDVRI-DSDQ 6SHFLHV +RVWVSHFLHV /RFDWLRQ 5HIHUHQFH Phyllobothrium Phyllobothrium lactuca Mustelus manazo +DPDMLPD 0LH3UHI

- 173 Phyllobothrium loculatum Heterodontus zebra (DVW&KLQD6HD

- 174 - 7DEOHFRQWLQXHG 2UGHU )DPLO\ Genus incertae sedis Anindobothrium 0DUTXHV%URRNV /DVVR Anthobothrium YDQ%HQHGHQ Carpobothrium 6KLSOH\ +RUQHOO Caulobothrium %DHU Caulopatera &XWPRUH%HQQHWW &ULEE Ceratobothrium 0RQWLFHOOL Chimaerocestos :LOOLDPV %UD\ Dinobothrium YDQ%HQHGHQ V\QDiplobothrium YDQ%HQHGHQ V\QReesium (X]HW Gastrolecithus

- 175 - 7DEOH6DPSOLQJGDWD6HH)LJIRUSRVLWLRQVRIWKHVWDWLRQV 6WDWLRQ /RFDOLW\ 'HSWK )LVKLQJJHDU 5HPDUNV  RII(ULPR+RNNDLGR3UHIHFWXUH  VHWQHW %RXJKWIURP2QVHQLFKLED,QF  RII2RPD$RPRUL3UHIHFWXUH FDP ORQJOLQH %RXJKWIURP7DPXNDLV\RWHQ,QF  RII6DGR,VODQG1LLJDWD3UHIHFWXUH  VHWQHW &ROOHFWHGE\.DPR6XLVDQ6HW1HWV&RRSHUDWLYH  RII,EDUDNL,EDUDNL3UHIHFWXUH FDP FUDEFDJH &ROOHFWHGXVLQJ596R\R0DUXRIWKH)LVKHULHV5HVHDUFK  2RDUDL,EDUDNL3UHIHFWXUH   $ZKDOHVWUDQGHGRQWKHEHDFK  RII7R\DPD7R\DPD3UHIHFWXUH  VHWQHW 7DSHZRUPVVSHFLPHQVZHUHSURYLGHGE\7RN\R0HGLFDO DQG'HQWDO8QLYHUVLW\  RII.DQD\D&KLED3UHIHFWXUH FD±P JLOOQHW &ROOHFWHGXVLQJ)67\RJRUR0DUXRI.DQD\D)LVKLQJ3RUW  RII0LXUD.DQDJDZD3UHIHFWXUH FD±P JLOOQHW &ROOHFWHGXVLQJ)60DUXNLQ0DUXRI1DJDL)LVKLQJ3RUW  RII&KLJDVDNL.DQDJDZD3UHIHFWXUH FD±P GUDJQHW &ROOHFWHGE\7RNXDPL,QF  RII,]X2RVKLPD,VODQG7RN\R0HWURSROLWDQ FDP ORQJOLQH

- 176  RII$ND]DZD6KL]XRND3UHIHFWXUH FDP VHWQHW &ROOHFWHGE\$ND]DZD*\RJ\RX,QF  RII6KLPRGD6KL]XRND3UHIHFWXUH  DQJOLQJ  RII6KLPRGD6KL]XRND3UHIHFWXUH FDP ORQJOLQH &ROOHFWHGXVLQJ766X]DNL,,RIWKH1LKRQ8QLYHUVLW\  RII7RVKLPD,VODQG7RN\R0HWURSROLWDQ FDP ORQJOLQH &ROOHFWHGXVLQJ766X]DNL,,RIWKH1LKRQ8QLYHUVLW\  RII

- 178 - 7DEOHFRQWLQXHG /HQJWK䚷 PP :HLJKW NJ +RVWVSHFLHV 1 5DQJH 5DQJH &DUFKDUKLQLGDH Carcharhinus albimarginatus   ±   ±  Carcharhinus brevipinna   ±   ±  Carcharhinus dussumieri   ±   ±  Carcharhinus galapagensis   ±   ±  Carcharhinus leucas    Carcharhinus longimanus    Carcharhinus limbatus   ±   ±  Carcharhinus plumbeus   ±   ±  Galeocerdo cuvier   ±   ±  Loxodon macrorhinus   ±   ±  Prionace glauca   ±   ±  Triaenodon obesus   ±   ±  6SK\UQLGDH Sphyrna zygaena   ±   ±  6TXDORPRUSKL &KODP\GRVHODFKLGDH Chlamydoselachus anguineus   ±   ±  +H[DQFKLGDH Heptranchias perlo   ±   ±  Hexanchus griseus    (FKLQRUKLQLGDH Echinorhinus cookei  QRGDWD QRGDWD 'DODWLLGDH Dalatias licha   ±   ±  (WPRSWHULGDH Etmopterus brachyurus   ±   ± J Etmopterus lucifer   ±   ± J Etmopterus molleri   ±   ± J Etmopterus pusillus   ±   ± J Etmopterus unicolor   J &HQWURSKRULGDH Deania calcea   ±   ±  Deania hystricosa   ±   ±  Centrophorus squamosus   ±   ±  Centrophorus tessellatus    Centrophorus VS    Centrophorus VS    6TXDOLGDH Cirrhigaleus barbifer    Squalus acanthias   ±   ±  Squalus brevirostris   ±   ±  Squalus japonicus   ±   ±  Squalus mitsukurii   ±   ± 

- 179 - 7DEOHFRQWLQXHG /HQJWK䚷 PP :HLJKW NJ +RVWVSHFLHV 1 5DQJH 5DQJH 6TXDWLQLGDH Squatina japonica   ±   ±  Squatina nebulosa   ±   ±  3ULVWLRSKRULGDH Pristiophorus japonicus    %DWRLGHD 5K\QFKREDWLGDH Rhynchobatus djiddensis    5KLQREDWLGDH Rhinobatos schlegelii   ±   ±  Rhinobatos hynnicephalus    3ODW\UKLQLGDH Platyrhina tangi   ±   ±  1DUFLQLGDH Narke japonica   ±   ± J 7RUSHGLQLGDH Torpedo tokionis   ±   ±  $UK\QFKREDWLGDH Bathyraja smirnovi   ±   ±  5DMLLGDH Amblyraja badia    Dipterus macrocauda    Okamejei kenojei   ±   ± J Okamejei schmidti   J Raja pulchra   ±   ±  8URORSKLGDH Urolophus aurantiacus   ±   ± J 'DV\DWLGDH Dasyatis akajei   ±   ±  Dasyatis izuensis   ±   ±  Dasyatis matsubarai   ±   ±  Taeniura meyeni    ±   ±  Pleroplatytrygon violacea    *\PQXULGDH Gymnura japonica   ±   ±  0\OLREDWLGDH Myliobatis tobijei   ±   ±  1HRSWHU\JLL $OHSLVDXULGDH Alepisaurus ferox   ±   ±  6DOPRQLGDH Oncorhynchus keta    0DPPDOLD 'HOSKLQLGDH Stenella coeruleoalba    

- 180 - 7DEOH  /LVW RI WKH VSHFLPHQV RI WZR 'DWDVHW IRU PROHFXODU SK\ORJHQLF DQDO\VHV 6\VWHPDWLF SRVLWLRQV DQG VFLHQWLILF QDPHV RI WKH VSHFLPHQV IURP *HQH%DQN IROORZ &DLUD HW DO   7\SH VSHFLHV DUH VKRZQ LQ EROG IDFH 6SHFLPHQV PDUNHG E\ VLQJOH DVWHULVN DUH XQGHVFULEHG VSHFLHV UHSRUWHG E\ &DLUD HW DO   DQG VSHFLPHQV PDUNHG E\ GRXEOH DVWHULVNV DUH XQLGHQWLILHG VSHFLHV 'RXEOH TXRWDWLRQ GHQRWHV VSHFLHV RI XQGHVFULEHG JHQXV UHSRUWHG E\ SUHYLRXV SDSHUV $EEUHYLDWLRQV RI FRXQWU\ QDPHV LQ ORFDOLW\ $86 $XVWUDOLD &$1 &DQDGD &+/ &KLOL '1. 'HQPDUN *%5 8QLWHG .LQJGRP -$3 -DSDQ 1=/ 1HZ =HDODQG 0(; 0H[LFR 0<6 0DOD\VLD 35< 3DUDJXD\ 3(/ 3HUX 528 5RPDQLD 6(1 6HQHJDO 86$86$ $FFHVVLRQ1XPEHU 'DWDVHW 6SHFLPHQV *HQRW\SH +RVWVSHFLHV /RFDOLW\ VVU'1$ OVU'1$   3K\OORERWKULLGHD Phyllobothrium FI lactuca Mustelus mento 3XHUWR0RQWW&+/ .) .) [ [ Phyllobothrium biacetabulatum Rhinobatos schlegelii RII&KLJDVDNL-$3 7KLVVWXG\ 7KLVVWXG\ [ Phyllobothrium delphini Stenella coeruleoalba 0LQDPLVDWVXPD-$3 7KLVVWXG\ 7KLVVWXG\ [ [ Phyllobothrium hoshizame QVS Mustelus manazo RII.DQD\D-$3 7KLVVWXG\ 7KLVVWXG\ [[ Phyllobothrium serratum Triakis scyllium RII6KLPRGD-$3 7KLVVWXG\ 7KLVVWXG\ [ [ - 181 Phyllobothrium squali  Squalus japonicus RII.DQD\D-$3 7KLVVWXG\ 7KLVVWXG\ [  Squalus mitsukurii RII.DQD\D-$3 7KLVVWXG\ 7KLVVWXG\ [ [  Squalus japonicus RII0LPDVH-$3 7KLVVWXG\ 7KLVVWXG\ [  Squalus mitsukurii RII.DQD\D-$3 7KLVVWXG\ 7KLVVWXG\ [  Squalus acanthias 5KRGH,VODQG86$ .) .) [ Calyptrobothrium VS Torpedo nobiliana 5KRGH,VODQG86$ .) .) [ [ Calyptrobothrium VS Torpedo tokionis RII+HGD-$3 7KLVVWXG\ 7KLVVWXG\ [[ Chimaerocestos VS Rhinochimaera pacifica &KDWKDP5LVH1=/ .) .) [ [ Chimaerocestos VS Rhinochimaera pacifica &KDWKDP5LVH1=/ .) .) [ [ Marsupiobothrium gobelinus Mitsukurina owstoni RII.DQD\D-$3 7KLVVWXG\ 7KLVVWXG\ [ [ Marsupiobothrium VS Alopias pelagicus 6DQWD5RVDOLD0(; .) .) [ [ Nandocestus guariticus Paratrygon aiereba 0RXWKRI5LR6KLOYH3(5 .) .) [ [ Orectolobicestus tyleri Chiloscyllium punctatum 0XNDK%RUQHR0<6 .) .) [ [ Orectolobicestus randyi Chiloscyllium hasseltii 0XNDK%RUQHR0<6 .) .) [ [ Orygmatobothrium musteli  Mustelus manazo RII+HGD-$3 7KLVVWXG\ 7KLVVWXG\ [ [  Mustelus griseus RII&KLJDVDNL-$3 7KLVVWXG\ 7KLVVWXG\ [ Orygmatobothrium FI musteli  Mustelus mustelus 6RXPEpGLRXQH6(1 .) .) [ Orygmatobothrium FI musteli  Mustelus mustelus 2XDNDP6(1 .) .) [ [ 7DEOHFRQWLQXHG $FFHVVLRQ1XPEHU 'DWDVHW 6SHFLPHQV *HQRW\SH +RVWVSHFLHV /RFDOLW\ VVU'1$ OVU'1$   Paraorygmatobothrium prionacis Prionace glauca 0RQWDXN1HZ

- 184 Trilocularia gracilis Squalus acanthias 5KRGH,86$ .) .) [ [ Yorkeria hilli Chiloscyllium punctatum &DLUQV$86 .) .) [ Rosebothrium ootenjikuzame QVS Nebrius ferrugineus RII

 WWWWFFFJJWW WWWFFFJW                      DQG LWV UHODWHG VSHFLHV 2QO\ YDULDEOH VLWHV DUH VKRZQ       VVU'1$ OVU'1$    Clistobothrium    

JVLWHV&RPSOHWHO\LGHQWLFDOVHTXHQFHVDUHLQGLFDWHGE\JUD\P    

 FFW JJFDFWFW     Pelichnibothrium JFDJDFDDWDFWWWJJFDFDWJWFDDDFFDWWWDDJF  JJDFFDFJWDJFFDJDDWWDDFJWWWFWJJFJWFDDJF   DFDW ""FFW JFWWFFFJW FFW JJJFWFW """"" JFW JFJ JJFJJJFFJJFDDFWJJD JJFJJJFFJJFDFWD JFJ """"JJWWJJDJWJFFJJWFFWW DDFJWWJJDWJFFJJFWW rinchus rinchus y y lauca keta carcharias carcharias erox f g coeruleoalba coeruleoalba  ox ox        l t t s s Pr. A On I I Ca Ca S S H H \S \S *HQRW *HQRW 6HTXHQFH GDWD RI VVU'1$ DQG OVU'1$ RI hini p eciosum eciosum rimaldii p p g o. 7DEOH  Pe. s Pe. s Pe. caudatum Cl. montaukensis Cl. montaukensis Cl. tumidum Cl. carcharodoni M Ph. del 6SHFLPHQV +RVW DQGQXPEHUVLQGLFDWHVWKHSRVLWLRQV4XHVWLRQPDUNVPHDQPLVVLQ 本表については,5年以内に雑誌等で刊行予定のため,非公開.

- 187 -  W           WHV WKH                      WD WD    FFDW  DFW  W W WJWDDWWFFWWWF FFJJWWJWDJWW    FW WFDWJW WDWW

 J  DW JDFFDDJW DFJF J 

  J   J  W                            

  DFDJD D F  JJJW DW JDDFDW JW DJFW JW FDFD                     

   WWWDWWWDWWFJFFWWWDF   

VVU'1$         

  DFDFFFFWJWD       

  OVU'1$                      

  FDFDJFWDJFFD       DQG LWV UHODWHG VSHFLHV 2QO\ YDULDEOH VLWHV DUH VKRZQ DQG QXPEHUV LQGLFD                              

Crossobothrium      

 DFDW W DW FW JW FFJJFW DFJW FFFDDJW FDW W JFWFDJWWWJWFFD DJDFDW FJW FW W FWFDFW FJFFFW W JDJ WDJWWWFWJWW WDJWWWFWJ W W J JFFW FW JW   DW JJJW DJW   JW   JFJW W J  FDJFW FDW FDW FW   

VVU'1$  OVU'1$                   He. griseus He. griseus He. perlo He. perlo Sq. acanthias  FJDFW W JW W FW WFJ DW DFFWJF JFDW DDFJDJFFJJ WDWD W DJJW DJW WFJJ JDW WDW JJJJFDDJW JFDJJDJDJJW DJF W DJW  FDFJW JJJJFW JFW JW W JDJ D  JJFW W DW JFDJW FJFW JDDW DDJW FFFJFDDFJFDFDFDJJW FFJFJFFJF WFFJDJFWWDJ FFDJDWFWJFWWJW FFDJDWFWJFWWJW DWFFFWJDFWDWFWWFWWDWFJWDWFWJDDJJJDD anulatum anulatum anulatum 6HTXHQFH GDWD RI VVU'1$ DQG OVU'1$ RI p p p dohrni dohrni dohrni racilis racilis racilis FI FI FI g g g 本表については,5年以内に雑誌等で刊行予定のため,非公開. 7DEOH  Cr. laciniatum Cr. cam Cr. dohrni Cr. Tr. 6SHFLPHQV Cr. laciniatum Cr. cam Cr. dohrni Cr. Tr. 6SHFLPHQV Cr. laciniatum Cr. cam Cr. dohrni Cr. Tr. SRVLWLRQV+\SKHQPHDQJDSV 6SHFLPHQV +RVW

- 188 -  F

 J

 WDW EHUV  J  FFDD         

 JJJJFDFW W   

 DFDW DDDDW JW                                  

DQGLWVUHODWHGVSHFLHV2QO\YDULDEOHVLWHVDUHVKRZQDQGQXP          

musteli       

VVU'1$  OVU'1$            OVU'1$       

Orygmatobothrium     WDFWFDFFJFWWWD FFDWWWFFJWFDFWJFW JWFDJFDWWFDDWFJFDJDFJWJWJWDDW WJ   DWJ  W FW JDW W JJJW JDW  W JW JJW FDFDFJJF W W FFFFW W DFW JW FDW FJW JF             Mu. manazo Mu. griseus Mu. mustelus Mu. mustelus JFW FDFFFW DFDFJDW DJJW W FFW DFDJFDDW W FFW W JW FW W  W WWFWJWWWDWWJWFJFJWWJFWJWWJDWJJFJWWDFWJWFF H H H H \S \S \S \S     RVLWLRQV S *HQRW *HQRW *HQRW *HQRW 6HTXHQFHGDWDRIVVU'1$DQGOVU'1$RI musteli musteli musteli musteli FI FI FI FI 本表については,5年以内に雑誌等で刊行予定のため,非公開. LQGLFDWHVWKH 7DEOH Or. musteli Or. musteli Or. Or. 6SHFLPHQV Or. musteli Or. musteli Or. Or. 6SHFLPHQV +RVW

- 189 -     

PDUNHUV 

\   UD    WWWWWDJFJ

J    \  

 JJDDWD JJDDWD     JDWWWWD W W          JJJJ JJ JJJJ JJ JJJJFJJFJ J  J  FFJD  W D JJJJ JJ JJJJ JJ  JJJJ JJ JJJJ JJ XHQFHVDUHLQGLFDWHGE

T        DQGLWVUHODWHGVSHFLHV2QO\YDULDEOHVLWHV     

LGHQWLFDOVH   \  

 DFDJJ ""JW W DFDW W FW W DJDJJDJ    OHWHO

S           DDWJDD FDFDD  WJDD FDFDD   

VLWHV&RP   J Monorygma megacotyla  

      

VVU'1$ OVU'1$ 

squali           OVU'1$             

Phyllobothrium     XHVWLRQPDUNVPHDQPLVVLQ

 WJDD DWFFWFFWJWWJDWWDWDD DW DDFFW   W FFFJ W JDW DWD FDFDW JFJW     D FFW D  DJDFD  W   FFW F JW  W  JDW W   W F FDF JW W W JDW J  JW W J FDF D W J JW DJD J DJJJJFJJ D JW J DJD DJJJJFJJ JW J 4     

RVLWLRQV 

S      Ce. umbratile Sq. japonicus Ce. umbratile Sq. mitsukurii Ga. nipponensis Sq. japonicus Ce. umbratile Sq. mitsukurii Sq. acanthias Ba. smirnovi Da. licha To. tokionis To. nobiliana  WDWWJWFWJFJWFWDDWFDFWDF WDWWFJFWDJWWFJFDWJDDFJFW WFWWWFJFDWJWWFFFWDFWDDWFJWFWW WFWWWFJFDWJWWFFFWDFWDDWDFJWFWW VS VS VS VS *HQRW\SH*HQRW\SH*HQRW\SH JFJJWWFWWFWWWDFFDWFJFWFWJJDW *HQRW\SH DJ "F  WJDD DJWW FWFJJFFDFDWJDWDFDFJJFWDFJWFDDWWJJWDDWFJFWWWFJWDD  *HQRW\SH  *HQRW\SH WWF *HQRW\SH *HQRW\SH rium rium h h *HQRW\SH*HQRW\SH*HQRW\SH*HQRW\SH  """ *HQRW\SH DJ "" DJ WJDD DJWW DJ WJDD  *HQRW\SH  *HQRW\SH  *HQRW\SH WWF *HQRW\SH W *HQRW\SH 6HTXHQFHGDWDRIVVU'1$DQGOVU'1$RI ot ot b b dobukasube dobukasube yptro yptro   l l o. megacotyle o. megacotyle o. megacotyle o. megacotyle o. megacotyle o. megacotyle o. megacotyle o. megacotyle a a i. Hyparapolytica i. Hyparapolytica 6SHFLPHQV +RVW DUHVKRZQDQGQXPEHUVLQGLFDWHVWKH 7DEOH M Ph. squali M Ph. squali M Ph. squali M Ph. squali Ph. squali Ve B Calyptrobothrium C 6SHFLPHQV M Ph. squali M Ph. squali M Ph. squali M Ph. squali Ph. squali Ve B Calyptrobothrium C 本表については,5年以内に雑誌等で刊行予定のため,非公開.

- 190 - 

 FW

 J        

E\JUD\PDUNHUV 

 WWWDDJWJDF                      VVU'1$          DQG LWV UHODWHG VSHFLHV 2QO\ YDULDEOH VLWHV DUH VKRZQ DQG QXPEHUV          

SKHQVKRZHGJDSV&RPSOHWHO\LGHQWLFDOVHTXHQFHVDUHLQGLFDWHG       Paraorygmatobothrium   

 W DDFW W DJJDDJFJFFW FJDW W W FDJW DJJJW JWDFDFWWWDFJJJF W JDJW W FFW JFWDFFWDWDFJJFJF JW FD """FFFFWFWFWFWDFJF DFFFFWFDFJDFJFDWFDF DFFFFWFDFJDFJFDWFDF DFFWWWFJWJFJF DFFJWFJF DFFJWFJF DFFWWJWWJJFF DFFWWJDWDWJFJFJF """FFWWJWWDDWJFJJFFJF DFFFWWWJWWDWJFJFFJWDDF DFFFWWWJWWDDWJFJFFJWDDF DFFFWWWJWWDDWJFJFFJWDDF DFFFWWWJWWDDWJFJFFJWDDF DFDDWWJWWDDJFJFFJWDF DWWFDDDWWJWWDWDJFJFFJDF DWWFDDDWWJWWDWDJFJFFJDF WFFWFFWDWDDFWDDFJFWWFJJWQ FFFFWWDFWFJFWDWJJF DFFFFWFWWDWDFJJFJWWF DFFFFWFWWDWDFJJFJWWF DFDWWJWWDDJFJFFJWDF DFFDFWDFWDFJDJJF DFFFFDWDJWDFJJDFDWFDWJFFWF r e. japanica l. vulpinus l. pelagicus Pr. glauca Pr. glauca A Ga. cuvie Tr. scyllium Ca. plumbeus Ca. galapagensis H Tr. obesus Ca. galapagensis Ca. brevipinna Ca. limbatus Tr. obesus Ca. longimanus Ca. limbatus Ca. leucas Ca. galapagensis Ca. dussumieri Ca. brevipinna Ca. galapagensis Pa. aiereba A Ch. punctatum Ch. hasseltii Sc. macrorhynchus Ga. galeus Ca. leucas                S S S S S S S S S S S S S S S V V V V V V V V V V V V V V V  S V 6HTXHQFH GDWD RI VVU'1$ DQG OVU'1$ RI anteum i irozame g matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium j y i i uum iobothrium p g g yg yg yg yg yg yg yg yg yg yg yg yg yg yg yg p leri uariticus rionacis rionacis aulum y g FI p p p 本表については,5年以内に雑誌等で刊行予定のため,非公開. arsu a. u. lati araor araor araor araor araor araor araor araor araor araor araor araor araor araor araor 6SHFLPHQV +RVW LQGLFDWHVWKHSRVLWLRQV4XHVWLRQPDUNVPHDQPLVVLQJVLWHVK\ 7DEOH  Pa. Pa. Pa. exi Pa. Pa. triacis N M Or. t Or. rand R Sc. Al. oome P P P P P P P P P P P P P P P

- 191 -        JW  JF JWW JWW FJW FJW  JWJF WW WW WW WW W W  FJ

  JWJ JWD   JWJWW

 FWJW FWJW JW

  W    D 

 FFFJJJW D  

  F W W W F  FDDFJWWF F WWWFJ

 DFFW FJ DFFW FJ    

 JJJDDJFWWFJJWWJDFFWJ       

 JW D D D  

         

VVU'1$                              

 WFDWWJDWJFDWJDFWJ    

 JW JFFW DFFDDDDDW FW JDFDJDW FFJW DDW W JDJFFW JW W FJFW W JW DWWFWJWWWJFDJDFW DWWFWJFWDJFFWJ DWWWWJFDJFFWDDWWD DWWFWWWJFDFDFWFDWWJ DWWFWWWJFDFDFWFDWWJ DWWFWWJFJDFWFWWWDFFWWJ DWFWWFWJJFDDWDDJ DWFWWFWJJFDDWDDJ DDFWWJDDFJWDDWW DDFJFWJJDDFW DWFWDFWDDFDFW DWFWDJDJWWF DWFWDDDDW DWFWDDDDW DWFWDDDDW DWWJFWD DWWDFWDDFJ DWWDFWDDFJ QQQQQ DFFWWJDFWJDWFWWWJ DWWFDWWJFDFWDJDWW DWWFDDWWJFDFWDJDWW DWWDFWD DWWWWJFJDDFWFDWWD DFFJWFFJFWWJFDWFWJDWWWWJFFWJJ                S S S S S S S S S S S S S S S V V V V V V V V V V V V V V V  S V FRQWLQXHG anteum i irozame g matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium j y i i uum iobothrium p g g yg yg yg yg yg yg yg yg yg yg yg yg yg yg yg p leri uariticus rionacis rionacis aulum y g FI p p p arsu a. u. lati araor araor araor araor araor araor araor araor araor araor araor araor araor araor araor 6SHFLPHQV 7DEOH Pa. Pa. Pa. exi Pa. Pa. triacis N M Or. t Or. rand R Sc. Al. oome P P P P P P P P P P P P P P P 本表については,5年以内に雑誌等で刊行予定のため,非公開.

- 192 -    

 F  

 F 

 JF JF   WF WWFJFD WJWFJF WWJF WWJDF WWJDF WWJDF WWFJF WWFJF DWFD WDF FF FF WF  WWJF WFJDWFD WJF F    

 """""""""  

 """""""""W """"""""W W """""""""""""J  F  """""""""""" J  F       

 FFDW DDW DDJDJFFDJDDJDDJJDJJ                      

VVU'1$ OVU'1$              

 FFWWJF DJWWFJ"""""""""  

 FFWWJ DWJWFJFJ      

 FDJJJW DW """   JJW JW W FJFDW  W  FJW DDWJWJFDWFWW W FJDDJW JFFDW JJJFDJW J WJWDFWJJJJJWFJ""""""""""" FF WWDJJ JJJDJFJDWDWJ JJJDJFJDWDWJ FF WWWWJWDWFWDW WWDWJFJJ FJFFFJJW WWDWJFJJ FF JDJWJDW  JWJDJDWJJ FFF JDDWFWJWDW FF DJJWJDW FF DJJWJDW FF DJJWJDW FFF DDWFJWDW  DFDWJFDW  DFDWJFDW W WWDJJJWJF  WWDJWFJDJ  WJDJWJFWJJJ  WJDJWJFWJJJ  DWJWDW  WJWWDWFWWJW J                S S S S S S S S S S S S S S S V V V V V V V V V V V V V V V  S V FRQWLQXHG anteum i irozame g matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium j y i i uum iobothrium p g g yg yg yg yg yg yg yg yg yg yg yg yg yg yg yg p leri uariticus rionacis rionacis aulum y g FI p p p arsu a. u. lati araor araor araor araor araor araor araor araor araor araor araor araor araor araor araor 6SHFLPHQV 7DEOH Pa. Pa. Pa. exi Pa. Pa. triacis N M Or. t Or. rand R Sc. Al. oome P P P P P P P P P P P P P P P 本表については,5年以内に雑誌等で刊行予定のため,非公開.

- 193 -            JDWFDFDW  D D D D  D D D D D D D WD JD D D WW WW D WD D WFD WFD  D             

 WWWDJWWFFWDWFDJFWWJFJWJWJF             

OVU'1$                                   

 JDJJW DW JFDW DDDJJDDDJJDJDJJJJW JFJFFDFDJW JDDJW JDJJF DJWDDDJFJFW JFDJFJ FDJDDWDFD FWJDJDWJFWF FWJDJDWJFWF JWDJDFW WJJJWJDJDJ WJJJWJDJDJ FWJJDFJ FJJJDJ DJFJWJDFFJFDJWDJ JWDDWJDFFJFJDDWDDWFFDWFWWJ JWDJDWJWJ JWDJDWJWJ JWDJDWJWJ JWDJWJFDDWWJ FJDDWW FJDDWW JWDFD DJFDJDWJDFWW DFFDWWWJFFDJFW DFFDWWJFFDJFW JWDDDWWJ DJWDDDJFW WDFJJWWJDWFJFDJFF                S S S S S S S S S S S S S S S V V V V V V V V V V V V V V V  S V FRQWLQXHG anteum i irozame g matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium j y i i uum iobothrium p g g yg yg yg yg yg yg yg yg yg yg yg yg yg yg yg p leri uariticus rionacis rionacis aulum y g FI p p p arsu a. u. lati araor araor araor araor araor araor araor araor araor araor araor araor araor araor araor 6SHFLPHQV 7DEOH Pa. Pa. Pa. exi Pa. Pa. triacis N M Or. t Or. rand R Sc. Al. oome P P P P P P P P P P P P P P P 本表については,5年以内に雑誌等で刊行予定のため,非公開.

- 194 -               D JJWWDJWW FDW JJW FJW JJJFFJ  D WD  D D DDWD DDWD D DD DD DWD DD DFWDD DFWDDD DFWDDD DFWDDD WJDFWDD DW DW WD D D WJDFWDD DD                           

OVU'1$                                   

 W JDW JDDW JW JW DDW W FW DW JW DFFW W JFJW JDW DFJFW JW JDW DFDJDJW FW FDDDJFW FW J FDJJDFJJDWFJWWWW FDWJDFJJDJJD FDDJDWJFFDFJJWWWD JDWFFDFJJDWWF JDWFFDFJJDWWF FDJWJDFJJDWJWWW FDWJJFDJJWJJDJF FDWJJFDJJWJJDJF FDJDFJJJJD FDJJDFJJDWJWJW FDJJFFDFFJJJJD FWJWFJDFJJWWJFJW FDJWFJDFDJJWWFJW FDJWFJDFDJJWWFJW FDJWFJDFDJJWWFJW FDJJDFDJJWJFJWD FDJDFJJWJWFW FDJDFJJWJWFW FDDJDJJFDFDWJJDWDJW FDJDWFFDFDJJWDWJWW FDJJJFJDFDJJWJW FDJJJFJDFDJJWJW FDJJDFDJJWJFJWD FDWDFJJDWJWWD FDJFDWFDDJFFDFJJDFJFJWDWFJWDWF                S S S S S S S S S S S S S S S V V V V V V V V V V V V V V V  S V FRQWLQXHG anteum i irozame g matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium j y i i uum iobothrium p g g yg yg yg yg yg yg yg yg yg yg yg yg yg yg yg p leri uariticus rionacis rionacis aulum y g FI p p p arsu a. u. lati araor araor araor araor araor araor araor araor araor araor araor araor araor araor araor 6SHFLPHQV 7DEOH Pa. Pa. Pa. exi Pa. Pa. triacis N M Or. t Or. rand R Sc. Al. oome P P P P P P P P P P P P P P P 本表については,5年以内に雑誌等で刊行予定のため,非公開.

- 195 -               JW FJFW W JFJJW FW F D D D D D JFDDD D  D DWDFW DW D D DF DDFW DDFW  D DWDDFW DWDDFW FFJD FFJD DDFWF DDFW D                         

 DFFJWD OVU'1$              

 FDDJWDWDWWJFDWDFWDFWF                     

 JW FW FDJJDW JJFW JDW W DW W FDJJJDW JWDDJFWDDJWW JFDW W DJJW DFJDW FFWDDJFJDJWW JDJDFFJFDW DFFW W F DFJFDDWJW FDFDJDDJWF FDFDJDDJWF DFJFWDDJJW DJFWDDJW DJFWDDJW DJFDFFJW DFJWJFDWDJ JFDJJW DDJFDJJDDFFDW DDJFDJDDFFDW DDJFDJDDFFDW DDJFDJDDFFDW DWDJFDJDDFFDW DDJFDDJJWWJWW DDJFDDJJWWJWW FDDFDDJDWDDJWW DFJFWDWDDDJFJJW DJFJDJWDJDWJ DJFJDJWDJDWJ DWDJFDJDDFFDWW DDJFDDDJWW DFWJDDWWJFJFF                S S S S S S S S S S S S S S S V V V V V V V V V V V V V V V  S V FRQWLQXHG anteum i irozame g matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium matobothrium j y i i uum iobothrium p g g yg yg yg yg yg yg yg yg yg yg yg yg yg yg yg p leri uariticus rionacis rionacis aulum y g FI p p p arsu a. u. lati araor araor araor araor araor araor araor araor araor araor araor araor araor araor araor 6SHFLPHQV 7DEOH Pa. Pa. Pa. exi Pa. Pa. triacis N M Or. t Or. rand R Sc. Al. oome P P P P P P P P P P P P P P P 本表については,5年以内に雑誌等で刊行予定のため,非公開.

- 196 - 7DEOH  &RPSDULVRQ RI VWDWLVWLFDO LQIHUHQFH DW HDFK RUGHU 2UGHU QDPHV ZHUH XVHG UHYLVHG RUGHUV LQ WKLV VWXG\ 8)%RRW XOWUDIDVW ERRWVWUDS %33 ED\HVLDQ SRVWHULRU SUREDELOLWLHV 6+ D/57 6+OLNH LQWHUSUHWDWLRQ RI D/57 VWDWLVWLF 8)%RRW 䍹 %33 䍹 6+ D/57 䍹 DUH VKRZQLQEROGIDFH+\SKHQVLQGLFDWHEUDQFKHVZKLFKZHUHQRWREVHUYHGLQHDFKDQDO\VLV 6WDWLVWLFDO $QDO\VLV 本表については,5年以内に雑誌等で刊行予定のため,非公開.2UGHUV LQIHUHQFH  8)%RRW       3K\OORERWKULLGHD %33       6+D/57    8)%RRW       7HWUDSK\OOLGHD %33       6+D/57       8)%RRW       2QFKRSURWHRFHSKDOLGHD %33       6+D/57       8)%RRW    5KLQHERWKULLGHD %33    6+D/57    8)%RRW       /HFDQLFHSKDOLGHD %33       6+D/57       8)%RRW    /LWRERWKULLGHD %33    6+D/57   

- 197 - 7DEOH  0RUSKRORJLFDO GLIIHUHQFHV LQ WKH VFROH[ DPRQJ WKH UHYLVHG JHQHUD RI 3K\OORERWKULLGDH 'HJUHH PHDQV WKH GHJUHH RI FUXPSOLQJ IRU WKH FUXPSOH W\SH RI ERWKULGLXP $VWHULVNV PHDQ WKH HJJ PRUSKRORJ\ ZDV REVHUYHG RQO\ IRU D SDUW RI WKH VSHFLHV RI HDFK JHQXV 2OG JHQHUD ZHUH DOVR VKRZQIRUPelichnibothrium DQGScyphophyllidium ZKLFKLQFOXGHGRWKHUV\QRQ\PRXVROGJHQHUD 6FROH[ 5HYLVHGJHQHUD 2OGJHQHUD %RWKULGLXP $FFHVVRU\VXFNHU $SLFDO &HQWUDO 本表については,5年以内に雑誌等で刊行予定のため,非公開.+RRNV 6WUXFWXUH 7\SH 'HJUHH %DVH )RUP )ODSV VXFNHU VXFNHU Phyllobothrium $EVHQW %LILG &UXPSOH 6WULNLQJO\ 6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Vertebraeovicestu $EVHQW &LUFOH &UXPSOH 6OLJKWO\ 6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Yamaguticestus $EVHQW &LUFOH &UXPSOHRU)ODW 6OLJKWO\ 6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Alexandercestus $EVHQW &LUFOH &UXPSOH 6WULNLQJO\ 6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Pelichnibothrium $EVHQW &LUFOH &UXPSOHRU)ODW 6OLJKWO\ 6WDON 5RXQG $EVHQW 3UHVHQW $EVHQW Pelichnibothrium Clistobothrium $EVHQW &LUFOH &UXPSOHRU)ODW 6WULNLQJO\ 6WDON 5RXQG $EVHQW $EVHQW $EVHQW Mitsukuricestus $EVHQW &LUFOH )ODW  6WDON 5RXQG $EVHQW $EVHQW $EVHQW Crossobothrium $EVHQW &LUFOH )ODW  6WDON 5RXQG $EVHQW $EVHQW $EVHQW - 198 Monorygma $EVHQW &LUFOH )ODW  6WDON 7ULDQJXODU $EVHQW $EVHQW $EVHQW Bilocularia $EVHQW &LUFOH )ODW  6HVVLOH 5RXQG /DUJH $EVHQW $EVHQW Calyptrobothrium $EVHQW &LUFOH )ODW  6HVVLOH 5RXQG 6PDOO $EVHQW $EVHQW Orygmatobothriu $EVHQW &LUFOH )ODW  6HVVLOH 5RXQG $EVHQW $EVHQW 3UHVHQW Thysanocephalu $EVHQW &LUFOH )ODW  6HVVLOH 2EORQJ $EVHQW $EVHQW $EVHQW Scyphophyllidium $EVHQW &LUFOH 6DF  6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Marsupiobothrium $EVHQW &LUFOH &XS  6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Nandocestus $EVHQW &LUFOH /RFXODWHPDUJLQ  6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Scyphophyllidium Orectolobicestus $EVHQW &LUFOH /RFXODWHPDUJLQ  6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Paraorygmato- $EVHQW &LUFOH )ODW&XS  6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW bothrium Ruhnkecestus $EVHQW &LUFOH 'LYLGHG  6HVVLOH $EVHQW $EVHQW $EVHQW $EVHQW Chimaerocestos $EVHQW &LUFOH /RFXODWHPDUJLQ  6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Trilocularia $EVHQW &LUFOH 'LYLGHG  6HVVLOH $EVHQW $EVHQW $EVHQW $EVHQW Calliobothrium 3UHVHQW &LUFOH 'LYLGHG  6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW Symcallio 3UHVHQW &LUFOH 'LYLGHG  6HVVLOH 5RXQG $EVHQW $EVHQW $EVHQW 7DEOHFRQWLQXHG 3URJORWWLG (JJ 本表については,5年以内に雑誌等で刊行予定のため,非公開.5HYLVHGJHQHUD 2OGJHQHUD 0HWDVFROH[ /RQJLWXGLQDO 2YDU\ 7\SHV )RUP &RQHFWLRQ PXVFOHEDQGV H[WHQWLRQ Phyllobothrium $EVHQW $EVHQW )ODW &HQWUDO 5RXQGRU  Vertebraeovicestu $EVHQW $EVHQW )ODW &HQWUDO &\OLQGHU &RQQHFWHGRQOLQH Yamaguticestus $EVHQW $EVHQW )ODW &HQWUDO 6HPLVSKHULFDO  Alexandercestus $EVHQW $EVHQW )ODW &HQWUDO QRWREVHUYHG Pelichnibothrium $EVHQW 3UHVHQW )ODW &HQWUDO 5RXQG  Pelichnibothrium Clistobothrium $EVHQW 3UHVHQW )ODW &HQWUDO 5RXQG  Mitsukuricestus $EVHQW $EVHQW )ODW &HQWUDO 6HPLVSKHULFDO  Crossobothrium $EVHQW $EVHQW /DFLQLDWH &HQWUDO 5RXQGRU  Monorygma $EVHQW $EVHQW )ODW &HQWUDO 6HPLVSKHULFDO  - 199 Bilocularia $EVHQW $EVHQW )ODW &HQWUDO 6HPLVSKHULFDO  Calyptrobothrium $EVHQW $EVHQW )ODW &HQWUDO )XVLIRUP  Orygmatobothriu $EVHQW $EVHQW )ODW &HQWUDO 2YDO  Thysanocephalu 3UHVHQW $EVHQW )ODW &HQWUDO )LODPHQW  Scyphophyllidium $EVHQW $EVHQW )ODW 6LGHWRVLGH 6SLQGOHVKDSHG  Marsupiobothrium $EVHQW $EVHQW )ODW 6LGHWRVLGH QRWREVHUYHG 6HPLVSKHULFDO Nandocestus $EVHQW $EVHQW )ODW 6LGHWRVLGH  RU6SLQGOHVKDSHG Scyphophyllidium Orectolobicestus $EVHQW $EVHQW )ODW 6LGHWRVLGH QRWREVHUYHG Paraorygmato- 6SLQGOHVKDSHG $EVHQW $EVHQW )ODW 6LGHWRVLGH  bothrium RU5RXQG Ruhnkecestus $EVHQW $EVHQW )ODW 6LGHWRVLGH QRWREVHUYHG Chimaerocestos $EVHQW $EVHQW /DFLQLDWH &HQWUDO 5RXQG &DSVXOHGPXOWLSOH Trilocularia $EVHQW $EVHQW )ODW &HQWUDO QRWREVHUYHG Calliobothrium $EVHQW $EVHQW /DFLQLDWH 6LGHWRVLGH 5RXQG &DSVXOHGPXOWLSOH Symcallio $EVHQW $EVHQW )ODW 6LGHWRVLGH 5RXQG &DSVXOHGPXOWLSOH 7DEOH  1HZ VSHFLHV DQG QHZ FRPELQDWLRQV LQ WKLV VWXG\ $EEUHYLDWLRQV RI WKH RUGHUV 3K\ 3K\OORERWKULLGHD7HW7HWUDSK\OOLGHD5KL5KLQHERWKULLGHD 6SHFLHVQDPHVLQROGV\VWHPDWLFV 5HYLVHGVSHFLHVQDPHV XVHGLQSK\ORJHQLFDQDO\VHV )LJV± 本表については,5年以内に雑誌等で刊行予定のため,非公開. 2UGHU 6SHFLHV 2UGHU 6SHFLHV 3K\ Phyllobothrium biacetabulatum 5KL Anthocephalum biacetabulatum 3K\ Phyllobothrium delphini 3K\ Pelichnibothrium delphini 3K\ Phyllobothrium squali 3K\ Yamaguticestus megacotyle 7HW Clistobothrium carcharodoni 3K\ Pelichnibothrium carcharodoni 7HW Clistobothrium montaukensis 3K\ Pelichnibothrium montaukensis 7HW Clistobothrium tumidum 3K\ Pelichnibothrium tumidum 3K\ Marsupiobothrium gobelinus 3K\ Mitsukuricestus gobelinus 7HW Monorygma grimaldii 3K\ Pelichnibothrium grimaldii 7HW Monorygma megacotyle 3K\ Yamaguticestus megacotyle 3K\ Nandocestus guariticus 3K\ Scyphophyllidium guariticus 3K\ Orectolobicestus randyi 3K\ Scyphophyllidium randyi 3K\ Orectolobicestus tyleri 3K\ Scyphophyllidium tyleri 3K\ Paraorygmatobothrium exiguum 3K\ Scyphophyllidium exiguum 3K\ Paraorygmatobothrium paulum 3K\ Scyphophyllidium paulum 3K\ Paraorygmatobothrium prionacis 3K\ Scyphophyllidium prionacis 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium insulatum 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium eirakubuka 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium ogasawaraensis 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium hanazame 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium longiproglottius 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium nenuribuka 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium yogore 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium carcharhinus 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium sumitukizame 3K\ Paraorygmatobothrium VS 3K\ Scyphophyllidium maritimum 3K\ Paraorygmatobothrium triacis 3K\ Scyphophyllidium triacis 3K\ Ruhnkecestus latipi 3K\ Scyphophyllidium latipi

- 200 -  

KH                    W DDJDFJFFW JF            

  DFFW JFW FDW W DW DFDW                                          

VVU'1$  OVU'1$

 OVU'1$           

 DDDFW W JDDFFW JDW W W JFDDJJDFJFJFW JDW DW D DFW DW W FJW        DQG LWV UHODWHG VSHFLHV 2QO\ YDULDEOH VLWHV DUH VKRZQ *UD\ PDUNHUV VKRZ W                         

Phyllobothrium         

 WJFJJFWDF FFFWFJFWWWFJWWWFJ FW  JJ DDDFDJD WDWFWDWDFDWDDJDJWJFWWFFDJWDWFWJDJWWJWDFWFWFJFJ          OVU'1$        llium

y    

. lewini   u. manazo u. mento

p   M M Tr. sc S  WFDWWDDFWDDWWJWWWDJDWFDWDFWWJWDWJFWWFDWJDWWJWWFWJDWWDJJDWW J F FW JJJJFW FJJFFDDFJJDJFW JFJW FJDDJFDW FJW JFDJFJDDDW  DJFFW W FJFF JW FD JWDFJFJJFWFWDWJWWJFWDF  W DDJW FW DW W FW F DDJFDW FJW    S S S HQV HQV HQV J J J 6HTXHQFH GDWD RI VVU'1$ DQG OVU'1$ RI lactuca lactuca lactuca FI FI FI OORERWKULLGHD OORERWKULLGHD OORERWKULLGHD \ \ \ 本表については,5年以内に雑誌等で刊行予定のため,非公開. VDPHVHTXHQFH 6HTXHQFH +RVW 7DEOH  Ph. hoshizame Ph. serratum Ph. 3K Ph. hoshizame Ph. serratum Ph. 3K 6HTXHQFH Ph. hoshizame Ph. serratum Ph. 3K 6HTXHQFH

- 201 - 7DEOH  'LIIHUHQFH LQ PHDVXUHPHQWV RI Pe. speciousm EHWZHHQ WZR GLIIHUHQW KRVW VSHFLHV. /HQJWK DQG ZLGWK ZHUH VKRZQ —P XQLW ODUJH PHDVXUHPHQWV ZHUH VKRZQ PP XQLW/OHQJWK0:PD[LXPZLGWK:ZLGWK +RVWAlepisaurus ferox +RVWPrionace glauca 本表については,5年以内に雑誌等で刊行予定のため,非公開.0HDQ 0LQ  0D[ 1 Q 0HDQ 0LQ  0D[ 1 Q :RUP / PP   PP  PP   PP  0:           6FROH[ /           :           6XFNHU /             :             $SLFDO6XFNHU /           :           %RWKULGLD /             :             1HFN :           1R6HJPHQWV           0XVFOH%DQG:LGWK DW$QWHULRU6HJPHQWV           DW3RVWHULRU6HJPHQWV           DW)UHH6HJPHQW     ,PPDWXUH /             6HJPHQW :             0DWXUH6HJPHQW /             :             )UHH6HJPHQW /     :     7HVWHV 1R             DWSRVWSRUDO             /             :             &LUUXV6DF /             :             &LUUXV :        *HQLWDO3RUHV3RVLWLRQ             9DJLQD :             2YDU\ /             :             8WHUXV /             :             *UDYLG8WHOXV /      :      9LWHOOLQH)ROOLFOH /       :       (JJV /       :       %ODGGHU / PP   PP  PP   PP  :          

- 202 - 7DEOH,QWHUVSHFLILFYDULDWLRQVRI Sc. carcharhinus. /OHQJWK0:PD[LXPZLGWK:ZLGWK +RVWCarcharhinus limbatus +RVWCarcharhinus galapagensis +RVWCarcharhinus leucas 本表については,5年以内に雑誌等で刊行予定のため,非公開.0HDQ 0LQ  0D[ 1 Q 0HDQ 0LQ  0D[ 1 Q 0HDQ 0LQ  0D[ 1 Q :RUP / PP   PP  PP     0:           6FROH[ /            :            6XFNHU /                   :                   %RWKULGLD /                  :                   1HFN :            1R6HJPHQWV          

- 203 0DWXUH6HJPHQW /                   :                   7HVWHV 1R                   DWSRVWSRUDO                   /                   :                   &LUUXV6DF /                   :                   &LUUXV :                   *HQLWDO3RUHV3RVLWLRQ                   9DJLQD :                   2YDU\ /                   :                   8WHUXV /                   :                   9LWHOOLQH)ROOLFOHV /                   :                   7DEOH,QWHUVSHFLILFYDULDWLRQVRI Sc. insulaeum. /OHQJWK0:PD[LXPZLGWK:ZLGWK +RVWCarcharhinus galapagensis +RVWCarcharhinus plumbeus 本表については,5年以内に雑誌等で刊行予定のため,非公開.0HDQ 0LQ  0D[ 1 Q 0HDQ 0LQ  0D[ 1 Q :RUP / PP   PP  PP   PP  0:           6FROH[ /           :           6XFNHU /             :             %RWKULGLD /             :             1HFN :           1R6HJPHQWV           0DWXUH6HJPHQW /             :             7HVWHV 1R             DWSRVWSRUDO             /             :             &LUUXV6DF /             :             &LUUXV :             *HQLWDO3RUHV3RVLWLRQ             9DJLQD :             2YDU\ /             :             8WHUXV /             :             9LWHOOLQH)ROOLFOHV /             :            

- 204 - 7DEOH,QWHUVSHFLILFYDULDWLRQVRI Sc.maritimum. /OHQJWK0:PD[LXPZLGWK:ZLGWK +RVWCarcharhinus brevipinna +RVWCarcharhinus galapagensis 本表については,5年以内に雑誌等で刊行予定のため,非公開.0HDQ 0LQ  0D[ 1 Q 0HDQ 0LQ  0D[ 1 Q :RUP / PP   PP  PP   PP  0:           6FROH[ /           :           6XFNHU /             :             %RWKULGLD /             :             1HFN :           1R6HJPHQWV           0DWXUH6HJPHQW /             :             )UHH6HJPHQW /      :      7HVWHV 1R             DWSRVWSRUDO             /             :             &LUUXV6DF /             :             &LUUXV :             *HQLWDO3RUHV3RVLWLRQ             9DJLQD :             2YDU\ /             :             8WHUXV /             :             9LWHOOLQH)ROOLFOHV /             :            

- 205 - 7DEOH,QWHUVSHFLILFYDULDWLRQVRI Sc.ogasawaraensis. /OHQJWK0:PD[LXPZLGWK:ZLGWK +RVWTriaenodon obesus +RVWCarcharhinus galapagensis 本表については,5年以内に雑誌等で刊行予定のため,非公開.0HDQ 0LQ  0D[ 1 Q 0HDQ 0LQ  0D[ 1 Q :RUP / PP   PP  PP   PP  0:           6FROH[ /           :           6XFNHU /             :             %RWKULGLD /             :             1HFN :           1R6HJPHQWV           0DWXUH6HJPHQW /             :             7HVWHV 1R             DWSRVWSRUDO             /             :             &LUUXV6DF /             :             &LUUXV :             *HQLWDO3RUHV3RVLWLRQ             9DJLQD :             2YDU\ /             :             8WHUXV /             :             9LWHOOLQH)ROOLFOHV /             :            

- 206 - 7DEOH,QWHUVSHFLILFYDULDWLRQVRIYa. megacotyla /OHQJWK0:PD[LXPZLGWK:ZLGWK IRUPHU Phyllobothrium squali 本表については,5年以内に雑誌等で刊行予定のため,非公開.+RVWSqualus mitsukurii +RVWSqualus japonicus 0HDQ 0LQ  0D[ 1 Q 0HDQ 0LQ  0D[ 1 Q :RUP / PP   PP  PP   PP  0:           6FROH[ /           :           6XFNHU /             :             6/%/             %RWKULGLD /             :             1HFN :           1R6HJPHQWV           0DWXUH6HJPHQW /             :             *UDYLG6HJPHQW /   :   )UHH6HJPHQW /       :       7HVWHV 1R             DWSRVWSRUDO             /             :             &LUUXV6DF /           :           &LUUXV :             *HQLWDO3RUHV3RVLWLRQ             9DJLQD :             2YDU\ /             :             8WHUXV /             :             9LWHOOLQH)ROOLFOHV /             :             (JJV /       :      

- 207 - 7DEOHFRQWLQXHG IRUPHU Monorygma megacotyla 本表については,5年以内に雑誌等で刊行予定のため,非公開.+RVWCephaloscyllium umbratile +RVWGaleus nipponensis 0HDQ 0LQ  0D[ 1 Q 0HDQ 0LQ  0D[ 1 Q :RUP / PP   PP  0:      6FROH[ /           :           6XFNHU /             :             6/%/             %RWKULGLD /             :             1HFN :           1R6HJPHQWV      0DWXUH6HJPHQW /             :             *UDYLG6HJPHQW /             :             )UHH6HJPHQW /      :      7HVWHV 1R             DWSRVWSRUDO             /             :             &LUUXV6DF /             :             &LUUXV :             *HQLWDO3RUHV3RVLWLRQ             9DJLQD :             2YDU\ /             :             8WHUXV /             :             9LWHOOLQH)ROOLFOHV /             :             (JJV /             :            

- 208 - 7DEOH3K\OORERWKULLGHDQIDXQDLQWKHFRDVWDOVHDVRI-DSDQ6LQJOHDVWHULVNVPHDQVSHFLHVRIQHZWR-DSDQGRXEOHDVWHULVNVPHDQQHZ KRVWUHFRUGV 6SHFLHV +RVW 'LVWULEXWLRQ 5HIHUHQFH 本表については,5年以内に雑誌等で刊行予定のため,非公開.Phyllobothrium Phyllobothrium hoshizame QVS Mustelus manazo QHDU+LURVKLPD+LURVKLPD3UHI

- 209 Alexandercestus Alexandercestus ootenjikuzame QVS Carcharhinus leucas RII

Scyphophyllidium hanazame QVS Carcharhinus brevipinna RII,EXUL.RFKL3UHI 7KLVVWXG\ Scyphophyllidium insulatum QVS Triaenodon obesus RII2JDVDZDUD,VODQGV7RN\R0HW 7KLVVWXG\ Carcharias galapagensis RII2JDVDZDUD,VODQGV7RN\R0HW 7KLVVWXG\ - 212 Scyphophyllidium longiproglottius QVS Carcharhinus limbatus RII

- 213 RII+HGD6KL]XRND3UHI 7KLVVWXG\ Squalus japonicus** RII.DQD\D&KLED3UHI 7KLVVWXG\ RII0LPDVH.RFKL3UHI 7KLVVWXG\ Cephaloscyllium umbratile RII1DJDVDNL1DJDVDNL3UHI

- 214 2PPDVWUHSKLGDH Todarodes pacificus 6W    ±   ±   /DUYD 6HSLROLGDH Rossia pacifica 6W   ±   ±  *DVWURSRGD %XFFLQLQDH Buccinum striatissimum 6W   ±   ±  $UWKURSRGD 0DODFRVWUDFD &UDQJRQLGDH Argis dentata 6W   ±   ±  +LSSRO\WLGDH Lebbeus groenlandicus 6W   ±   ±  &KRUGDWD (ODVPREUDQFKLL $UK\QFKREDWLGDH Bathyraja smirnovi 6W([DPLQHGE\LQYHVWLJDWLRQRI&KDSWHU,  /DUYD 7DEOHFRQWLQXHG 7RWDO/HQJWK䚷 PP :HLJKW J +RVWVSHFLHV 6WDWLRQ 1 Q 6SHFLPHQ,' 0LQ ± 0D[ 0LQ ± 0D[ $FWLQRSWHU\JLL $FDQWKXULGDH Zebrasoma flavescens 6W    $OHSLVDXULGDH Alepisaurus ferox 6W([DPLQHGE\LQYHVWLJDWLRQRI&KDSWHU,  /DUYD $UJHQWLQLGDH Glossanodon semifasciatus 6W   ±   ±  %DOLVWLGDH Sufflamen fraenatum 6W     Xanthichthys mento 6W  QRGDWD QRGDWD %UDPLGDH - 215 Taractichthys steindachneri 6W  QRGDWD  /DUYD &DUDQJLGDH Carangoides orthogrammus 6W   ±   ±  Caranx lugubris 6W   ±   ±  Seriola rivoliana 6W   ±   ±  Trachurus japonicus 6W   ±   /DUYD &RU\SKDHQLGDH Coryphaena hippurus 6W    /DUYD &KDHWRGRQWLGDH daedalma 6W    &\FORSWHULGDH Aptocyclus ventricosus 6W QRGDWD  ±   /DUYD Eumicrotremus asperrimus 6W    ±   ±   /DUYD *DGLGDH Gadus macrocephalus 6W   ±   ±   /DUYD +RORFHQWULGDH sammara 6W    Sargocentron ittodai 6W   ±   ±  7DEOHFRQWLQXHG 7RWDO/HQJWK䚷 PP :HLJKW J +RVWVSHFLHV 6WDWLRQ 1 Q 6SHFLPHQ,' 0LQ ± 0D[ 0LQ ± 0D[ .\SKRVLGDH leonina 6W    Kyphosus pacificus 6W    /DEULGDH Bodianus perditio 6W   ±   ±  Coris aygula 6W    /DUYD Thalassoma lutescens 6W   ±   ±   /DUYD /LSDULGDH Careproctus trachysoma 6W   ±   ±   /DUYD /XWMDQLGDH

- 216 Gnathodentex aureolineatus 6W   ±   ±  euanus 6W   ±   ±  Gymnocranius griseus 6W   ±   ±  Lethrinus rubrioperculatus 6W    ±   ±  Lutjanus kasmira 6W   ±   ±  Lutjanus stellatus 6W    Paracaesio xanthura 6W   ±   ±  Pristipomoides argyrogrammicus 6W    Pristipomoides filamentosus 6W    Pristipomoides zonatus 6W   ±   ±  0RQDFDQWKLGDH Aluterus scriptus 6W    Sufflamen bursa 6W    0XOOLGDH Mulloidichthys vanicolensis 6W   ±   ±  Parupeneus multifasciatus 6W   ±   ±  Parupeneus pleurostigma 6W   ±   ±  7DEOHFRQWLQXHG 7RWDO/HQJWK䚷 PP :HLJKW J +RVWVSHFLHV 6WDWLRQ 1 Q 6SHFLPHQ,' 0LQ ± 0D[ 0LQ ± 0D[ 0XUDHQHVRFLGDH Muraenesox cinereus 6W   QRGDWD 1HPLSWHULGDH nagasakiensis 6W    3OHXURQHFWLGDH Glyptocephalus stelleri 6W  QRGDWD QRGDWD Hippoglossoides dubius 6W   ±   ±   /DUYD Hippoglossoides pinetorum 6W   ±   ±  3RPDFHQWULGDH Abudefduf sexfasciatus 6W     

- 217 3V\FKUROXWLGDH Dasycottus setiger 6W    ±   ±   /DUYD Malacocottus gibber 6W   ±   ±  6DOPRQLGDH Oncorhynchus keta 6W ([DPLQHGE\LQYHVWLJDWLRQRI&KDSWHU,  /DUYD± 6HEDVWLGDH Sebastes owstoni 6W   ±   ±  6HUUDQLGDH Cephalopholis miniata 6W   ±   ±  Cephalopholis urodeta 6W    Epinephelus fasciatus 6W    ±   ±   /DUYD± Epinephelus merra 6W   ±   ±  Epinephelus retouti 6W   ±   ±  Epinephelus tauvina 6W    Variola louti 6W    ±   ±   /DUYD 6FDULGDH Scarus ghobban 6W    7DEOHFRQWLQXHG 7RWDO/HQJWK䚷 PP :HLJKW J +RVWVSHFLHV 6WDWLRQ 1 Q 6SHFLPHQ,' 0LQ ± 0D[ 0LQ ± 0D[ 6FRPEULGDH Scomber australasicus 6W   ±   ±   /DUYD 6LJDQLGDH Siganus fuscescens 6W    6SDULGDH Pagrus major 6W   ±   ±  6SK\UDHQLGDH Sphyraena pinguis 6W   ±   ±  7HWUDRGRQWLGDH

- 218 Lagocephalus lagocephalus 6W   ±   ±  Lagocephalus spadiceus 6W   ±   ±  7ULFKLXULGDH Trichiurus japonicus 6W QRGDWD QRGDWD  /DUYD 7ULFKRGRQWLGDH Arctoscopus japonicus 6W   ±   ±   /DUYD ;LSKLLGDH Xiphias gladius 6W  QRGDWD  /DUYD =RDUFLGDH Bothrocara hollandi 6W   ±   ±  Lycodes nakamurai 6W    ±   ±   /DUYD Lycodes tanakae 6W    ±   ±  Lycodes toyamensis 6W   ±   ±  0DPPDOLD 'HOSKLQLGDH Stenella coeruleoalba 6W([DPLQHGE\LQYHVWLJDWLRQRI&KDSWHU,  /DUYD± 7DEOH  /LVW RI WKH VSHFLPHQV IRU PROHFXODU SK\ORJHQLF DQDO\VHV RI ODUYDH 6SHFLHV QDPHV UHYLVHG LQ WKLV VWXG\ DUH XVHG /DUYDH VSHFLPHQV ZKLFK FROOHFWHG LQ WKLV VWXG\ ZHUH JLYHQ WKH QXPEHU WR GLVWLQJXLVK WKH LQGLYLGXDO /DUYD  VHH 7DEOH   $OSKDEHW VSHFLILF QDPHV RI Scyphophyllidium DUH XQGHVFULEHG VSHFLHV UHSRUWHG E\ -HQVHQ %XOODUG   $EEUHYLDWLRQV RI FRXQWU\ QDPHV LQ WKH ORFDOLW\ $86 $XVWUDOLD *%58QLWHG.LQJGRP-$3-DSDQ1=/1HZ=HDODQG0<60DOD\VLD6(16HQHJDO86$86$ $FFHVVLRQ1XPEHU 'DWDVHW 6SHFLPHQV +RVWVSHFLHV /RFDOLW\ OVU'1$ &2,  $GXOW 3K\OORERWKULLGHD Phyllobothrium FI lactuca Mustelus mento 3XHUWR0RQWW&+/ .)  [ Phyllobothrium hoshizame Mustelus manazo RII.DQD\D-$3 7KLVVWXG\  [ Phyllobothrium serratum Triakis scyllium RII6KLPRGD-$3 7KLVVWXG\  [ Alexandercestus oomejirozame Carcharhinus leucas RII

- 219 Bilocularia hyperapolytica Dalatias licha RII.DQD\D-$3 7KLVVWXG\  [ Calliobothrium FIverticillatum Mustelus canis 2OG/\PH86$ .)  [ Calliobothrium shirozame Mustelus griseus RII6KLPRGD-$3 7KLVVWXG\  [ Calyptrobothrium VS Torpedo nobiliana 5KRGH,VODQG86$ .)  [ Calyptrobothrium VS Torpedo tokionis RII+HGD-$3 7KLVVWXG\  [ Chimaerocestos VS Rhinochimaera pacifica &KDWKDP5LVH1=/ .)  [ Chimaerocestos VS Rhinochimaera pacifica &KDWKDP5LVH1=/ .)  [ Crossobothrium laciniatum Hexanchus griseus 3XHUWR0RQWW&+/ .)  [ Crossobothrium campanulatum Hexanchus griseus RII6DGR,-$3 7KLVVWXG\  [ Crossobothrium dohrnii Heptranchias perlo RII.DQD\D-$3 7KLVVWXG\  [ Crossobothrium FIdohrnii Heptranchias perlo *XOIRI0H[LFR .)  [ Mitsukuricestus gobelinus Mitsukurina owstoni RII.DQD\D-$3 7KLVVWXG\  [ Monorygma chamydoselachi Chlamydoselachus RII.DQD\D-$3 7KLVVUXG\ 7KLVVUXG\ [ [ [ Orygmatobothrium musteli Mustelus manazo RII+HGD-$3 7KLVVWXG\  [ Mustelus griseus RII&KLJDVDNL-$3 7KLVVWXG\  [ Orygmatobothrium FI musteli  Mustelus mustelus 6RXPEpGLRXQH6(1 .)  [ Orygmatobothrium FI musteli  Mustelus mustelus 2XDNDP6(1 .)  [ 7DEOHFRQWLQXHG $FFHVVLRQ1XPEHU 'DWDVHW 6SHFLPHQV+RVWVSHFLHV /RFDOLW\ OVU'1$ &2,  Pelichnibothrium speciosum Prionace glauca RII,EXUL-$3 7KLVVUXG\ 7KLVVUXG\ [ [ [ Prionace glauca RII,EXUL-$3 7KLVVUXG\ 7KLVVUXG\ [ [ Alepisaurus ferox RII7RVKLPD,-$3 7KLVVUXG\ 7KLVVUXG\ [ [ [ Alepisaurus ferox RII7RVKLPD,-$3 7KLVVUXG\ 7KLVVUXG\ [ [ Pelichnibothrium carcharodoni Carcharodon carcharias .DLSDUD+DUERXU1=/ +0  [ [ Carcharodon carcharias RII,EXUL-$3 7KLVVUXG\ 7KLVVUXG\ [ [ [ Carcharodon carcharias RII,EXUL-$3 7KLVVUXG\ 7KLVVUXG\ [ [ Pelichnibothrium montaukensis Isurus oxyrinchus 0RQWDXN1HZ

- 222 Vertebraeovicestus dobukasube Bathyraja smirnovi RII2NL,V-$3 7KLVVWXG\  [ 3K\OORERWKULLGHDJHQVS Sphyrna lewini 6WUDLWVRI)ORULGD86$ .)  [ 7HWUDSK\OOLGHD Anthobothrium caseyi Prionace glauca 0RQWDXN1HZ

- 223 Proteocephalus perplexus Amia calva +D\%D\&$1 .)  [ Triloculatum andersonorum Negaprion acutidens :HLSD$86 .)  [ Uncibilocularis okei Pastinachus atrus 'XQGHH%HDFK$86 .)  [ 2QFKRSURWHRFHSKDOLGHDJHQVS Pristis clavata 'DUZLQ$86 .)  [ &DWKHWRFHSKDOLGHD Cathetocephalus thatcheri Carcharhinus leucas *XOIRI0H[LFR86$ .)  [ 5KLQHERWKULLGHD Anthocephalum biacetabulatum Rhinobatos schlegelii RII&KLJDVDNL-$3 7KLVVWXG\  [ Anthocephalum FIcentrurum Dasyatis centroura 0ERXU6(1 )-  [ Rhinebothrium megacanthophallus Himantura polylepis .LQDEDWDQJDQ5LYHU06< )-  [ Rhodobothrium paucitesticulare Rhinoptera bonasus 'DYLV86$ )-  [ /HFDQLFHSKDOLGHD Adelobothrium FI aetiobatidis Aetobatus ocellatus 'DUZLQ$86 ()  [ Paraberrapex manifestus Squatina californica 6DQWD5RVDOLD0(; .)  [ /LWRERWKULLGHD Litobothrium amplifica Alopias pelagicus 6DQWD5RVDOLD0(; .)  [ Litobothrium nickoli Alopias pelagicus 6DQWD5RVDOLD0(; .)  [ 7DEOHFRQWLQXHG $FFHVVLRQ1XPEHU 'DWDVHW 6SHFLPHQV +RVWVSHFLHV /RFDOLW\ OVU'1$ &2,  3OHURFHUFRLG Pelichnibothrium carcarodoni Grampus griseus 6SDLQ *4  [ [ Stenella coeruleoalba 6SDLQ *4  [ [ Pelichnibothrium caudatum /DUYD Oncorhynchus keta RII(ULPR-$3 7KLVVUXG\ 7KLVVUXG\ [[[ Pelichnibothrium caudatum /DUYD Oncorhynchus keta RII(ULPR-$3 7KLVVUXG\ 7KLVVUXG\ [[ Pelichnibothrium caudatum /DUYD Oncorhynchus keta RII(ULPR-$3 7KLVVUXG\ 7KLVVUXG\ [[ Pelichnibothrium caudatum /DUYD Oncorhynchus keta RII(ULPR-$3 7KLVVUXG\ 7KLVVUXG\ [[ Pelichnibothrium FI montaukensis Doryteuthis gahi )DONODQG,V*%5 $)  [ [ Regalecus glesne 6DQWD&DWDOLQD,86$ .0  [ [ Scyphophylodium VS& Trichiurus lepturus *XOIRI0H[LFR86$ *4  [ Scyphophylodium VS' Lobotes surinamensis *XOIRI0H[LFR86$ *4  [ - 224 Paralichthys lethostigma *XOIRI0H[LFR86$ *4  [ 3OHURFHUFRLG/DUYD Scomber australasicus RII0DL]XUX-$3 7KLVVUXG\  [ 3OHURFHUFRLG /DUYD Variola louti RII2JDVDZDUD,V-$3 7KLVVUXG\  [ 3OHURFHUFRLG /DUYD Trichiurus japonicus RII.XERWVX-$3 7KLVVUXG\  [ 3OHURFHUFRLG /DUYD Trachurus japonicus RII0DL]XUX-$3 7KLVVUXG\  [ 3OHURFHUFRLG /DUYD Coryphaena hippurus RII0DL]XUX-$3 7KLVVUXG\  [ 3OHURFHUFRLG /DUYD Epinephelus fasciatus RII2JDVDZDUD,V-$3 7KLVVUXG\  [ 3OHURFHUFRLG /DUYD Epinephelus fasciatus RII2JDVDZDUD,V-$3 7KLVVUXG\  [ 3OHURFHUFRLG /DUYD Epinephelus fasciatus RII2JDVDZDUD,V-$3 7KLVVUXG\  [ 3OHURFHUFRLG /DUYD Thalassoma lutescens RII2JDVDZDUD,V-$3 7KLVVUXG\ [ 3OHURFHUFRLG /DUYD Coris aygula RII2JDVDZDUD,V-$3 7KLVVUXG\ [ 3OHURFHUFRLG/DUYD Berryteuthis magister RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG /DUYD Berryteuthis magister RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG/DUYD Berryteuthis magister RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG /DUYD Watasenia scintillans RII7R\DPD-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG/DUYD Bathyraja smirnovi RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG/DUYD Bathyraja smirnovi RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [ [ [ 7DEOHFRQWLQXHG $FFHVVLRQ1XPEHU 'DWDVHW 6SHFLPHQV +RVWVSHFLHV /RFDOLW\ OVU'1$ &2,  3OHURFHUFRLG/DUYD Gadus macrocephalus RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG /DUYD Arctoscopus japonicus RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG/DUYD Careproctus trachysomai RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG /DUYD Aptocyclus ventricosus RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG/DUYD Aptocyclus ventricosus RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG /DUYD Eumicrotremus asperrimus RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG/DUYD Hippoglossoides dubius RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG /DUYD Alepisaurus ferox RII7RVKLPD,-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG/DUYD Alepisaurus ferox RII7RVKLPD,-$3 7KLVVUXG\ 7KLVVUXG\ [[[ - 225 3OHURFHUFRLG /DUYD Todarodes pacificus RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG/DUYD Berryteuthis magister RII2NL,V-$3 7KLVVUXG\ 7KLVVUXG\ [[[ 3OHURFHUFRLG /DUYD Xiphias gladius RII2JDVDZDUD,V-$3 7KLVVUXG\ [ 3OHURFHUFRLG/DUYD Xiphias gladius RII2JDVDZDUD,V-$3 7KLVVUXG\ [ 3OHURFHUFRLG /DUYD Taractichthys steindachneri RII2JDVDZDUD,V-$3 7KLVVUXG\ [ 3OHURFHUFRLG/DUYD Taractichthys steindachneri RII2JDVDZDUD,V-$3 7KLVVUXG\ [ 3OHURFHUFRLG /DUYD Lycodes nakamurae RII2NL,V-$3 7KLVVUXG\ [ 3OHURFHUFRLG/DUYD Dasycottus setiger RII2NL,V-$3 7KLVVUXG\ [ 3OHURFHUFRLG /DUYD Coryphaena hippurus RII0DL]XUX-$3 7KLVVUXG\ [ 3OHURFHUFRLG Ariopsis felis *XOIRI0H[LFR86$ *4  [ Cynoscion nebulosus *XOIRI0H[LFR86$ *4  [ Opsanus beta *XOIRI0H[LFR86$ *4  [ Stenella coeruleoalba 6SDLQ '4  [ [ Grampus griseus 6SDLQ '4  [ [ Tursiops truncatus 6SDLQ '4  [ [ 7DEOHFRQWLQXHG $FFHVVLRQ1XPEHU 'DWDVHW 6SHFLPHQV +RVWVSHFLHV /RFDOLW\ OVU'1$ &2,  0HURFHUFRLG Pelichnibothrium delphini - /DUYD Stenella coeruleoalba 0LQDPLVDWVXPD-$3 7KLVVUXG\ 7KLVVUXG\ [[[

- 226 Pelichnibothrium delphini - /DUYD Stenella coeruleoalba 0LQDPLVDWVXPD-$3 7KLVVUXG\ 7KLVVUXG\ [[ Stenella coeruleoalba 6SDLQ $<  [ [ Grampus griseus 6SDLQ '4  [ [ Tursiops truncatus 6SDLQ '4  [ [ Pelichnibothrium grimaldii - /DUYD Stenella coeruleoalba 0LQDPLVDWVXPD-$3 7KLVVUXG\ 7KLVVUXG\ [[[ Pelichnibothrium grimaldii - /DUYD Stenella coeruleoalba 0LQDPLVDWVXPD-$3 7KLVVUXG\ 7KLVVUXG\ [[ Stenella coeruleoalba 6SDLQ $<  [ [ Grampus griseus 6SDLQ '4  [ [ Tursiops truncatus 6SDLQ '4  [ [ 7DEOH  6HTXHQFH GDWD RI OVU'1$ RI SOHURFHUFRLG PHURFHUFRLG DQG DGXOW Pelichnibothrium  2QO\ YDULDEOH VLWHV DUH VKRZQ DQG QXPEHUV LQGLFDWH WKH SRVLWLRQV 4XHVWLRQPDUNVPHDQPLVVLQJVLWHV                             6SHFLPHQV 6WDJH +RVW  Pe.本表については,5年以内に雑誌等で刊行予定のため,非公開. speciosum $GXOW Pr. glauca W J D J WWDDFJ J J WWFWFWJ F J J F J W FDFD Pe. speciosum $GXOW Pr. glauca  Pe. speciosum $GXOW Al. ferox "" Pe. speciosum $GXOW Al. ferox  Pe. caudatum - /DUYD 3OHURFHUFRLG On. keta DFFW Pe. caudatum - /DUYD 3OHURFHUFRLG On. keta DFFW Pe. caudatum - /DUYD 3OHURFHUFRLG On. keta DFFW Pe. caudatum - /DUYD 3OHURFHUFRLG On. keta DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Be. magister DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Be. magister DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Be. magister DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Wa. scintillans DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Ba. smirnovi DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Ba. smirnovi DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Ga. macrocephalus DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Ar. japonicus DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Ca. trachysomai DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Ap. ventricosus DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Ap. ventricosus DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Eu. asperrimus DFFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Hi. dubius DFFW Pe. montaukensis $GXOW Is. oxyrinchus DFWFW Pe. montaukensis $GXOW Is. oxyrinchus DFWFW Pe. montaukensis $GXOW Is. oxyrinchus FWFW Pe. montaukensis $GXOW Is. oxyrinchus FWFW Pe. montaukensis $GXOW Is. oxyrinchus FWFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Al. ferox FWFW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Al. ferox ""FWFW Pe. FImontaukensis $GXOW La. nasus FWDW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG To. Pacificus FWDW 3OHURFHUFRLG/DUYD 3OHURFHUFRLG Be. magister FWDW 3OHURFHUFRLG 3OHURFHUFRLG Do. gahi ""FWDW 3OHURFHUFRLG 3OHURFHUFRLG Re. glesne FWDW Pe. carcharodoni $GXOW Ca. carcharias J FFJ J FDFW Pe. carcharodoni $GXOW Ca. carcharias J FFJ J FDFW Pe. carcharodoni $GXOW Ca. carcharias J FFJ J FDFW 3OHURFHUFRLG 3OHURFHUFRLG St. coeruleoalba ""J FFJ J FDFW 3OHURFHUFRLG 3OHURFHUFRLG Gr. griseus ""J FFJ J FDFW""" Pe. tumidum $GXOW Ca. carcharias J FFJ J FDDFWJ J Pe. tumidum $GXOW Ca. carcharias J FFJ J FDDFWJ J Pe. delphini /DUYD 0HURFHUFRLG St. coeruleoalba J FFJ J WFFWW Pe. delphini /DUYD 0HURFHUFRLG St. coeruleoalba DW J WFFJ J WFFWW Pe. delphini 0HURFHUFRLG St. coeruleoalba ""J FFJ J WDFFWW Pe. delphini 0HURFHUFRLG Gr. griseus ""J FFJ J WUFFWW Pe. delphini 0HURFHUFRLG Tu. truncatus ""J FFJ J WFFWW Pe. grimaldii /DUYD 0HURFHUFRLG St. coeruleoalba J FFJ J FW Pe. grimaldii /DUYD 0HURFHUFRLG St. coeruleoalba J FFJ J FW Pe. grimaldii 0HURFHUFRLG St. coeruleoalba ""J FFJ J FW Pe. grimaldii 0HURFHUFRLG Gr. griseus ""J FFJ J FW Pe. grimaldii 0HURFHUFRLG Tu. truncatus ""J FFJ J FW 3OHURFHUFRLG 3OHURFHUFRLG St. coeruleoalba FFJ J WFDWDFWW 3OHURFHUFRLG 3OHURFHUFRLG Gr. griseus """"FFJ J WFDWDFWW 3OHURFHUFRLG 3OHURFHUFRLG Tu. truncatus ""FFJ J WFDWDFWW - 227 - 7DEOH  /LVW RI SK\OORERWKULLGHDQ VSHFLHV KDYLQJ PXOWLSOH ILQDO KRVW VSHFLHV $EEUHYLDWLRQV RI KRVW RUGHU QDPHV LQ RUGHU &DU &DUFKDULQLGDH (WP (WRPRSWHULGDH +H[ +H[DQFKLGDH 2GR2GRQWDVSLGLGDH7UL7ULDNLGDH6F\6F\OLRUKLQLGDH6TX6TXDOLGDH +RVW 3DUDVLWH 5HIHUHQFH 本表については,5年以内に雑誌等で刊行予定のため,非公開.2UGHU 6SHFLHV Calliobothrium creeveyae 7UL Galeorhinus galeus %XWOHU  7UL Mustelus manazo

- 228 - N 45° N 42°30’ N 40° N 37°30’ N 35°N 32°30’ N 30° N 27°30’ N 25° N 22°30’ N 35°15’ N 35° N 34°45’ N 34°30’ s denote the E 147°30’ E 140° E 140° Pacific Ocean 7 Ogasawara Is. tion on each station. 1 E 142°30’ 8 Tokyo Bay 4 30, 31 5 Izu-Ooshima I. E 140° E 145° E 150° 2 E 139°30’ E 139°45’ E 140°15’ E 139°30’ E 139°45’ E 140°15’ 3 9 6 Toshima I. Sado I. 10 E 137°30’ E 137°30’ 18 Sagami Bay 19 14 E 135° E 142°30’ E 147°30’ E 152°30’ E 135° - 229 - 11 21,22 24,25 E 139° 12,13 E 139° Sea of Japan 23 E 132°30’ E 140° E 145° E 150° E 155° E 155° 20 26 E 132°30’ Oki Is. E 130° 27 E 130° 16 E 127°30’ Okinawa I. E 125° 15 28 17 E 127°30’ Suruga Bay E 122°30’ Yaeyama Is. E 125° 29 E 120° East China Sea E 138°15’ E 138°15’ E 117°30’ E 122°30’ Sampling locality. Circles show sampling locality, and number E 115° E 138° E 138°30’ E 138°45’ E 139°15’ E 138° E 138°30’ E 138°45’ E 139°15’ E 120°

N 45° N 42°30’ N 40° N 37°30’ N 35°N 32°30’ N 30° N 27°30’ N 25° N 22°30’ N 35°15’ N 35° N 34°45’ N 34°30’ Fig. 1 station number in Table 4. See Table 4 for the detailed informa Scolex C 本図については,5年以内に雑誌等で刊行予定のため,非公開.A Neck Central sucker

Apical sucker B

Proglottid

Accessory sucker Bothrium

Stalk D Longitudinal muscle band

E Vas deferens Genital pore Vagina Vitelline follicle F Testis Cirrus sac

Uterus

Ovary

Fig. 2 Morphological terminology of Phyllobothriidea. A, Whole worm (Scyphophyllidium brevipinnacis), B, Scolex (Pelichnibothrium speciosum), C, Scolex (Orygmatobothrium musteli), D, Scolex (Mitsukuricestus gobelinus), E, Mature proglottid (Sc. brevipinnacis), F, Free proglottid (Pe. speciosum).

- 230 - 100/1.00 Litobothrium nickoli (Host: Al. pelagicus) Litobothriidea Litobothrium amplifica (Host: Al. pelagicus) OUTGROUP 100/1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea 本図については,5年以内に雑誌等で刊行予定のため,非公開.96/1.00 Phyllobothrium biacetabulatum (Host: Rh. schlegelii) 100/1.00 Anthocephalum cf. centrurum (Host: Da. centroura) Rhinebothriidea 100/1.00 Rhinebothrium megacanthophallus (Host: Hi. polylepis) Rhodobothrium paucitesticulare (Host: Rh. bonasus) Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 100/1.00 Tetrabothrius erostris (Host: La. argentatus) Tetrabothriidae 100/0.99 Hymenolepis diminuta (Host: Ra. norvegicus) Cyclophyllidea 100/1.00 Nippotaenia chaenogobii (Host: Ch. urotaenia) Nippoteaniidea 100/1.00 Acanthobothrium santarosaliense (Host: He. mexicanus) (Host: Ur. maculatus) 100/0.83 100/1.00 Acanthobothrium parviuncinatum (Host: Pa. atrus) 69/- Uncibilocularis okei 63/0.68 100/1.00 Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) 100/0.82 Proteocephalus macrocephalus (Host: An. anguilla) 100/1.00 81/0.71 100/1.00 100/1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) Onchoproteocephalidea Proteocephalus perplexus (Host: Am. calva ) (Host: Ne. acutidens) 100/1.00 100/1.00 Platybothrium jondoeorum Platybothrium auriculatum (Host: Pr. glauca) 89/60 100/1.00 Prosobothrium armigerum (Host: Pr. glauca) Phoreiobothrium lewinense (Host: Sp. lewini) 83/0.99 Triloculatum andersonorum (Host: Ne. acutidens) Megalonchos shawae (Host: He. elongata) 100/1.00 Anthobothrium caseyi (Host: Pr. glauca) 100/1.00 Anthobothrium caseyi (Host: Pr. glauca) Anthobothrium sp. (Host: Ca. tilstoni) 69/0.70 100/1.00 100/1.00 Anthobothrium sp. 1 (Host: Ca. brevipinna) 100/1.00 Anthobothrium sp. 4(Host: Ca. longimanus) 100/1.00 Anthobothrium sp. 2 (Host: Ca. brevipinna) Anthobothrium sp. 3 (Host: Ca. dussumieri) Tetraphyllidea 94/0.97 100/1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) Ceratobothrium sp. (Host: Ca. carcharias) 92/- Yorkeria hilli (Host: Ch. punctatum) 87/- 100/1.00 Balanobothrium sp.(Host: St. fasciatum) 99/0.90 Pachybothrium hutsoni (Host: Ne. ferrugineus) 100/1.00 Pedibothrium mounseyi (Host: Ne. ferrugineus) 100/1.00 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus)

100/1.00 Monorygma chamydoselachi (Host: Ch. anguineus) Marsupiobothrium gobelinus (Host: Mi. owstoni) 100/1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 67/- Callibothrium shirozame (Host: Mu. griseus) 100/1.00 Symcallio violae (Host: Mu. canis) 72/0.60 Trilocularia gracilis (Host: Sq. acanthias) 100/1.00 Crossobothrium laciniatum (Host: He. griseus) 100/1.00 Crossobothrium campanulatum (Host: He. griseus) 95/0.74 Crossobothrium dohrni (Host: He. perlo) 100/1.00 Crossobothrium cf. dohrni (Host: He. perlo) 100/1.00 Pelichnibothrium speciosum (Host: Al. ferox) C 99/1.00 99/1.00 Pelichnibothrium speciosum (Host: Pr. glauca) 87/0.56 Pelichnibothrium caudatum (Host: On. keta) Clistobothrium montaukensis Genotype 1 (Host: Is. oxyrinchus) 37/- 88/0.63 Clistobothrium montaukensis Genotype 2 (Host: Is. oxyrinchus) Clistobothrium carcharodoni (Host: Ca. carcharias) B

100/1.00 Clistobothrium tumidum (Host: Ca. carcharias) 100/1.00 Phyllobothrium delphini (Host: St. coeruleoalba) Monorygma grimaldii (Host: St. coeruleoalba)

95/1.00 Phyllobothriidea gen. sp. (Host: Sp. lewini) 100/1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) A 100/0.98 Phyllobothrium hoshizame (Host: Mu. manazo) 34/- 100/1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos sp. 2 (Host: Rh. pacifica) 41/0.64 Bilocularia hyperapolytica (Host: Da. licha) 100/1.00 (Host: To. nobiliana) 62/- Calyptrobothrium sp. 100/1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) (Host: Ba. smirnovi) 100/1.00 Vertebraeovicestus dobukasube n. gen. n. sp. Phyllobothriium squali Genotype 1 (Host: Sq. japonicus) 99/1.00 Monorygma megacotyla Genotype 1 (Host: Ce. umbratile) 90/0.56 100/1.00 Phyllobothriium squali Genotype 2 (Host: Sq. mitsukurii) Monorygma megacotyla Genotype 2 (Host: Ce. umbratile) 94/0.98 Phyllobothriium squali Genotype 3 (Host: Sq. japonicus) 100/1.00 99/1.00 Monorygma megacotyla Genotype 3 (Host: Ga. nipponensis) Phyllobothriium squali Genotype 5 (Host: Sq. acanthias) 100/1.00 Phyllobothriium squali Genotype 4 (Host: Sq. mitsukurii) Phyllobothriidea 100/1.00 Monorygma megacotyla Genotype 4 (Host: Ce. umbratile) Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) 100/1.00 Orygmatobothrium musteli Genotype 1 (Host: Mu. manazo) 100/1.00 Orygmatobothrium musteli Genotype 2 (Host: Mu. griseus) Orygmatobothrium cf. musteli 1 (Host: Mu. mustelus) 88/0.55 100/1.00 Thysanocephalum thysanocephalum (Host: Ga. cuvier) D Thysanocephalum crispum (Host: Ga. cuvier) Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 100/1.00 100/1.00 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) 98/1.00 Paraorygmatobothrium sp. 1 (Host: Ca. galapagensis) 100/1.00 Marsupiobothrium sp. (Host: Al. pelagicus) 100/1.00 Paraorygmatobothrium triacis (Host: Tr. scyllium) 54/- Nandocestus guariticus (Host: Pa. aiereba) 100/1.00 Orectolobicestus tyleri (Host: Ch. punctatum) 61/0.78 Orectolobicestus randyi (Host: Ch. hasseltii) 100/1.00 Paraorygmatobothrium sp. 2 (Host: He. japanica) 89/0.97 Paraorygmatobothrium exiguum (Host: Al. vulpinus) 96/0.94 Scyphophyllidium cf. giganteum (Host: Ga. galeus) 99/- Paraorygmatobothrium prionacis (Host: Pr. glauca) 100/1.00 Paraorygmatobothrium prionacis (Host: Pr. glauca) E 39/- Paraorygmatobothrium paulum (Host: Ga. cuvier) 100/1.00 Paraorygmatobothrium sp. 3 (Host: Tr. obesus) 79/1.00 Paraorygmatobothrium sp. 3 (Host: Ca. galapagensis) 100/1.00 Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 90/1.00 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 95/0.86 Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) 100/1.00 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) 97/1.00 Paraorygmatobothrium sp. 8 (Host: Ca. galapagensis) 100/1.00 Paraorygmatobothrium sp. 8 (Host: Ca. leucas) 99/0.68 100/1.00 Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) 100/1.00 ML/BI Ruhnkecestus latipi (Host: Sc. macrorhynchus) 100/1.00 Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) 0.02 substitutions per site 100/1.00 Paraorygmatobothrium sp. 10 (Host: Ca. galapagensis) Fig. 3 Maximum likelihood tree by Analysis 1 (Dataset 1, ssrDNA and lsrDNA). UFBootstrap and BPP are shown at each branch, and hyphens indicate branches which were not observed in the bayesian tree. Red arrowhead shows the node of the clade of revised order supported by SH aLRT • VHH7DEOH . Current scientific names are used and some of them were revised in this study (see Table 15). Sequences obtained in this study are shown in black color, and those collected from GenBank are in gray color. Open and solid circles near species names indicate the current order sensu Caira HWDO  3K\OORERWKULLGHDDQG7HWUDSK\OOLGHDUHVSHFWLYHO\2SHQER[HVLQGLFDWHWKH revised orders in this study (see Section 3.3). Polyphyletic genera are shown by dotted lines: A, Phyllobothrium; B, Clistobothrium; C, Monorygma; D, Marsupiobothrium; E, Paraorygmatobothrium. - 231 - 100/1.00 Litobothrium nickoli (Host: Al. pelagicus) Litobothriidea Litobothrium amplifica (Host: Al. pelagicus) OUTGROUP 100/1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea 本図については,5年以内に雑誌等で刊行予定のため,非公開.100/1.00 Phyllobothrium biacetabulatum (Host: Rh. schlegelii) 100/1.00 Anthocephalum cf. centrurum (Host: Da. centroura) (Host: Hi. polylepis) Rhinebothriidea 74/0.78 100/1.00 Rhinebothrium megacanthophallus Rhodobothrium paucitesticulare (Host: Rh. bonasus) Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 100/1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 100/1.00 100/1.00 Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) Marsupiobothrium gobelinus (Host: Mi. owstoni) 64/- Monorygma chamydoselachi (Host: Ch. anguineus) (Host: Sq. acanthias) 68/0.93 99/ Trilocularia gracilis 81/0.98 0.77 Crossobothrium laciniatum (Host: He. griseus) 52/- Crossobothrium campanulatum (Host: He. griseus) 100/1.00 66/0.71 Crossobothrium dohrni (Host: He. perlo) 100/1.00 Crossobothrium cf. dohrni (Host: He. perlo) 98/1.00 Pelichnibothrium speciosum (Host: Al. ferox) Pelichnibothrium speciosum (Host: Pr. glauca) 100/0.99 Pelichnibothrium caudatum (Host: On. keta) 99/0.93 Clistobothrium montaukensis Haplotype 1 (Host: Is. oxyrinchus) 100/0.98 Clistobothrium montaukensis Haplotype 2 (Host: Is. oxyrinchus) 96/0.97 Clistobothrium carcharodoni (Host: Ca. carcharias) 98/1.00 Clistobothrium tumidum (Host: Ca. carcharias) Phyllobothrium delphini (Host: St. coeruleoalba) Monorygma grimaldii (Host: St. coeruleoalba) 100/1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) 81/0.96 Ceratobothrium sp. (Host: Ca. carcharias) 99/1.00 Yorkeria hilli (Host: Ch. punctatum) Balanobothrium sp.(Host: St. fasciatum) 100/1.00 Pachybothrium hutsoni (Host: Ne. ferrugineus) Tetraphyllidea 61/- 100/1.00 Pedibothrium mounseyi (Host: Ne. ferrugineus) 100/1.00 62/0.77 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) Megalonchos shawae (Host: He. elongata) 94/- Tetrabothrius erostris (Host: La. argentatus) Tetrabothriidae 96/0.99 Nippotaenia chaenogobii (Host: Ch. urotaenia) Nippoteaniidea Hymenolepis diminuta (Host: Ra. norvegicus) Cyclophyllidea (Host: He. mexicanus) 56/- Acanthobothrium santarosaliense 100/0.99 Acanthobothrium parviuncinatum (Host: Ur. maculatus) 100/1.00 Uncibilocularis okei (Host: Pa. atrus) 62/0.58 Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) 91/0.70 98/0.99 Proteocephalus macrocephalus (Host: An. anguilla) 89/0.99 50/- 99/0.99 100/1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) Proteocephalus perplexus (Host: Am. calva ) Onchoproteocephalidea Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) Platybothrium jondoeorum (Host: Ne. acutidens) 99/1.00 (Host: Pr. glauca) 90/0.99 Platybothrium auriculatum 100/1.00 Prosobothrium armigerum (Host: Pr. glauca) Phoreiobothrium lewinense (Host: Sp. lewini) Triloculatum andersonorum (Host: Ne. acutidens) 25/0.53 90/1.00 100/0.93 Anthobothrium caseyi (Host: Pr. glauca) 100/1.00 Anthobothrium caseyi (Host: Pr. glauca) 67/0.57 Anthobothrium sp. 1 (Host: Ca. brevipinna) (Host: Ca. tilstoni) 99/1.00 45/1.00 Anthobothrium sp. Anthobothrium sp. 4(Host: Ca. longimanus) 100/1.00 Anthobothrium sp. 2 (Host: Ca. brevipinna) Anthobothrium sp. 3 (Host: Ca. dussumieri) Bilocularia hyperapolytica (Host: Da. licha) Calyptrobothrium sp. (Host: To. nobiliana) 100/1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) Phyllobothriium squali Genotype 1 (Host: Sq. japonicus) 100/1.00 Monorygma megacotyla Genotype 3 (Host: Ga. nipponensis) 91/0.99 Monorygma megacotyla Genotype 1 (Host: Ce. umbratile) 97/0.90 Phyllobothriium squali Genotype 5 (Host: Sq. acanthias) Phyllobothriium squali Genotype 2 (Host: Sq. mitsukurii) Phyllobothriium squali Genotype 3 (Host: Sq. japonicus) 55/0.61 Monorygma megacotyla Genotype 2 (Host: Ce. umbratile) 99/0.98 Phyllobothriium squali Genotype 4 (Host: Sq. mitsukurii) 100/0.99 Monorygma megacotyla Genotype 4 (Host: Ce. umbratile) 100/1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos sp. 2 (Host: Rh. pacifica) 64/0.52 Phyllobothriidea gen. sp. (Host: Sp. lewini) 95/0.99 Phyllobothrium cf. lactuca (Host: Mu. mento) 100/1.00 Phyllobothrium serratum (Host: Tr. scyllium) Phyllobothrium hoshizame (Host: Mu. manazo) 82/0.86 Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) 100/1.00 Orygmatobothrium musteli Genotype 1 (Host: Mu. manazo) Orygmatobothrium musteli Genotype 2 (Host: Mu. griseus) 100/1.00 Orygmatobothrium cf. musteli 1 (Host: Mu. mustelus)

74/- 100/1.00 Thysanocephalum thysanocephalum (Host: Ga. cuvier) Thysanocephalum crispum (Host: Ga. cuvier) Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 98/0.98 100/1.00 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) Phyllobothriidea 98/0.85 Paraorygmatobothrium sp. 1 (Host: Ca. galapagensis) 97/1.00 Marsupiobothrium sp. (Host: Al. pelagicus) 68/0.66 Paraorygmatobothrium triacis (Host: Tr. scyllium) Nandocestus guariticus (Host: Pa. aiereba) 100/1.00 91/0.71 Orectolobicestus tyleri (Host: Ch. punctatum) 100/1.00 Orectolobicestus randyi (Host: Ch. hasseltii) Paraorygmatobothrium sp. 2 (Host: He. japanica) 100/1.00 88/0.95 Paraorygmatobothrium exiguum (Host: Al. vulpinus) Scyphophyllidium cf. giganteum (Host: Ga. galeus) 100/1.00 Paraorygmatobothrium prionacis (Host: Pr. glauca) 67/0.72 Paraorygmatobothrium prionacis (Host: Pr. glauca) Paraorygmatobothrium paulum (Host: Ga. cuvier) 75/0.90 100 (Host: Tr. obesus) 91/0.90 /1.00 Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 3 (Host: Ca. galapagensis) Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 70/0.79 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 90/0.86 Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) 100/1.00 Paraorygmatobothrium sp. 8 (Host: Ca. galapagensis) 100/1.00 Paraorygmatobothrium sp. 8 (Host: Ca. leucas) 98/1.00 Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) 92/1.00 (Host: Sc. macrorhynchus) ML/BI Ruhnkecestus latipi 98/1.00 Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) 0.01 substitutions per site 100/1.00 Paraorygmatobothrium sp. 10 (Host: Ca. galapagensis) Fig. 4 Maximum likelihood tree by Analysis 2 (Dataset 1, ssrDNA). See Fig. 3 for the explanations of symbols in the tree. Phyllobothriidea, Tetraphyllidea and Onchoproteocephalidea were polyphyletic in this analysis (connected by dotted lines).

- 232 - 100/1.00 Litobothrium nickoli (Host: Al. pelagicus) Litobothrium amplifica (Host: Al. pelagicus) Litobothriidea OUTGROUP 100/1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea 100/1.00 Phyllobothrium biacetabulatum (Host: Rh. schlegelii) 本図については,5年以内に雑誌等で刊行予定のため,非公開.Anthocephalum cf. centrurum (Host: Da. centroura) 98/1.00 100/1.00 Rhinebothrium megacanthophallus (Host: Hi. polylepis) Rhinebothriidea 100/1.00 Rhodobothrium paucitesticulare (Host: Rh. bonasus) Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea (Host: He. mexicanus) 100/1.00 Acanthobothrium santarosaliense (Host: Ur. maculatus) 99/0.99 Acanthobothrium parviuncinatum 98/1.00 Uncibilocularis okei (Host: Pa. atrus) Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) 100/1.00 Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) 74/- 100/1.00 100/1.00 Proteocephalus macrocephalus (Host: An. anguilla) 100/1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) Onchoproteocephalidea 99/0.92 Proteocephalus perplexus (Host: Am. calva ) Triloculatum andersonorum (Host: Ne. acutidens) Phoreiobothrium lewinense (Host: Sp. lewini) (Host: Ne. acutidens) 95/0.86 74/0.88 100/1.00 Platybothrium jondoeorum Platybothrium auriculatum (Host: Pr. glauca) 100/1.00 Prosobothrium armigerum (Host: Pr. glauca) 100/1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 100/1.00 Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) (Host: Ch. anguineus) 100/1.00 Monorygma chamydoselachi 59/0.90 Marsupiobothrium gobelinus (Host: Mi. owstoni) 55/- Trilocularia gracilis (Host: Sq. acanthias) 87/0.92 (Host: He. griseus) 100/1.00 Crossobothrium laciniatum Crossobothrium campanulatum (Host: He. griseus) 79/0.70 98/0.78 Crossobothrium dohrni (Host: He. perlo) 64/0.83 100/1.00 Crossobothrium cf. dohrni (Host: He. perlo) Megalonchos shawae (Host: He. elongata) 100/1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) Ceratobothrium sp. (Host: Ca. carcharias) 79/0.80 Yorkeria hilli (Host: Ch. punctatum) 100/1.00 Balanobothrium sp.(Host: St. fasciatum)

91/0.98 65/0.56 Pachybothrium hutsoni (Host: Ne. ferrugineus) 98/0.99 Pedibothrium mounseyi (Host: Ne. ferrugineus) 100/1.00 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) Tetraphyllidea 74/0.77 100/1.00 Anthobothrium caseyi (Host: Pr. glauca) 100/1.00 Anthobothrium caseyi (Host: Pr. glauca) 100/1.00 Anthobothrium sp. (Host: Ca. tilstoni) 74/0.83 100/1.00 Anthobothrium sp. 1 (Host: Ca. brevipinna) Anthobothrium sp. 4(Host: Ca. longimanus) 100/1.00 Anthobothrium sp. 2 (Host: Ca. brevipinna) Anthobothrium sp. 3 (Host: Ca. dussumieri) 100/1.00 Pelichnibothrium speciosum (Host: Al. ferox) 100/1.00 Pelichnibothrium speciosum (Host: Pr. glauca) 66/0.81 Pelichnibothrium caudatum (Host: On. keta) 98/0.99 Clistobothrium montaukensis Genotype 1 (Host: Is. oxyrinchus) 32/- Clistobothrium montaukensis Genotype 2 (Host: Is. oxyrinchus) 40/- Tetrabothrius erostris (Host: La. argentatus) Tetrabothriidae Clistobothrium carcharodoni (Host: Ca. carcharias) Clistobothrium tumidum (Host: Ca. carcharias) 68/0.72 Phyllobothrium delphini (Host: St. coeruleoalba) 100/1.00 Monorygma grimaldii (Host: St. coeruleoalba) Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) 100/1.00 Orygmatobothrium musteli Genotype 1 (Host: Mu. manazo) 100/1.00 Orygmatobothrium musteli Genotype 2 (Host: Mu. griseus) 52/- Orygmatobothrium cf. musteli 1 (Host: Mu. mustelus) Phyllobothriidea gen. sp. (Host: Sp. lewini) 67/- (Host: Mu. mento) 100/1.00 Phyllobothrium cf. lactuca Phyllobothrium serratum (Host: Tr. scyllium) 100/0.99 Phyllobothrium hoshizame (Host: Mu. manazo) 55/0.51 100/1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos sp. 2 (Host: Rh. pacifica) 38/- Bilocularia hyperapolytica (Host: Da. licha) 100/1.00 Phyllobothriidea 56/0.60 Calyptrobothrium sp. (Host: To. nobiliana) 100/1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) 100/1.00 Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) 100/1.00 Phyllobothriium squali Genotype 1 (Host: Sq. japonicus) Phyllobothriium squali Genotype 2 (Host: Sq. mitsukurii) 100/0.98 99/0.88 Monorygma megacotyla Genotype 1 (Host: Ce. umbratile) 99/1.00 Monorygma megacotyla Genotype 2 (Host: Ce. umbratile) 26/0.60 Phyllobothriium squali Genotype 3 (Host: Sq. japonicus) Monorygma megacotyla Genotype 3 (Host: Ga. nipponensis) Phyllobothriium squali Genotype 5 (Host: Sq. acanthias) 100/1.00 Phyllobothriium squali Genotype 4 (Host: Sq. mitsukurii) 100/0.98 Monorygma megacotyla Genotype 4(Host: Ce. umbratile) 100/1.00 Thysanocephalum thysanocephalum (Host: Ga. cuvier) 40/- Thysanocephalum crispum (Host: Ga. cuvier) Cyclophyllidea 95/0.99 Hymenolepis diminuta (Host: Ra. norvegicus) Nippotaenia chaenogobii (Host: Ch. urotaenia) Nippoteaniidea 40/0.77 Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) Nandocestus guariticus (Host: Pa. aiereba) 100/1.00 ) 100/1.00 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus 94/1.00 Paraorygmatobothrium sp. 1 (Host: Ca. galapagensis) 100/1.00 (Host: Al. pelagicus) 92/0.76 Marsupiobothrium sp. Paraorygmatobothrium triacis (Host: Tr. scyllium) 100/1.00 Orectolobicestus tyleri (Host: Ch. punctatum) Orectolobicestus randyi (Host: Ch. hasseltii) 96/0.69 100/1.00 Paraorygmatobothrium prionacis (Host: Pr. glauca) Paraorygmatobothrium prionacis (Host: Pr. glauca) Paraorygmatobothrium paulum (Host: Ga. cuvier) 94/0.99 Paraorygmatobothrium sp. 3 (Host: Tr. obesus) 85/0.88 (Host: Ca. galapagensis) 100/1.00 Paraorygmatobothrium sp. 3 91/0.97 Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 89/0.65 Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 95/1.00 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) 98/1.00 Paraorygmatobothrium sp. 2 (Host: He. japanica) 99/1.00 Paraorygmatobothrium exiguum (Host: Al. vulpinus) 95/0.93 Scyphophyllidium cf. giganteum (Host: Ga. galeus) Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) 100/1.00 94/0.90 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) 48/- Paraorygmatobothrium sp. 8 (Host: Ca. galapagensis) 92/0.67 Paraorygmatobothrium sp. 8 (Host: Ca. leucas) 100/1.00 Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) Ruhnkecestus latipi (Host: Sc. macrorhynchus) ML/BI 93/0.96 Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) 0.02 substitutions per site 100/1.00 Paraorygmatobothrium sp. 10 (Host: Ca. galapagensis) Fig. 5 Maximum likelihood tree by Analysis 3 (Dataset 1, lsrDNA). See Fig. 3 for the explanations of symbols in the tree. Phyllobothriidea were polyphyletic in this analysis (connected by dotted lines).

- 233 - 100/1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) Lecanicephalidea OUTGROUP Paraberrapex manifestus (Host: Sq. californica) Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 本図については,5年以内に雑誌等で刊行予定のため,非公開.100/1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) Ceratobothrium sp. (Host: Ca. carcharias) 100/1.00 Balanobothrium sp. (Host: St. fasciatum) 100/1.00 Tetraphyllidea Pachybothrium hutsoni (Host: Ne. ferrugineus) 100/1.00 Pedibothrium mounseyi (Host: Ne. ferrugineus) 100/1.00 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) 100/1.00 100/1.00 Acanthobothrium santarosaliense (Host: He. mexicanus) Acanthobothrium parviuncinatum (Host: Ur. maculatus) 94/0.97 96/1.00 Uncibilocularis okei (Host: Pa. atrus) Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) 100/1.00 100/1.00 Proteocephalus perplexus (Host: Am. calva ) 100/1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) 94/1.00 Proteocephalus macrocephalus (Host: An. anguilla) 99/1.00 Onchoproteocephalidea 92/0.88 Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) Platybothrium jondoeorum (Host: Ne. acutidens) 100/1.00 Platybothrium auriculatum (Host: Pr. glauca) 100/1.00 100/1.00 Prosobothrium armigerum (Host: Pr. glauca) Phoreiobothrium lewinense (Host: Sp. lewini) 100/1.00 Triloculatum andersonorum (Host: Ne. acutidens) 100/1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 100/1.00 Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) 59/0.61 Trilocularia gracilis (Host: Sq. acanthias) 100/1.00 Crossobothrium laciniatum (Host: He. griseus) 100/1.00 Crossobothrium campanulatum (Host: He. griseus) 51/- 90/0.89 Crossobothrium dohrni (Host: He. perlo) 63/- Monorygma chamydoselachi (Host: Ch. anguineus) 99/1.00 96/0.98 Marsupiobothrium gobelinus (Host: Mi. owstoni) 100/1.00 Pelichnibothrium speciosum (Host: Al. ferox) Pelichnibothrium caudatum (Host: On. keta) 40/- Clistobothrium montaukensis Genotyle 1 (Host: Is. oxyrinchus) 77/0.98 100/1.00 Phyllobothrium delphini (Host: St. coeruleoalba) 54/0.52 Monorygma grimaldii (Host: St. coeruleoalba) 100/1.00 Clistobothrium tumidum (Host: Ca. carcharias) 86/0.65 Clistobothrium carcharodoni (Host: Ca. carcharias) 100/1.00 Bilocularia hyperapolytica (Host: Da. licha) 100/1.00 Calyptrobothrium sp. (Host: To. nobiliana) 100/1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) 100/1.00 Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) Phyllobothriium squali Genotyle 2 (Host: Sq. japonicus) 100/1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos sp. 2 (Host: Rh. pacifica) 90/1.00 67/0.64 Phyllobothriidea gen. sp. (Host: Sp. lewini) 96/1.00 100/1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) 100/0.98 84/0.98 Phyllobothrium hoshizame (Host: Mu. manazo) 100/1.00 Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) Phyllobothriidea Orygmatobothrium musteli Genotyle 1 (Host: Mu. manazo) 61/- Thysanocephalum thysanocephalum (Host: Ga. cuvier) Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 100/1.00 98/1.00 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) 100/1.00 Marsupiobothrium sp. (Host: Al. pelagicus) Paraorygmatobothrium triacis (Host: Tr. scyllium) 100/1.00 Nandocestus guariticus (Host: Pa. aiereba) 95/1.00 Orectolobicestus tyleri (Host: Ch. punctatum) 89/0.97 Orectolobicestus randyi (Host: Ch. hasseltii) 100/1.00 Paraorygmatobothrium sp. 2 (Host: He. japanica) 88/1.00 Paraorygmatobothrium exiguum (Host: Al. vulpinus) 100/1.00 Scyphophyllidium cf. giganteum (Host: Ga. galeus) 83/0.98 99/1.00 Paraorygmatobothrium prionacis (Host: Pr. glauca) (Host: Ga. cuvier) 94/0.92 Paraorygmatobothrium paulum Paraorygmatobothrium sp. 3 (Host: Tr. obesus) 46/0.51 Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 95/1.00 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) 98/1.00 Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 99/0.88 Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) 100/1.00 100/1.00 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) 97/1.00 Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) 100/1.00 ML/BI 100/1.00 Ruhnkecestus latipi (Host: Sc. macrorhynchus) 0.02 substitutions per site Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) Fig. 6 0D[LPXPOLNHOLKRRGWUHHE\$QDO\VLV 'DWDVHWVVU'1$DQGOVU'1$ 6HH Fig. 3 for the explanations of symbols in the tree.

- 234 - 100/1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea OUTGROUP 100/1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 本図については,5年以内に雑誌等で刊行予定のため,非公開.100/1.00 Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) Marsupiobothrium gobelinus (Host: Mi. owstoni) Monorygma chamydoselachi (Host: Ch. anguineus) 95/1.00 Trilocularia gracilis (Host: Sq. acanthias) 93/0.97 Crossobothrium laciniatum (Host: He. griseus) 100/1.00 Crossobothrium campanulatum (Host: He. griseus) 97/- Crossobothrium dohrni (Host: He. perlo) 76/- 100/1.00 Pelichnibothrium speciosum (Host: Al. ferox) Pelichnibothrium caudatum (Host: On. keta) 96/0.97 Clistobothrium montaukensis Genotyle 1 (Host: Is. oxyrinchus) 67/0.81 Clistobothrium carcharodoni (Host: Ca. carcharias) 98/0.97 Clistobothrium tumidum (Host: Ca. carcharias) 86/0.71 Phyllobothrium delphini (Host: St. coeruleoalba) Monorygma grimaldii (Host: St. coeruleoalba) Bilocularia hyperapolytica (Host: Da. licha) 99/0.96 Calyptrobothrium sp. (Host: To. nobiliana) 89/0.91 Calyptrobothrium sp. 1 (Host: To. tokionis) 45/- Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) 90/0.97 Phyllobothriium squali Genotyle 2 (Host: Sq. japonicus) 100/1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) 49/0.55 Ceratobothrium sp. (Host: Ca. carcharias) 92/0.96 Balanobothrium sp. (Host: St. fasciatum) 100/1.00 Tetraphyllidea Pachybothrium hutsoni (Host: Ne. ferrugineus) 99/0.96 Pedibothrium mounseyi (Host: Ne. ferrugineus) 100/1.00 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) Acanthobothrium santarosaliense (Host: He. mexicanus) 100/1.00 Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) 86/0.64 Acanthobothrium parviuncinatum (Host: Ur. maculatus) 89/0.97 38/- Uncibilocularis okei (Host: Pa. atrus) 34/- Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) 99/1.00 45/0.52 Proteocephalus macrocephalus (Host: An. anguilla) (Host: Ps. fasciatum) 97/1.00 100/1.00 Peltidocotyle rugosa Onchoproteocephalidea 34/- Proteocephalus perplexus (Host: Am. calva ) Platybothrium jondoeorum (Host: Ne. acutidens) 99/1.00 100/0.97 Platybothrium auriculatum (Host: Pr. glauca) 100/1.00 Prosobothrium armigerum (Host: Pr. glauca) Phoreiobothrium lewinense (Host: Sp. lewini) 99/1.00 Triloculatum andersonorum (Host: Ne. acutidens) Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 100/1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) 81/0.58 Chimaerocestos sp. 2 (Host: Rh. pacifica) Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) 44/- 100/1.00 Orygmatobothrium musteli Genotyle 1 (Host: Mu. manazo) Phyllobothriidea gen. sp. (Host: Sp. lewini) 95/1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) Phyllobothriidea 88/0.84 100/1.00 Phyllobothrium hoshizame (Host: Mu. manazo) Thysanocephalum thysanocephalum (Host: Ga. cuvier) Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 97/1.00 52/0.59 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) Marsupiobothrium sp. (Host: Al. pelagicus) 97/1.00 Paraorygmatobothrium triacis (Host: Tr. scyllium) 92/0.98 Nandocestus guariticus (Host: Pa. aiereba) 43/- 100/1.00 Orectolobicestus tyleri (Host: Ch. punctatum) Orectolobicestus randyi (Host: Ch. hasseltii) 100/1.00 100/1.00 Paraorygmatobothrium sp. 2 (Host: He. japanica) 88/0.85 Paraorygmatobothrium exiguum (Host: Al. vulpinus) 95/0.56 Scyphophyllidium cf. giganteum (Host: Ga. galeus) 50/0.55 Paraorygmatobothrium paulum (Host: Ga. cuvier) Paraorygmatobothrium prionacis (Host: Pr. glauca) 75/0.90 Paraorygmatobothrium sp. 3 (Host: Tr. obesus) 97/0.77 (Host: Ca. brevipinna) 75/0.61 Paraorygmatobothrium sp. 4 95/1.00 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 86/0.75 Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) 100/1.00 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) 100/1.00 98/0.98 Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) ML/BI 96/1.00 Ruhnkecestus latipi (Host: Sc. macrorhynchus) 99/1.00 0.02 substitutions per site Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) Fig. 7 Maximum likelihood tree by Analysis 5 (Dataset 2, ssrDNA). See Fig. 3 for the explanations of symbols in the tree. Phyllobothriidea were polyphyletic in this analysis (connected by dotted lines).

- 235 - 100/1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) OUTGROUP Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 本図については,5年以内に雑誌等で刊行予定のため,非公開.100/1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 100/1.00 Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) 100/1.00 100/1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) Ceratobothrium sp. (Host: Ca. carcharias) 100/1.00 Balanobothrium sp. (Host: St. fasciatum) 100/1.00 Tetraphyllidea (Host: Ne. ferrugineus) 71/0.53 Pachybothrium hutsoni 96/0.98 Pedibothrium mounseyi (Host: Ne. ferrugineus) 100/1.00 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) Monorygma chamydoselachi (Host: Ch. anguineus) 100/1.00 Marsupiobothrium gobelinus (Host: Mi. owstoni) 34/- Pelichnibothrium speciosum (Host: Al. ferox) 91/0.96 Pelichnibothrium caudatum (Host: On. keta) 100/1.00 85/1.00 Clistobothrium montaukensis Genotyle 1 (Host: Is. oxyrinchus) 100/1.00 Phyllobothrium delphini (Host: St. coeruleoalba) 92/1.00 Monorygma grimaldii (Host: St. coeruleoalba) Clistobothrium tumidum (Host: Ca. carcharias) 41/- Clistobothrium carcharodoni (Host: Ca. carcharias) ) 100/1.00 Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus 41/- Orygmatobothrium musteli Haplotyle 1 (Host: Mu. manazo) 100/1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) Phyllobothriidea 100/0.99 Phyllobothrium hoshizame (Host: Mu. manazo) 27/- Chimaerocestos sp. 1 (Host: Rh. pacifica) 37/- 100/1.00 Chimaerocestos sp. 2 (Host: Rh. pacifica) Trilocularia gracilis (Host: Sq. acanthias) 20/- 99/1.00 Crossobothrium laciniatum (Host: He. griseus) 100/1.00 Crossobothrium campanulatum (Host: He. griseus) 90/0.95 Crossobothrium dohrni (Host: He. perlo) 63/- 100/1.00 Bilocularia hyperapolytica (Host: Da. licha) 100/1.00 Calyptrobothrium sp. (Host: To. nobiliana) 100/1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) 36/- Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) 100/0.98 Phyllobothriium squali Genotyle 2 (Host: Sq. japonicus) Phyllobothriidea gen. sp. (Host: Sp. lewini) 100/1.00 Acanthobothrium santarosaliense (Host: He. mexicanus) Acanthobothrium parviuncinatum (Host: Ur. maculatus) 98/0.98 93/1.00 Uncibilocularis okei (Host: Pa. atrus) 100/1.00 Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) 100/1.00 Proteocephalus macrocephalus (Host: An. anguilla) 52/0.59 94/0.94 100/1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) Onchoproteocephalidea 94/1.00 100/1.00 Proteocephalus perplexus (Host: Am. calva ) 100/1.00 Phoreiobothrium lewinense (Host: Sp. lewini) Triloculatum andersonorum (Host: Ne. acutidens) Platybothrium jondoeorum (Host: Ne. acutidens) 100/1.00 Platybothrium auriculatum (Host: Pr. glauca) 53/0.61 100/1.00 Prosobothrium armigerum (Host: Pr. glauca) Thysanocephalum thysanocephalum (Host: Ga. cuvier) Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 100/1.00 Nandocestus guariticus (Host: Pa. aiereba) 100/1.00 96/1.00 Paraorygmatobothrium triacis (Host: Tr. scyllium) 87/0.61 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) 100/1.00 Marsupiobothrium sp. (Host: Al. pelagicus) 100/1.00 Orectolobicestus tyleri (Host: Ch. punctatum) 88/0.56 Orectolobicestus randyi (Host: Ch. hasseltii) 98/1.00 92/0.95 Paraorygmatobothrium sp. 2 (Host: He. japanica) Paraorygmatobothrium exiguum (Host: Al. vulpinus) 94/1.00 Scyphophyllidium cf. giganteum (Host: Ga. galeus) 84/0.95 Paraorygmatobothrium paulum (Host: Ga. cuvier) 99/1.00 Paraorygmatobothrium sp. 3 (Host: Tr. obesus) 88/0.96 Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 79/0.88 Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 99/1.00 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) 69/0.70 Paraorygmatobothrium prionacis (Host: Pr. glauca) 100/1.00 Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) 67/0.59 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) 100/1.00 Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) ML/BI 93/1.00 86/0.95 Ruhnkecestus latipi (Host: Sc. macrorhynchus) 0.05 substitutions per site Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) Fig. 8 Maximum likelihood tree by Analysis 6 (Dataset 2, lsrDNA). See Fig. 3 for the explanations of symbols in the tree. Phyllobothriidea were polyphyletic in this analysis (connected by dotted lines).

- 236 - Litobothrium Litobothriidea Adelobothrium Lecanicephalidea 本図については,5年以内に雑誌等で刊行予定のため,非公開.Paraberrapex Ph. biacetabulatum Anthocephalum Rhinebothriidea Rhinebothrium

Rhodobothrium Cathetocephalus Cathetocephalidea Tetrabothrius Tetrabothriidae Hymenolepis Cyclophyllidea

Nippotaenia Nippoteaniidea ) Acanthobothrium Uncibilocularis

Onchoproteocephalidea Onchoproteocephalidea gen. Peltidocotyle ) Proteocephalus Potamotrygonocestus Prosobothrium

) Platybothrium Phoreiobothrium Triloculatum Megalonchos

Ceratobothrium Tetraphyllidea Yorkeria Balanobothrium Pachybothrium Pedibothrium

Rosebothrium Anthobothrium Monorygma

Ma. gobelinus Callibothrium Symcallio Trilocularia

Crossobothrium Pelichnibothrium ( Clistobothrium Mo. grimaldii, Ph. delphini Phyllobothridea Phyllobothriidea gen.

Phyllobothrium Chimaerocestos Bilocularia

Calyptrobothrium Vertebraeovicestus Ph. squali (Mo. megacotyla Orygmatobothrium Thysanocephalum Alexandercestus

no hook Scyphophyllidium hook Marsupiobothrium Nandocestus Orectolobicestus Paraorygmatobothrium (Ruhnkecestus Fig. 9 Phylogenetic consideration of the hook in Phyllobothriidea and related orders. %DVHGRQWKHWUHHRI$QDO\VLV )LJ UREXVWQRGHV 8)%RRW•RU%33• DUH shown by solid circles, and the other nodes are shown by open circles. Hooked taxa are shown in red color, and non-hooked taxa are shown in black. Open boxes show the revised orders (see Section 3.3).

- 237 - Monorygma chamydoselachi Marsupiobothrium gobelinus Calliobothrium cf. verticillatum 本図については,5年以内に雑誌等で刊行予定のため,非公開.Callibothrium shirozame Symcallio violae Trilocularia gracilis Crossobothrium laciniatum Crossobothrium campanulatum Crossobothrium dohrni Crossobothrium cf. dohrni Pelichnibothrium speciosum Pelichnibothrium speciosum Pelichnibothrium caudatum Clistobothrium montaukensis Clistobothrium montaukensis Clistobothrium carcharodoni Clistobothrium tumidum Monorygma grimaldii Phyllobothrium delphini Phyllobothriidea gen. sp. Phyllobothrium cf. lactuca Phyllobothrium serratum Phyllobothrium hoshizame Chimaerocestos sp. 1 Chimaerocestos sp. 2 Bilocularia hyperapolytica Calyptrobothrium sp. 1 Calyptrobothrium sp. Vertebraeovicestus dobukasube Phyllobothriium squali Monorygma megacotyla Monorygma megacotyla Phyllobothriium squali Phyllobothriium squali Monorygma megacotyla Phyllobothriium squali Phyllobothriium squali Monorygma megacotyla Orygmatobothrium cf. musteli 2 Orygmatobothrium musteli Orygmatobothrium musteli Orygmatobothrium cf. musteli 1 Thysanocephalum thysanocephalum Thysanocephalum crispum Alexandercestus oomejirozame Paraorygmatobothrium sp. 1 Paraorygmatobothrium sp. 1 Marsupiobothrium sp. Paraorygmatobothrium triacis Nandocestus guariticus Orectolobicestus tyleri Orectolobicestus randyi Paraorygmatobothrium sp. 2 Paraorygmatobothrium exiguum Scyphophyllidium cf. giganteum Paraorygmatobothrium prionacis Paraorygmatobothrium prionacis Paraorygmatobothrium paulum Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 4 Paraorygmatobothrium sp. 5 Paraorygmatobothrium sp. 6 flat crumple cup Paraorygmatobothrium sp. 7 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 9 Ruhnkecestus latipi Paraorygmatobothrium sp. 10 divided loculate margin sac Paraorygmatobothrium sp. 10 Fig. 10 Phylogenetic consideration of the bothridium types in the revised 3K\OORERWKULLGHD%DVHGRQWKHWUHHRI$QDO\VLV )LJ UREXVWQRGHV 8)%RRW•RU %33• DUHVKRZQE\VROLGFLUFOHVDQGWKHRWKHUQRGHVDUHVKRZQE\RSHQFLUFOHV Colors show bothridium types: black, flat; blue, crumple; pink, cup; green, divided; light green, loculate margin; purple, sac.

- 238 - Monorygma chamydoselachi Marsupiobothrium gobelinus 本図については,5年以内に雑誌等で刊行予定のため,非公開.Calliobothrium cf. verticillatum Callibothrium shirozame Symcallio violae Trilocularia gracilis Crossobothrium laciniatum Crossobothrium campanulatum Crossobothrium dohrni Crossobothrium cf. dohrni Pelichnibothrium speciosum Pelichnibothrium speciosum Pelichnibothrium caudatum Clistobothrium montaukensis Clistobothrium montaukensis Clistobothrium carcharodoni Clistobothrium tumidum Monorygma grimaldii Phyllobothrium delphini Phyllobothriidea gen. sp. Phyllobothrium cf. lactuca Phyllobothrium serratum Phyllobothrium hoshizame Chimaerocestos sp. 1 Chimaerocestos sp. 2 Bilocularia hyperapolytica Calyptrobothrium sp. 1 Calyptrobothrium sp. Vertebraeovicestus dobukasube Phyllobothriium squali Monorygma megacotyla Monorygma megacotyla Phyllobothriium squali Phyllobothriium squali Monorygma megacotyla Phyllobothriium squali Phyllobothriium squali Monorygma megacotyla Orygmatobothrium cf. musteli 2 Orygmatobothrium musteli Orygmatobothrium musteli Orygmatobothrium cf. musteli 1 Thysanocephalum thysanocephalum Thysanocephalum crispum Alexandercestus oomejirozame Paraorygmatobothrium sp. 1 Paraorygmatobothrium sp. 1 Marsupiobothrium sp. Paraorygmatobothrium triacis Nandocestus guariticus Orectolobicestus tyleri Orectolobicestus randyi Paraorygmatobothrium sp. 2 Paraorygmatobothrium exiguum Scyphophyllidium cf. giganteum Paraorygmatobothrium prionacis Paraorygmatobothrium prionacis Paraorygmatobothrium paulum Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 4 Paraorygmatobothrium sp. 5 Paraorygmatobothrium sp. 6 Paraorygmatobothrium sp. 7 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 9 sessile stalk Ruhnkecestus latipi Paraorygmatobothrium sp. 10 Paraorygmatobothrium sp. 10 Fig. 11 Phylogenetic consideration of the types of bothridium base in the revised 3K\OORERWKULLGHD6HH)LJIRUWKHH[SODQDWLRQVRIWKHWUHH6WDONHGWD[DDUHVKRZQLQ red color, and sessile taxa are shown in black.

- 239 - Monorygma chamydoselachi Marsupiobothrium gobelinus Calliobothrium cf. verticillatum 本図については,5年以内に雑誌等で刊行予定のため,非公開.Callibothrium shirozame Symcallio violae Trilocularia gracilis Crossobothrium laciniatum Crossobothrium campanulatum Crossobothrium dohrni Crossobothrium cf. dohrni Pelichnibothrium speciosum Pelichnibothrium speciosum Pelichnibothrium caudatum Clistobothrium montaukensis Clistobothrium montaukensis Clistobothrium carcharodoni Clistobothrium tumidum Monorygma grimaldii Phyllobothrium delphini Phyllobothriidea gen. sp. Phyllobothrium cf. lactuca Phyllobothrium serratum Phyllobothrium hoshizame Chimaerocestos sp. 1 Chimaerocestos sp. 2 Bilocularia hyperapolytica Calyptrobothrium sp. 1 Calyptrobothrium sp. Vertebraeovicestus dobukasube Phyllobothriium squali Monorygma megacotyla Monorygma megacotyla Phyllobothriium squali Phyllobothriium squali Monorygma megacotyla Phyllobothriium squali Phyllobothriium squali Monorygma megacotyla Orygmatobothrium cf. musteli 2 Orygmatobothrium musteli Orygmatobothrium musteli Orygmatobothrium cf. musteli 1 Thysanocephalum thysanocephalum Thysanocephalum crispum Alexandercestus oomejirozame Paraorygmatobothrium sp. 1 Paraorygmatobothrium sp. 1 Marsupiobothrium sp. Paraorygmatobothrium triacis Nandocestus guariticus Orectolobicestus tyleri Orectolobicestus randyi Paraorygmatobothrium sp. 2 Paraorygmatobothrium exiguum Scyphophyllidium cf. giganteum Paraorygmatobothrium prionacis Paraorygmatobothrium prionacis Paraorygmatobothrium paulum Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 4 Paraorygmatobothrium sp. 5 Paraorygmatobothrium sp. 6 Paraorygmatobothrium sp. 7 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 9 laciniate flat Ruhnkecestus latipi Paraorygmatobothrium sp. 10 Paraorygmatobothrium sp. 10 Fig. 12 3K\ORJHQHWLFFRQVLGHUDWLRQRIWKHODFLQLDWLRQLQ3K\OORERWKULLGHD6HH)LJ for the explanations of the tree. Laciniated taxa were shown by red color, and non-lacinated taxa shown by black.

- 240 - Monorygma chamydoselachi Marsupiobothrium gobelinus Calliobothrium cf. verticillatum 本図については,5年以内に雑誌等で刊行予定のため,非公開.Callibothrium shirozame Symcallio violae Trilocularia gracilis Crossobothrium laciniatum Crossobothrium campanulatum Crossobothrium dohrni Crossobothrium cf. dohrni Pelichnibothrium speciosum Pelichnibothrium speciosum Pelichnibothrium caudatum Clistobothrium montaukensis Clistobothrium montaukensis Clistobothrium carcharodoni Clistobothrium tumidum Monorygma grimaldii Phyllobothrium delphini Phyllobothriidea gen. sp. Phyllobothrium cf. lactuca Phyllobothrium serratum Phyllobothrium hoshizame Chimaerocestos sp. 1 Chimaerocestos sp. 2 Bilocularia hyperapolytica Calyptrobothrium sp. 1 Calyptrobothrium sp. Vertebraeovicestus dobukasube Phyllobothriium squali Monorygma megacotyla Monorygma megacotyla Phyllobothriium squali Phyllobothriium squali Monorygma megacotyla Phyllobothriium squali Phyllobothriium squali Monorygma megacotyla Orygmatobothrium cf. musteli 2 Orygmatobothrium musteli Orygmatobothrium musteli Orygmatobothrium cf. musteli 1 Thysanocephalum thysanocephalum Thysanocephalum crispum Alexandercestus oomejirozame Paraorygmatobothrium sp. 1 Paraorygmatobothrium sp. 1 Marsupiobothrium sp. Paraorygmatobothrium triacis Nandocestus guariticus Orectolobicestus tyleri Orectolobicestus randyi Paraorygmatobothrium sp. 2 Paraorygmatobothrium exiguum general Scyphophyllidium cf. giganteum Paraorygmatobothrium prionacis Paraorygmatobothrium prionacis Paraorygmatobothrium paulum Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 4 Paraorygmatobothrium sp. 5 apical sucker central sucker Paraorygmatobothrium sp. 6 Paraorygmatobothrium sp. 7 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 9 Ruhnkecestus latipi Paraorygmatobothrium sp. 10 no sucker Paraorygmatobothrium sp. 10 Fig. 13 Phylogenetic consideration of the additional suckers and the reduced suckers in 3K\OORERWKULLGHD6HH)LJIRUWKHH[SODQDWLRQVRIWKHWUHH&RORUVVKRZDGGLWLRQDO suckers: black, general; blue, apical sucker; yellow, central sucker; green, no sucker.

- 241 - Monorygma chamydoselachi (Host: Ch. anguineus) Monorygma 本図については,5年以内に雑誌等で刊行予定のため,非公開.Marsupiobothrium gobelinus (Host: Mi. owstoni) Mitsukuricestus n. gen. Calliobothrium cf. verticillatum (Host: Mu. canis) Calliobothrium Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) Symcallio Trilocularia gracilis (Host: Sq. acanthias) Trilocularia Crossobothrium laciniatum (Host: He. griseus) Crossobothrium campanulatum (Host: He. griseus) Crossobothrium Crossobothrium dohrni (Host: He. perlo) Crossobothrium cf. dohrni (Host: He. perlo) Pelichnibothrium speciosum (Host: Al. ferox) Pelichnibothrium speciosum (Host: Pr. glauca) Pelichnibothrium caudatum (Host: On. keta) Clistobothrium montaukensis Genotype 1 (Host: Is. oxyrinchus) Clistobothrium montaukensis Genotype 2 (Host: Is. oxyrinchus) Pelichnibothrium Clistobothrium carcharodoni (Host: Ca. carcharias) Clistobothrium tumidum (Host: Ca. carcharias) Phyllobothrium delphini (Host: St. coeruleoalba) Monorygma grimaldii (Host: St. coeruleoalba) Phyllobothriidea gen. sp. (Host: Sp. lewini) Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) Phyllobothrium Phyllobothrium hoshizame (Host: Mu. manazo) Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos Chimaerocestos sp. 2 (Host: Rh. pacifica) Bilocularia hyperapolytica (Host: Da. licha) Bilocularia Calyptrobothrium sp. (Host: To. nobiliana) Calyptrobothrium sp. 1 (Host: To. tokionis) Calyptrobothrium Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) Vertebraeovicestus n. gen. Phyllobothriium squali Genotype 1 (Host: Sq. japonicus) Monorygma megacotyla Genotype 1 (Host: Ce. umbratile) Phyllobothriium squali Genotype 2 (Host: Sq. mitsukurii) Monorygma megacotyla Genotype 2 (Host: Ce. umbratile) Phyllobothriium squali Genotype 3 (Host: Sq. japonicus) Yamaguticestus n. gen. Monorygma megacotyla Genotype 3 (Host: Ga. nipponensis) Phyllobothriium squali Genotype 5 (Host: Sq. acanthias) Phyllobothriium squali Genotype 4 (Host: Sq. mitsukurii) Monorygma megacotyla Genotype 4 (Host: Ce. umbratile) Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) Orygmatobothrium musteli Genotype 1 (Host: Mu. manazo) Orygmatobothrium Orygmatobothrium musteli Genotype 2 (Host: Mu. griseus) Orygmatobothrium cf. musteli 1 (Host: Mu. mustelus) Thysanocephalum thysanocephalum (Host: Ga. cuvier) Thysanocephalum crispum (Host: Ga. cuvier) Thysanocephalum Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) Alexandercestus Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) Paraorygmatobothrium sp. 1 (Host: Ca. galapagensis) Marsupiobothrium sp. (Host: Al. pelagicus) Paraorygmatobothrium triacis (Host: Tr. scyllium) Nandocestus guariticus (Host: Pa. aiereba) Orectolobicestus tyleri (Host: Ch. punctatum) Orectolobicestus randyi (Host: Ch. hasseltii) Paraorygmatobothrium sp. 2 (Host: He. japanica)

Paraorygmatobothrium exiguum (Host: Al. vulpinus) Scyphophyllidium Scyphophyllidium cf. giganteum (Host: Ga. galeus) Paraorygmatobothrium prionacis (Host: Pr. glauca) Paraorygmatobothrium prionacis (Host: Pr. glauca) Paraorygmatobothrium paulum (Host: Ga. cuvier) Paraorygmatobothrium sp. 3 (Host: Tr. obesus) Paraorygmatobothrium sp. 3 (Host: Ca. galapagensis) Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium sp. 6 (Host: Tr. obesus) Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) Paraorygmatobothrium sp. 8 (Host: Ca. galapagensis) Paraorygmatobothrium sp. 8 (Host: Ca. leucas) Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) Ruhnkecestus latipi (Host: Sc. macrorhynchus) Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) 0.02 substitutions per site Paraorygmatobothrium sp. 10 (Host: Ca. galapagensis) Fig. 14 Revision of the genera in the revised Phyllobothriidea. The phylogenetic tree was based on Analysis 1 (Fig. 3). Bars indicate the revised genera. Type species of the current genera are shown in bold face. Robust nodes (UFBoot •RU%33• DUH shown by solid circles and thick lines, and the other nodes are shown by open circles and thin lines.

- 242 -

A本図については,5年以内に雑誌等で刊行予定のため,非公開.

500µm

B 200µm

Fig. 15 Phyllobothrium hoshizame n. sp. A, Scolex, B, Mature proglottid, No. Mustelus manazo 27 (Host: Mustelus manazo).

- 243 -

A本図については,5年以内に雑誌等で刊行予定のため,非公開.

C 500µm

B

200µm

D

10µm

10µm 300µm

Fig. 16 Phyllobothrium serratum. A, Scolex, No. Triakis scyllium 32 (Host: Triakis scyllium). B, Mature proglottid, C, Gravid proglottid, D, Eggs, MPM 22715, SY7159 (Host: Triakis scyllium).

- 244 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.A

B

200µm

C

200µm 1mm

Fig. 17 Alexandercestus oomejirozame n. sp. A, Whole worm, B, Scolex, C, Mature proglottid, No. Carcharhinus leucas 10 (Host: Carcharhinus leucas). Overlapping vitelline follicles are not drawn on the left side of a broken line.

- 245 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.B

A

200µm

C 10µm

500µm

Fig. 18 Bilocularia hyperapolytica. A, Scolex, No. Dalatias licha 15 (Host: Dalatias licha). B, Free proglottid, C, Egg, No. Dalatias licha 16 (Host: Dalatias licha).

- 246 - B

C A

20µm 50µm

D F F´ C C´ B E D B B´ E´ D´ AA´

F

E

200µm

2 mm 2 300µm

Fig. 19 Calliobothrium shirozame n. sp. A, Whole worm, B, Scolex, C, Hook, D, Hook measurements, letters reflect those used in the description, E, Mature proglottid, F, Lacination, NSMT-Pl 6037 (Host: Mustelus griseus).

- 247 -

本図については,5年以内に雑誌等で刊行予定のため,非公開. 300µm

Fig. 20 Calyptrobothrium sp. Scolex, No. Torpedo tokionis 1 (Host: Torpedo tokionis).

- 248 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.A

B 5mm 500µm

C

D 5µm 500µm

Fig. 21 Crossobothrium campanulatum. A, Whole worm, B, Scolex, C, Mature proglottid, D, Egg, No. Hexanchus griseus 1 (Host: Hexanchus griseus). Overlapping vitelline follicles are not drawn on the right side of a broken line.

- 249 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.A B-1 300µm 200µm

B-2

300µm

C 300µm 2mm

Fig. 22 Crossobothrium dohrni. A, Whole worm, No. Heptranchias perlo 23 (Host: Heptranchias perlo). B, Scolex, B-1, Scolex with opened bothridia, No. Heptranchias perlo 23 (Host: Heptranchias perlo). B-2, Scolex with closed bothridia, C, Mature proglottid, No. Heptranchias perlo 20 (Host: Heptranchias perlo).

- 250 - A B

本図については,5年以内に雑誌等で刊行予定のため,非公開. 300µm

C

100µm 300µm

Fig. 23 Mitsukuricestus gobelinus n. comb. A, Whole worm, No. Miysukurina owstoni 4 (Host: Miysukurina owstoni). B, Scolex, No. Miysukurina owstoni 1 (Host: Miysukurina owstoni). C, Mature proglottid, No. Miysukurina owstoni 4 (Host: Miysukurina owstoni).

- 251 - 5µm D , Egg, No. D

200µm ). ). Chlamydoselachus Chlamydoselachus , Mature proglottid, No.

200µm C ). , Scolex, No. B ). C B , Whole worm, No. A Chlamydoselachus anguineus

1 mm - 252 - Chlamydoselachus anguineus AA 10 (Host: 1 (Host: Chlamydoselachus anguineus Chlamydoselachus anguineus 9 (Host: 1 (Host: Monorygma chlamydoselachi.

本図については,5年以内に雑誌等で刊行予定のため,非公開. Chlamydoselachus anguineus Chlamydoselachus anguineus anguineus anguineus Fig. 24

A本図については,5年以内に雑誌等で刊行予定のため,非公開. B

Central sucker 300µm

C

2mm 200µm

Fig. 25 Orygmatobothrium musteli. A, Whole worm, No. Mustelus manazo 8 (Host: Mustelus manazo). B, Scolex, C, Mature proglottid, No. Mustelus griseus 20 (Host: Mustelus griseus).

- 253 - B 本図については,5年以内に雑誌等で刊行予定のため,非公開.

A 100µm

C

500µm 500µm

Fig. 26 Pelichinibothrium speciosum. A, Whole worm, No. Prionace glauca 29 (Host: Prionace glauca). B, Mature proglottid, MPM 23879, SY3102 (Host: Prionace glauca). C, Free proglottid, MPM 23879, SY5624 (Host: Prionace glauca).

- 254 -

A本図については,5年以内に雑誌等で刊行予定のため,非公開. Bladder

B

300µm 2mm

Fig. 27 Pelichinibothrium speciosum. A, Whole worm, B, Mature proglottid, No. others 365 (Host: Alepisaurus ferox).

- 255 - A 本図については,5年以内に雑誌等で刊行予定のため,非公開.

B

200µm 500µm

Fig. 28 Pelichinibothrium carcharodoni n. comb. A, Whole worm, No. Carcharodon carcharias 19 (Host: Carcharodon carcharias). B, Mature proglottid, No. Carcharodon carcharias 15 (Host: Carcharodon carcharias).

- 256 - A 本図については,5年以内に雑誌等で刊行予定のため,非公開.E

B 500µm

Bladder D

1mm

C

1mm 1mm

F

200µm 1mm

Fig. 29 Pelichnibothrium caudatum. A, Plerocercoid, No. others 512 (Host: Onchorhynchus keta). B, Plerocercoid, C, Plerocercoid, No. others 61 (Host: Berryteuthis magister). D, Plerocercoid, No. others 101 (Host: Gadus macrocephalus), E, Plerocercoid, arrow showed site which caused initial proglottization, F, Proglottids, No. others 68 (Host: Aptocyclus ventricosus).

- 257 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.

Filament

Bladder 1mm

Fig. 30 Pelichinibothrium delphni n. comb. Merocercoid, No. others 629 (Host: Stenella coeruleoalba).

- 258 - Scolex 本図については,5年以内に雑誌等で刊行予定のため,非公開.

Filament

Bladder 1mm

B 200µm

Fig. 31 Pelichinibothrium grimaldii n. comb. A, Merocercoid, B, Scolex, No. others 633 (Host: Stenella coeruleoalba).

- 259 - D A本図については,5年以内に雑誌等で刊行予定のため,非公開.

B

500µm 500µm

E

C

1mm

Bladder

200µm 500µm

Fig. 32 Pelichinibothrium montaukensis n. comb. A, Whole worm, No. Isurus oxyrinchus 18 (Host: Isurus oxyrinchus). B, Scolex, No. Isurus oxyrinchus 1 (Host: Isurus oxyrinchus). C, Mature proglotiid, No. Isurus oxyrinchus 18 (Host: Isurus oxyrinchus). Overlapping vitelline follicles are not drawn on the right side of a broken line. D, Juvenil worm, No. Isurus oxyrinchus 25 (Host: Isurus oxyrinchus). E, Plerocercoid, No. others 343 (Host: Alepisaurus ferox).

- 260 - Carcharodon Carcharodon

500µm , Scolex, No. B , Whole worm, No. ). A . ). - 261 - n. comb B

100µm Carcharodon carcharias Carcharodon carcharias (Host:

(Host: 12

7 Pelichinibothrium tumidum

A 本図については,5年以内に雑誌等で刊行予定のため,非公開. Fig. 33 carcharias carcharias A

本図については,5年以内に雑誌等で刊行予定のため,非公開.B 200µm

C

D

300µm

100µm 1mm

Fig. 34 Scyphophyllidium carcharhinus n. sp. A, Whole worm, B, Scolex, C, Mature proglottid, No. Carcharhinus limbatus 14 (Host: Carcharhinus limbatus). D, Plerocercoid, No. othres 426 (Host: Coryphaena hippurus).

- 262 - A

本図については,5年以内に雑誌等で刊行予定のため,非公開.B 200µm

C

1mm 100µm

Fig. 35 Scyphophyllidium eirakubuka n. sp. A, Whole worm, B, Scolex, C, Mature proglottid, No. Hemitriakis japanica 64 (Host: Hemitriakis japanica).

- 263 - A B 本図については,5年以内に雑誌等で刊行予定のため,非公開.

50µm

C

100µm 600µm

Fig. 36 Scyphophyllidium hanazame n. sp. A, Whole worm, Carcharhinus brevipinna 11 (Host: Carcharhinus brevipinna). B, Scolex, No. Carcharhinus brevipinna 74 (Host: Carcharhinus brevipinna). C, Mature proglottid, No. Carcharhinus brevipinna 11 (Host: Carcharhinus brevipinna).

- 264 - A B 本図については,5年以内に雑誌等で刊行予定のため,非公開.

C 100µm

500µm 100µm

Fig. 37 Scyphophyllidium insulaeum n. sp. A, Whole worm, B, Scolex, C, Mature proglottid, No. Carcharias galapagensis 3 (Host: Carcharias galapagensis).

- 265 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.A

B

100µm 500µm

Fig. 38 Scyphophyllidium longiproglottidum n. sp. A, Whole worm, B, Mature proglottid, No. Carcharhinus limbatus 6 (Host: Carcharhinus limbatus).

- 266 - A 本図については,5年以内に雑誌等で刊行予定のため,非公開.C

B

50µm

50µm 500µm

Fig. 39 Scyphophyllidium maritimum n. sp. A, Whole worm, B, Scolex, C, Mature proglottid, No. Carcharhinus brevipinna 78 (Host: Carcharhinus brevipinna).

- 267 - B 本図については,5年以内に雑誌等で刊行予定のため,非公開.A

C 50µm 100µm

500µm

Fig. 40 Scyphophyllidium nemuribuka n. sp. A, Whole worm, B, Scolex, C, Mature proglottid, No. Triaenodon obesus 26 (Host: Triaenodon obesus).

- 268 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.A B 100µm

C 100µm 500µm

Fig. 41 Scyphophyllidium ogasawaraensis n. sp. A, Whole worm, No. Triaenodon obesus 27 (Host: Triaenodon obesus). B, Scolex, C, Mature proglottid, No. Triaenodon obesus 6 (Host: Triaenodon obesus).

- 269 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.A

C

B

100µm

50µm 500µm

Fig. 42 Scyphophyllidium paulum n. com. A, Whole worm, No. Galeocerdo cuvier 7 (Host: Galeocerdo cuvier). B, Scolex, C, Mature proglottid, No. Galeocerdo cuvier 5 (Host: Galeocerdo cuvier).

- 270 - AB 本図については,5年以内に雑誌等で刊行予定のため,非公開.

C

100µm

50µm 500µm

Fig. 43 Scyphophyllidium prionacis n. comb. A, Whole worm, No. Prionace glauca 24 (Host: Prionace glauca). B, Scolex, C, Mature proglottid, No. Prionace glauca 23 (Host: Prionace glauca).

- 271 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.AB

C

50µm

100µm 500µm

Fig. 44 Scyphophyllidium sumitsukizame n. sp. A, Whole worm, No. Carcharhinus dussumieri 14 (Host: Carcharhinus dussumieri). B, Scolex, No. Carcharhinus dussumieri 11 (Host: Carcharhinus dussumieri). C, Mature proglottid, No. Carcharhinus dussumieri 14 (Host: Carcharhinus dussumieri).

- 272 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.AB

100µm

C

100µm 1mm

Fig. 45 Scyphophyllidium triacis n. comb. A, Whole worm, B, Scolex, C, Mature proglottid, No. Triakis scyllium 27 (Host: Triakis scyllium).

- 273 - B 本図については,5年以内に雑誌等で刊行予定のため,非公開.

A 100µm 100µm

Fig. 46 Scyphophyllidium yogore n. sp. A, Scolex, B, Mature proglottid, No. Carcharhinus longimanus 9 (Host: Carcharhinus longimanus).

- 274 - A 本図については,5年以内に雑誌等で刊行予定のため,非公開.Metascolex

D

10µm 5mm

B C

500µm 100µm

Fig. 47 Thysanocephalum thysanocephalum. A, Whole worm, No. Galeocerdo cuvier 8 (Host: Galeocerdo cuvier). B, Scolex, No. Galeocerdo cuvier 1 (Host: Galeocerdo cuvier). C, Mature proglottid, No. Galeocerdo cuvier 8 (Host: Galeocerdo cuvier). Overlapping vitelline follicles are not drawn on the right side of a broken line. D, Egg, No. Galeocerdo cuvier 24 (Host: Galeocerdo cuvier).

- 275 - AB 本図については,5年以内に雑誌等で刊行予定のため,非公開.

E

500µm 200µm

C D

200µm 2mm

10µm

Fig. 48 Vertebraeovicestus dobukasube n. sp. A, Whole worm, No. Bathyraja smirnovi 11 (Host: Bathyraja smirnovi). B, Scolex, No. Bathyraja smirnovi 13 (Host: Bathyraja smirnovi). C, Mature proglottid, No. Bathyraja smirnovi 11 (Host: Bathyraja smirnovi). Overlapping vitelline follicles are not drawn on the left side of a broken line. D, Eggs, No. Bathyraja smirnovi 13 (Host: Bathyraja smirnovi). E, Plerocercoid, No. others 34 (Host: Lycodes nakamurae).

- 276 - A B

本図については,5年以内に雑誌等で刊行予定のため,非公開. 1mm

C 500µm

D

E

10µm 5mm 500µm

Fig. 49 Yamaguticestus squali n. comb. A, Whole worm, No. Squalus japonicus 11 (Host: Squalus japonicus). B, Scolex, No. Squalus japonicus 62 (Host: Squalus mitsukurii). C, Mature proglottid, D, Free proglottid, No. Squalus japonicus 11 (Host: Squalus japonicus).

- 277 - A 本図については,5年以内に雑誌等で刊行予定のため,非公開. B

500µm

C 2mm

D

300µm

10µm 10µm

Fig. 50 Yamaguticestus squali n. comb. A, Whole worm, No. Cephaloscyllium umbratile 56 (Host: Cephaloscyllium umbratile). B, Scolex, No. Cephaloscyllium umbratile 19 (Host: Cephaloscyllium umbratile). C, Mature proglottid, No. Cephaloscyllium umbratile 11 (Host: Cephaloscyllium umbratile). D, Eggs, No. Cephaloscyllium umbratile 5 (Host: Cephaloscyllium umbratile).

- 278 - A B

本図については,5年以内に雑誌等で刊行予定のため,非公開. 500µm

C

D

5µm

5µm

500µm 2mm

Fig. 51 Rosebothrium ootenjikuzame n. sp. A, Whole worm, B, Scolex, C, Mature proglottid, D, Microtriches in cirrus, No. Nebrius ferrugineus 2 (Host: Nebrius ferrugineus).

- 279 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.A

B C

200µm

200µm 300µm

Fig. 52 Anthocephalum biacetabulatum n. comb. A, Whole worm, B, Scolex, C, Mature proglottid, No. Rhinobatos schlegelii 31 (Host: Rhinobatos schlegelii).

- 280 - Apical sucker 本図については,5年以内に雑誌等で刊行予定のため,非公開.A B

Accsessory sucker “Anterior part” Bothridium Stalk

Longitudinal muscle band “Posterior part” Bladder

C Apical sucker D

Acetabula

Filament

Bladder

Apical sucker

Bothridium Accsessory sucker

Fig. 53 Morphological terminology of larvae. Phyllobothriidean larvae, A, Plerocercoid of Vertebraeovicestus dobukasube; B, Plerocercoid of Pelichnibothrium cf. montaukensis; C, Merocercoid of Pelichnibothrium delphini. Tetraphyllidean larva, D, Plerocercoid of Anthobothrium sp. L3.

- 281 - 100/1.00 Litobothrium nickoli (Host: Al. pelagicus) Litobothrium amplifica (Host: Al. pelagicus) Litobothriidea OUTGROUP 100/1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea 100/1.00 Anthocephalum biacetabulatum (Host: Rh. schlegelii) 99/0.97 Anthocephalum cf. centrurum (Host: Da. centroura) 100/1.00 Rhinebothrium megacanthophallus (Host: Hi. polylepis) Rhinebothriidea 本図については,5年以内に雑誌等で刊行予定のため,非公開.Rhodobothrium paucitesticulare (Host: Rh. bonasus) Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 100/1.00 Acanthobothrium santarosaliense (Host: He. mexicanus) 100/0.98 Acanthobothrium parviuncinatum (Host: Ur. maculatus) 100/1.00 Uncibilocularis okei (Host: Pa. atrus) 100/1.00 Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) 100/1.00 Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) 100/1.00 Proteocephalus macrocephalus (Host: An. anguilla) 100/1.00 100/1.00 Proteocephalus perplexus (Host: Am. calva ) 99/0.90 Peltidocotyle rugosa (Host: Ps. fasciatum) Onchoproteocephalidea 100/1.00 Platybothrium jondoeorum (Host: Ne. acutidens) 67/- Platybothrium auriculatum (Host: Pr. glauca) 100/1.00 Prosobothrium armigerum (Host: Pr. glauca) Phoreiobothrium lewinense (Host: Sp. lewini) 67/0.51 Triloculatum andersonorum (Host: Ne. acutidens) Megalonchos shawae (Host: He. elongata) 100/1.00 100/1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) 58/0.71 Ceratobothrium sp. (Host: Ca. carcharias) 100/1.00 Yorkeria hilli (Host: Ch. punctatum) Balanobothrium sp. (Host: St. fasciatum) 94/1.00 Tetraphyllidea 100/0.94 Pachybothrium hutsoni (Host: Ne. ferrugineus) 97/0.62 Pedibothrium mounseyi (Host: Ne. ferrugineus) 99/1.00 Rosebothrium ootenjikuzame (Host: Ne. ferrugineus) 100/1.00 Anthobothrium caseyi (Host: Pr. glauca) Anthobothrium caseyi (Host: Pr. glauca) 67/0.90 100/1.00 100/1.00 Anthobothrium sp. 1 (Host: Ca. tilstoni) 100/1.00 Anthobothrium sp. 2 (Host: Ca. brevipinna) Anthobothrium sp. L1 100/1.00 Anthobothrium sp. 3 (Host: Ca. plumbeus) Plerocercoid (Host: Sc. australasicus) -Larva 1 19/- 100/1.00 97/0.97 Plerocercoid (Host: Va. louti) -Larva 2 Anthobothrium sp. 4 (Host: Ca. brevipinna) Anthobothrium sp. L2 100/1.00 Plerocercoid (Host: Tr. japonicus) -Larva 3 Anthobothrium sp. L3 Plerocercoid (Host: Co. hippurus) -Larva 4 Plerocercoid (Host: Tr. japonicus) -Larva 5 Anthobothrium sp. L4 84/0.67 Anthobothrium sp. 5 (Host: Ca. dussumieri) Plerocercoid (Host: Ep. fasciatus) -Larva 6 17/- Larva 7 92/.73 57/- 100/1.00 Plerocercoid (Host: Ep. fasciatus) - Plerocercoid (Host: Ep. fasciatus) -Larva 8 Anthobothrium sp. L5 Plerocercoid (Host: Th. lutescens) -Larva 9 Plerocercoid (Host: Co. aygula) -Larva 10 100/1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) 24/- Phyllobothrium hoshizame (Host: Mu. manazo) 100/1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos sp. 2 (Host: Rh. pacifica) 100/1.00 Trilocularia gracilis (Host: Sq. acanthias) 100/1.00 Crossobothrium laciniatum (Host: He. griseus) Crossobothrium campanulatum (Host: He. griseus) 99/0.96 Crossobothrium dohrni (Host: He. perlo) 75/0.80 100/1.00 Crossobothrium cf. dohrni (Host: He. perlo) Plerocercoid (Host: Da. setiger) -Larva 33 Phyllobothriidea gen. sp. L2 Bilocularia hyperapolytica (Host: Da. licha) Calyptrobothrium sp. (Host: To. nobiliana) 99/1.00 100/1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) 79/0.95 100/1.00 Vertebraeovicestus dobukasube (Host: Ba. smirnovi) Plerocercoid (Host: Ly. nakamurae) -Larva 32 Vertebraeovicestus dobukasube 53/0.75 Yamaguticestus squali (Host: Sq. japonicus) Yamaguticestus squali (Host: Sq. mitsukurii) Yamaguticestus squali (Host: Sq. japonicus) 99/1.00 Yamaguticestus squali (Host: Ce. umbratile) 100/0.96 Yamaguticestus squali (Host: Ce. umbratile) 100/0.87 Yamaguticestus squali (Host: Ga. nipponensis) 100/1.00 Yamaguticestus squali (Host: Sq. acanthias) Yamaguticestus squali (Host: Sq. mitsukurii) 100/0.98 Yamaguticestus squali (Host: Ce. umbratile) 99/1.00 Pelichnibothrium speciosum (Host: Al. ferox) Pelichnibothrium speciosum (Host: Pr. glauca) Plerocercoid - Pelichnibothrium caudatum (Host: On. keta) -Larva 35 Plerocercoid (Host: Be. magister) -Larva 11 84/0.63 Plerocercoid (Host: Be. magister) -Larva 12 Plerocercoid (Host: Be. magister) -Larva 13 92/0.99 Plerocercoid (Host: Wa. scintillans) -Larva 14 Plerocercoid (Host: Ba. smirnovi) -Larva 15 17/- 99/0.99 Plerocercoid (Host: Ba. smirnovi) -Larva 16 Plerocercoid (Host: Ga. macrocephalus) -Larva 17 Plerocercoid (Host: Ar. japonicus) -Larva 18 Plerocercoid (Host: Ca. trachysomai) -Larva 19 Ap. ventricosus) -Larva 20 100/1.00 Plerocercoid (Host: Plerocercoid (Host: Ap. ventricosus) -Larva 21 Plerocercoid (Host: Eu. asperrimus) -Larva 22 Plerocercoid (Host: Hi. dubius) -Larva 23 Pelichnibothrium cf. montaukensis (Host: La. nasus) Plerocercoid - Pelichnibothrium cf. montaukensis (Host: Do. gahi) 91/0.81 Plerocercoid - Pelichnibothrium cf. montaukensis (Host: Re. glesne) 99/0.95 Plerocercoid (Host: To. pacificus) -Larva 26 Plerocercoid (Host: Be. magister) -Larva 27 Pelichnibothrium clade 97/0.93 Pelichnibothrium montaukensis (Host: Is. oxyrinchus) Plerocercoid (Host: Al. ferox) -Larva 24 98/0.68 Plerocercoid (Host: Al. ferox) -Larva 25 Pelichnibothrium montaukensis (Host: Is. oxyrinchus) Merocercoid - Pelichnibothrium delphini (Host: St. coeruleoalba) -Larva 39 100/1.00 Merocercoid - Pelichnibothrium delphini (Host: St. coeruleoalba) 97/0.89 Merocercoid - Pelichnibothrium delphini (Host: Gr. griseus) 97/0.93 Merocercoid - Pelichnibothrium delphini (Host: Gr. griseus) Merocercoid - Pelichnibothrium grimaldii (Host: St. coeruleoalba) -Larva 41 67/- Merocercoid - Pelichnibothrium grimaldii (Host: St. coeruleoalba) Merocercoid - Pelichnibothrium grimaldii (Host: Gr. griseus) 97/0.98 Merocercoid - Pelichnibothrium grimaldii (Host: Tu. truncatus) Pelichnibothrium carcharodoni (Host: Ca. carcharias) (Host: Ca. carcharias) 96/0.81 Pelichnibothrium carcharodoni Plerocercoid - Pelichnibothrium carcharodoni (Host: St. coeruleoalba) Plerocercoid - Pelichnibothrium carcharodoni (Host: Gr. griseus) 100/1.00 Pelichnibothrium tumidum (Host: Ca. carcharias) Plerocercoid (Host: St. coeruleoalba) 98/0.97 Plerocercoid (Host: Gr. griseus) Tu. truncatus) 93/0.90 Plerocercoid (Host: Plerocercoid (Host: Xi. gladius) -Larva 28 100/1.00 Plerocercoid (Host: Xi. gladius) -Larva 29 Plerocercoid (Host: Ta. steindachneri) -Larva 30 Phyllobothriidea gen. sp. L1 90/0.56 Plerocercoid (Host: Ta. steindachneri) -Larva 31 100/1.00 Monorygma chamydoselachi (Host: Ch. anguineus) Phyllobothriidea Mitsukuricestus gobelinus (Host: Mi. owstoni) Phyllobothriidea gen. sp. (Host: Sp. lewini) (Host: Mu. mustelus) 47/- 100/1.00 Orygmatobothrium cf. musteli 2 Orygmatobothrium musteli (Host: Mu. manazo) 100/1.00 Orygmatobothrium musteli (Host: Mu. griseus) Orygmatobothrium cf. musteli 1(Host: Mu. mustelus) 100/1.00 32/- Thysanocephalum thysanocephalum (Host: Ga. cuvier) Thysanocephalum thysanocephalum (Host: Ga. cuvier) 100/1.00 Alexandercestus gibsoni (Host: Ne. acutidens) Alexandercestus oomejirozame (Host: Ca. leucas) 99/1.00 Scyphophyllidium guariticus (Host: Pa. aiereba) 100/0.99 Scyphophyllidium insulaeum (Host: Ca. plumbeus) 100/1.00 Scyphophyllidium insulaeum (Host: Ca. galapagensis) 97/1.00 Scyphophyllidium sp. A (Host: Ca. brevipinna) 100/1.00 Scyphophyllidium sp. (Host: Al. pelagicus) 83/0.78 Scyphophyllidium triacis (Host: Tr. scyllium) 98/1.00 Plerocercoid (Host: Ar. felis) Plerocercoid (Host: Cy. nebulosus) 100/1.00 Scyphophyllidium sp. B (Host: Ca. brevipinna) 100/1.00 Scyphophyllidium sp. B (Host: Ca. isodon) 99/1.00 Scyphophyllidium sp. B (Host: Ca. limbatus) 100/0.78 Scyphophyllidium sp. B (Host: Rh. terraenovae) 60/- Scyphophyllidium tyleri (Host: Ch. punctatum) 100/1.00 Scyphophyllidium randyi (Host: Ch. hasseltii) Scyphophyllidium eirakubuka (Host: He. japanica) 100/1.00 Scyphophyllidium exiguum (Host: Al. vulpinus) 93/0.94 100/1.00 Scyphophyllidium bai (Host: Mu. mustelus) Scyphophyllidium cf. giganteum (Host: Ga. galeus) Scyphophyllidium longiproglottidum (Host: Ca. limbatus) 95/1.00 Scyphophyllidium taylori (Host: He. australiensis) 89/0.75 Scyphophyllidium janineae (Host: He. australiensis) (Host: He. microstoma) 90/0.96 39/- Scyphophyllidium kirstenae 100/1.00 Scyphophyllidium paulum (Host: Ga. cuvier) Scyphophyllidium paulum (Host: Ga. cuvier) 100/1.00 33/- 22/- Scyphophyllidium hanazame (Host: Ca. brevipinna) 68/0.97 Scyphophyllidium nemuribuka (Host: Tr. obesus) Scyphophyllidium ogasawaraensis (Host: Tr. obesus) 69/0.68 100/1.00 Scyphophyllidium ogasawaraensis (Host: Ca. galapagensis) 100/1.00 Scyphophyllidium prionacis (Host: Pr. glauca) Scyphophyllidium prionacis (Host: Pr. glauca) Scyphophyllidium yogore (Host: Ca. longimanus) 100/1.00 Scyphophyllidium carcharhinus (Host: Ca. limbatus) Scyphophyllidium carcharhinus (Host: Ca. galapagensis) Scyphophylidium carcharhinus Scyphophyllidium carcharhinus (Host: Ca. leucas) 92/0.89 Plerocercoid (Host: Co. hippurus) -Larva 34 74/0.63 Scyphophyllidium sp. C (Host: Rh. terraenovae) 100/0.98 Plerocercoid (Host: Tr. lepturus) 99/0.98 100/1.00 Scyphophyllidium sumitsukizame (Host: Ca. dussumieri) 100/1.00 Scyphophyllidium latipi (Host: Sc. macrorhynchus) Plerocercoid (Host: Op. beta) Scyphophyllidium sp. D (Host: Ca. brevipinna) 99/1.00 Scyphophyllidium sp. D (Host: Ca. limbatus) 100/1.00 Scyphophyllidium sp. D (Host: Rh. terraenovae) Plerocercoid (Host: Lo. surinamensis) 99/1.00 Plerocercoid (Host: Pa. lethostigma) Scyphophyllidium maritimum (Host: Ca. brevipinna) 100/1.00 Scyphophyllidium maritimum (Host: Ca. galapagensis) 100/1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) ML/BI 100/1.00 Callibothrium shirozame (Host: Mu. griseus) 0.05 substitutions per site Symcallio violae (Host: Mu. canis) Fig. 54 Maximum likelihood tree using Dataset 3 (lsrDNA). Bootstrap values and BPP are shown at each branch, and hyphens indicate branches which were not observed in the Bayesian Inference tree. Larval sequences obtained in this study are shown in red color, adult sequences obtained in this study are shown in black color, and those collected from GenBank are in gray color. Open boxes indicate the revised orders. Solid bars indicate species which identified by this study. Pelichnibothrium clade is shown by dotted lines.

- 282 - Adult (Host: Ch. anguineus) Monorygma chamydoselachi【 OUTGROUP】 Adult (Host: La. nasus) 本図については,5年以内に雑誌等で刊行予定のため,非公開.Plerocercoid (Host: Do. gahi) Plerocercoid (Host: Re. glesne) Pe. cf. montaukesis Plerocercoid (Host: To. pacificus) -Larva 26 Plerocercoid (Host: Be. magister) -Larva 27 Adult (Host: Ca. carcharias) 78/0.64 Adult (Host: Ca. carcharias) Adult (Host: Ca. carcharias) Pe. carcharodoni Plerocercoid (Host: St. coeruleoalba) 56/- Plerocercoid (Host: Gr. griseus) 97/1.00 Adult (Host: Ca. carcharias) Pe. tumidum Adult (Host: Ca. carcharias) 69/0.92 Plerocercoid (Host: St. coeruleoalba) 97/1.00 Plerocercoid (Host: Gr. griseus) Pelichnibothrium sp. Plerocercoid (Host: Tu. truncatus) Merocercoid (Host: St. coeruleoalba) -Larva 40 84/0.96 Merocercoid (Host: St. coeruleoalba) Merocercoid (Host: St. coeruleoalba) -Larva 39 Pe. delphini 98/1.00 Merocercoid (Host: Gr. griseus) Merocercoid (Host: Tu. truncatus) Merocercoid (Host: St. coeruleoalba) -Larva 41 Merocercoid (Host: St. coeruleoalba) -Larva 42 Merocercoid (Host: St. coeruleoalba) Pe. grimaldii Merocercoid (Host: Gr. griseus) 93/0.98 Merocercoid (Host: Tu. truncatus) Adult (Host: Is. oxyrinchus) Adult (Host: Is. oxyrinchus) Adult (Host: Is. oxyrinchus) 55/- Adult (Host: Is. oxyrinchus) Pe. montaukensis 84/0.93 Adult (Host: Is. oxyrinchus) Plerocercoid (Host: Al. ferox) -Larva 24 Plerocercoid (Host: Al. ferox) -Larva 25 Adult (Host: Al. ferox) 84/0.99 Adult (Host: Al. ferox) Adult (Host: Pr. glauca) Pe. speciosum Adult (Host: Pr. glauca) Plerocercoid (Host: On. keta) -Larva 35 Plerocercoid (Host: On. keta) -Larva 36 Plerocercoid (Host: On. keta) -Larva 37 Plerocercoid (Host: On. keta) -Larva 38 60/0.66 Plerocercoid (Host: Be. magister) -Larva 11 Plerocercoid (Host: Be. magister) -Larva 12 Plerocercoid (Host: Be. magister) -Larva 13 Plerocercoid (Host: Wa. scintillans) -Larva 14 Plerocercoid (Host: Ba. smirnovi) -Larva 15 Pe. caudatum 94/0.98 Plerocercoid (Host: Ba. smirnovi) -Larva 16 Plerocercoid (Host: Ga. macrocephalus) -Larva 17 Plerocercoid (Host: Ar. japonicus) -Larva 18 Plerocercoid (Host: Ca. trachysomai) -Larva 19 Plerocercoid (Host: Ap. ventricosus) -Larva 20 Plerocercoid (Host: Ap. ventricosus) -Larva 21 ML/BI Plerocercoid (Host: Eu. asperrimus) -Larva 22 Hi. dubius) -Larva 23 0.01 substitutions per site Plerocercoid (Host: Fig. 55 Maximum likelihood tree of Pelichnibothrium clade using Dataset 4 (lsrDNA). See Fig. 54 for the explanations of trees and open box. Solid bars indicate clades of each species clades.

- 283 - Adult (Host: Ch. anguineus) Monorygma chamydoselachi【 OUTGROUP】 97/0.99 Plerocercoid (Host: To. pacificus) -Larva 26 Pe. cf. montaukesis 本図については,5年以内に雑誌等で刊行予定のため,非公開.Plerocercoid (Host: Be. magister) -Larva 27 99/1.00 99/1.00 Adult (Host: Ca. carcharias) Pe. carcharodoni Adult (Host: Ca. carcharias) 100/1.00 Adult (Host: Ca. carcharias) 59/0.90 Pe. tumidum 28/- Adult (Host: Ca. carcharias) 36/- Merocercoid (Host: St. coeruleoalba) -Larva 40 51/- Merocercoid (Host: St. coeruleoalba) -Larva 39 Pe. delphini 99/1.00 Merocercoid (Host: St. coeruleoalba) -Larva 42 Pe. grimaldii Merocercoid (Host: St. coeruleoalba) -Larva 41 57/0.78 (Host: Al. ferox) 94/1.00 Adult Adult (Host: Al. ferox) Pe. speciosum 75/- Adult (Host: Pr. glauca) Adult (Host: Pr. glauca) Adult (Host: Is. oxyrinchus) 93/0.99 Adult (Host: Is. oxyrinchus) 97/0.96 Adult (Host: Is. oxyrinchus) 77/0.83 Adult (Host: Is. oxyrinchus) Pe. montaukensis 99/1.00 Adult (Host: Is. oxyrinchus) Plerocercoid (Host: Al. ferox) -Larva 24 Plerocercoid (Host: Al. ferox) -Larva 25 Plerocercoid (Host: On. keta) -Larva 35 46/- Plerocercoid (Host: Be. magister) -Larva 11 Plerocercoid (Host: Ga. macrocephalus) -Larva 17 97/1.00 Plerocercoid (Host: On. keta) -Larva 36 Plerocercoid (Host: Wa. scintillans) -Larva 14 Plerocercoid (Host: Hi. dubius) -Larva 23 Plerocercoid (Host: Eu. asperrimus) -Larva 22 Plerocercoid (Host: Ap. ventricosus) -Larva 21 Plerocercoid (Host: On. keta) -Larva 37 Pe. caudatum Plerocercoid (Host: Be. magister) -Larva 12 Plerocercoid (Host: Ca. trachysomai) -Larva 19 Plerocercoid (Host: On. keta) -Larva 38 Plerocercoid (Host: Ba. smirnovi) -Larva 16 Plerocercoid (Host: Be. magister) -Larva 13 Plerocercoid (Host: Ba. smirnovi) -Larva 15 ML/BI Plerocercoid (Host: Ar. japonicus) -Larva 18 Ap. ventricosus) -Larva 20 0.1 substitutions per site Plerocercoid (Host: Fig. 56 Maximum likelihood tree of Pelichnibothrium clade using Dataset 5 (mtDNA COI). See Fig. 54 for the explanations of trees and open box. Solid bars indicate clades of each species clades.

- 284 - A 本図については,5年以内に雑誌等で刊行予定のため,非公開.B C

Bladder

100µm

1mm 200µm

E

D F G

200µm

100µm

100µm 200µm

Fig. 57 Plerocercoids. A. Pelichnibothrium cf. montaukensis, No. others 52 (Host: Todarodes pacificus). B. Phyllobothriidae gen. sp. L1, No. others 577 (Host: Xiphias gladius). C. Phyllobothriidae gen. sp. L2, No. others 99 (Host: Dasycottus setiger). D. Anthobothrium sp. L3, No. others 390 (Host: Trichiurus japonicus), E. Anthobothrium sp. L4, No. others 430 (Host: Coryphaena hippurus). F. Anthobothrium sp. L5, No. others 132 (Host: Epinephelus fasciatus). G. Anthobothrium sp. L5, No. others 553 (Host: Coris aygula).

- 285 - A 本図については,5年以内に雑誌等で刊行予定のため,非公開.C

500µm

B

500µm 500µm

Fig. 58 Morphological variation of the scolex of plerocercoids of Pelichnibothrium caudatum. A, flatted bothridium, No. others 48 (Host: Hippoglossoides dubius). B, flatted bothridium, No. others 29 (Host: Careproctus trachysoma). C, slightly crumpled bothridium, No. others 22 (Host: Aptocyclus ventricosus).

- 286 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.Apical sucker Accessory sucker Apical sucker Bothridium Bothridium

Accessory sucker - 287

0 sec 3 sec 6 sec 9 sec 12 sec 30 sec Fig. 59 Invagination of scolex of Pelichnibothrium caudatum, No. others 527 (Host: Onchorhynchus keta). Pictures were arranged in time series from left to right. Drawings were given to show outlines of the body and organs for pictures of 0 sec and 30 sec.

本図については,5年以内に雑誌等で刊行予定のため,非公開.Final Host Isurus oxyrinchus

unknouwn Egg

unknouwn Adult

(Caira & Reyda, 2005) Hexacanth

2nd Intemediate Host Alepisauruspf ferox

unknouwn 1st Intemediate ‱Host Plocercoid (Caira & Reyda, 2005) Plerocercoid Fig. 60 Life cycle of Pelichnibothrium montaukensis. Arrows show the flow of life cycle, black arrows show the free-living flows, red arrows show host transportation by food web. Squares show host, life stages in the square are a parasitic stage.

- 288 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.Finalnal HostHost Lamna nasus

(Randhawa & Brickle, 2011) Adult unknouwn Egg 2nd Intemediate Host Doryteuthis gahi Regalecus russelii unknouwn Todarodes pacificuss (Berryteuthis magisterter )

Hexacanth (Caira & Reyda, 2005) Plerocercoid

unknouwn 1st Intemediate Host‱

Plocercoid (Caira & Reyda, 2005) Fig. 61 Life cycle of Pelichnibothrium cf. montaukensis. The information was followed as Fig. 60.

- 289 -

Final Host 本図については,5年以内に雑誌等で刊行予定のため,非公開.Carcharodondon carcharias

Adult unknouwn Egg 2nd Intemediate Host Stenella coeruleoalba

Grampus griseusriiseus unknouwn

Hexacanth Plerocercoid (Caira & Reyda, 2005) (Agusti et al., 2005a)

unknouwn 1st Intemediate Host‱

Plocercoid (Caira & Reyda, 2005) Fig. 62 Life cycle of Pelichnibothrium carcharodoni. The information was followed as Fig. 60.

- 290 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.Dead End

Final Host Prionace gglaucalaaucca

Dead-end Host Alepisaurus ferox Adult

Adult

unknouwn Egg

unknouwn

unknouwn Hexacanth 2nd Intemediate Host (Caira & Reyda, 2005) ‱ Plerocercoid

(Caira & Reyda, 2005) unknouwn 1st Intemediate ‱Host

Procercoid (Caira & Reyda, 2005) Fig. 63 Life cycle of Pelichnibothrium speciosum. The other information was followed as Fig. 60.

- 291 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.Adult

Final Host Carcharhinus limbatus

Carcharhinus galapagensis

Carcharhinus leucas

unknouwn Egg

unknouwn

2nd Intemediate Host Hexacanth (Caira & Reyda, 2005) Coryphaena hippurushippuru

unknouwn 1st Intemediate ‱Host Plerocercoid Procercoid (Caira & Reyda, 2005) Fig. 64 Life cycle of Scyphophyllidium carcharhinus. The other information was followed as Fig. 60.

- 292 -

本図については,5年以内に雑誌等で刊行予定のため,非公開.Adult

Final Host Bathyraja smirnovimirnovi

2nd Intemediate Host Lycodesy nakamurae Egg

unknouwn Plerocercoid

Hexacanth (Caira & Reyda, 2005) unknouwn 1st Intemediate‱ Host

Procercoid (Caira & Reyda, 2005) Fig. 65 Life cycle of Vertebraeovicestus dobukasube. The other information was followed as Fig. 60.

- 293 - A E

B F

C G

D

Fig. 66 Evolutionally processes. A. co-speciation, B. host switch, C. independent speciation, D. extinction, E. missing the boat, F. failure to speciation, G. host range expansion. Black tubes represent host lineages, red lines represent parasite lineages. A circle shows co-speciation, arrows and dotted lines show host switching, and a cross shows extinction. This figures were modified from Page (2003) and Clayton et al. (2003).

- 294 - Monorygma chamydoselachi Rhinochimaeridae Holocephali Marsupiobothrium gobelinus Anacanthobatidae Calliobothrium cf. verticillatum Crurirajidae Rajiformes* Arhynchobatidae 本図については,5年以内に雑誌等で刊行予定のため,非公開.Callibothrium shirozame Rajidae Symcallio violae Narcinidae** Torpediniformes Torpedinidae Trilocularia gracilis Rhinobatidae* Rajiformes*+Pristiformes Crossobothrium laciniatum Rhinidae +Myliobatiformes* Crossobothrium campanulatum Rhynchobatidae Crossobothrium dohrni Pristidae** Dasyatidae* Pelichnibothrium speciosum Zanobatidae Pelichnibothrium montaukensis Hexatrygonidae Myliobatiformes* Pelichnibothrium carcharodoni Urolophidae Plesiobatidae Pelichnibothrium tumidum Gymnuridae Phyllobothriidea gen. sp. Myliobatidae** Phyllobothrium cf. lactuca Mobulidae Rhinopteridae Phyllobothrium serratum Dasyatidae* Phyllobothrium hoshizame Potamotrygonidae Elasmobranchii Chimaerocestos sp. 1 Urotrygonidae Dasyatidae* Chimaerocestos sp. 2 Chlamydoselachidae Hexanchiformes Bilocularia hyperapolytica Hexanchidae Pristiophoriformes Squalomorphi** Calyptrobothrium sp. Pristiophoridae Squatinidae Calyptrobothrium sp. 1 Echinorhinidae Squatiniformes Vertebraeovicestus dobukasube Dalatiidae +Squaliformes* Yamaguticestus squali Etmopteridae Somniosidae** Orygmatobothrium cf. musteli 2 Oxynotidae - 295 Squaliformes* Orygmatobothrium musteli Somniosidae Thysanocephalum thysanocephalum Centrophoridae Squalidae Alexandercestus oomejirozame Heterodontiformes Heterodontidae Scyphophyllidium insulatum Parascylliidae Scyphophyllidium sp. Brachaeluridae Orectolobidae Scyphophyllidium triacis Orectolobiformes Ginglymostomatidae* Scyphophyllidium guariticus Ginglymostomatidae* Scyphophyllidium tyleri Rhincodontidae Scyphophyllidium randyi Stegostomatidae Hemiscyllinidae Scyphophyllidium eirakubuka Mitsukurinidae Galeomorphi Scyphophyllidium exiguum Pseudocarchariidae Scyphophyllidium cf. giganteum Odontaspididae* Megachasmidae Lamniformes Scyphophyllidium prionacis Alopiidae Scyphophyllidium paulum Odontaspididae* Scyphophyllidium ogasawaraensis Cetorhinidae Lamnidae Scyphophyllidium hanazame Scyliorhinidae* Scyphophyllidium longiproglottius Pseudotriakidae Carcharhiniformes Scyphophyllidium nenuribuka Scyliorhinidae* Scyliorhinidae* Scyphophyllidiumyogore Triakidae** Scyphophyllidium carcharhinus Leptochariidae Scyphophyllidium sumitsukizame Hemigaleidae Scyphophyllidium latipi Carcharhinidae* Sphyrnidae Scyphophyllidium marittimum Carcharhinidae* Fig. 67 Relationship between phyllobothriidean lineages and their host elasmobranch lineages. The phylogenetic tree of phyllobothriideans was based on Fig. 14. The phylogenetic tree of elasmobranch families was based on Naylor et al. (2012). Single asterisks mean polyphyletic families, and double asterisks mean paraphyletic families. Lines show parasite-host associations, and their color shows subclasses of the host familes: black, Holocephali; blue, Galeomorphi; green, Batoidea; red, Squalomorphi. Mitsukurinidae Lamniformes Pseudocarchariidae Megachasmidae Alopiidae 本図については,5年以内に雑誌等で刊行予定のため,非公開.Odontaspididae Cetorhinidae Pelichnibothrium cf. montaukensis Lamna nasus

Pelichnibothrium carcharodoni Lamna ditropis Carcharodon carcharias Lamnidae Pelichnibothrium tumidum Isurus oxyrinchus

Pelichnibothrium montaukensis Isurus paucus Scyliorhinidae*

Pelichnibothrium speciosum Pseudotriakidae Carcharhiniformes Scyliorhinidae*

Triakidae Leptochariidae Hemigaleidae Sphyrnidae

Carcharhinidae Fig. 68 Relationship between Pelichnibothrium lineages and their host's lineages. Phylogenetic tree of Pelichnibothrium was based on Fig. 55. Phylogenetic tree of their host elasmobranchs was based on Naylor et al. (2012). Single asterisks mean polyphyletic families. Lines show parasite-host relationship.

- 296 - Lamna nasus 本図については,5年以内に雑誌等で刊行予定のため,非公開.Pelichnibothrium cf. montaukensis Lamnidae Pelichnibothrium carcharodoni Carcharodon carcharias Pelichnibothrium tumidum

Isurus oxyrinchus Pelichnibothrium montaukensis Carcharhinidae Prionace glauca Pelichnibothrium speciosum Fig. 69 Estimation of co-evolutionary history between Pelichnibothrium and their host shark species. See Fig. 66 for the explanations of symbols and lines in the tree. Species in red show parasite, and species in black color show host.

- 297 - Myliobatiformes Thysanocephalum thysanocephalum Potamotrygonidae Orectolobiformes Orectolobidae Lamniformes 本図については,5年以内に雑誌等で刊行予定のため,非公開.Alexandercestus oomejirozame Alopiidae Triakidae Carcharhinidae* Scyphophyllidium insulatum Galeocerdo cuvier Eusphyra blochii Sphyrnidae Sphyrna zygaena Scyphophyllidium sp. Sphyrna mokarran Carcharhiniformes Sphyrna corona Sphyrna tudes Scyphophyllidium triacis Sphyrna tiburo Sphyrna lewini Loxodon macrorhinus Scyphophyllidium guariticus Scoliodon laticaudus Scoliodon macrorhynchos Rhizoprionodon oligolinx Scyphophyllidium tyleri Rhizoprionodon taylori Rhizoprionodon lalandii Rhizoprionodon longurio Scyphophyllidium randyi Rhizoprionodon porosus Rhizoprionodon terraenovae Rhizoprionodon acutus Scyphophyllidium eirakubuka Negaprion brevirostris Carcharhinidae* Negaprion acutidens Glyphis glyphis Scyphophyllidium exiguum Glyphis garricki Glyphis gangeticus Glyphis fowlerae Lamiopsis tephrodes Scyphophyllidium cf. giganteum Lamiopsis tephrodes Triaenodon obesus

- 298 Carcharhinus signatus Scyphophyllidium prionacis Carcharhinus porosus Isogomphodon oxyrhynchus Carcharhinus isodon Scyphophyllidium paulum Nasolamia velox Carcharhinus acronotus Carcharhinus brachyurus Scyphophyllidium ogasawaraensis Carcharhinus brevipinna Carcharhinus altimus Carcharhinus plumbeus Scyphophyllidium hanazame Carcharhinus amboinensis Carcharhinus leucas Carcharhinus cautus Scyphophyllidium longiproglottius Carcharhinus melanopterus Carcharhinus fitzroyensis Carcharhinus tilstoni Scyphophyllidium nenuribuka Carcharhinus limbatus Carcharhinus amblyrhynchoides Carcharhinus sorrah Scyphophyllidiumyogore Carcharhinus perezi Carcharhinus longimanus Carcharhinus galapagensis Scyphophyllidium carcharhinus Carcharhinus obscurus Carcharhinus dussumieri Carcharhinus sealei Scyphophyllidium sumitsukizame Carcharhinus macloti Carcharhinus borneensis Carcharhinus albimarginatus Scyphophyllidium latipi Carcharhinus wheeleri Carcharhinus amblyrhynchos Prionace glauca Scyphophyllidium marittimum Carcharhinus falciformis Fig. 70 Relationship between Alexandercestus, Scyphophyllidium and Thysanocephalum lineages and their host elasmobranch lineages. The phylogenetic tree of the three genera was based on Fig. 14. The phylogenetic tree of elasmobranchs was based on Naylor et al. (2012). See Fig. 67 for the explanations of symbols in the tree. Red color Phyllobothriidean species in red color indicatespecies parasitic in multiple hosts. Lines show the relationship between phyllobothriidean and carcharhinid sharks. Appendix History of systematics of the order Phyllobothriidea and Tetraphyllidea. The genera included in Phyllobothriidea in this study are shown in bold face.

Braum (1900) Order Tetraphyllidea Family Onchobothriidae Onchobothrius, Acanthobothrium, Calliobothrium, Ceratobothrium, Cylindrophorus, Phoreiobothrium, Platybothrium, Prosthecobothriunm, Thysanocephalum Family Phyllobothriidae Phyllobothrium, Anthobothrium, Calyptrobothrium, Crossobothrium, Dinobothrium, Diplobothrium, Echeneibothrium, Monorygma, Orygmatobothrium, Spongiobothrium, Trilocularia, Tritaphros Family Lecanicephalidae Discocephalum, Lecanicephalum, Tylocephalum Family Ichthyoteaniidae Ichthyotaenia, Corallobothrium, Crepidobothrium

Meggitt (1924) Order Tetraphyllidea Family Ichthyoteaniidae Ichthyoteania, Corallobothrim, Crepidobothrium, Gangesia Family Onchobothriidae Onchobothrium, Acanthobothrium, Balanobothrium, Calliobothrium, Ceratobothrium, Cylindrophorus, Pedibothrium, Phyllobothroides Platybothrium, Prosthecobothrium, Thysanocephalum Family Phyllobothriidae Phyllobothrium, Anthobothrium, Aocobothrium, Bilocularia, Calyptobothrium, Carpobothrium, Dinobothrium, Diplobothrium, Echeneibothrium, Eniochobothrium, Hornellobothrium, Monorygma, Myzocephalus, Myzophyllobothrium, Oriana, Orygmatobothrium, Pelichnibothrium, Peltidocotyle, Prosobothrium, Rhinebothrium, Rhoptrobothrium, Spongiobothrium, Tiarabothrium, Trilocularia, Tritaphros, Zygobothrium

- 299 - Family Lecanicephalidae Anthemobothrium, Calycobothrium, Polypocephalus Family Polypocephalidae Polypocephalus, Anthemobothrium, Calycobothrium

Southwell (1925) Order Tetraphyllidea Family Onchobothriidae Onchobothrium, Acanthobothrium, Calliobothrium, Ceratobothrium, Cylindrophorus, Uncibilocularis, Platybothrium, Pedibothrium, Tetracampos, Thysanocephalum Family Phyllobothriidae Phyllobothrium, Anthobothrium, Aocobothrium, Carpobothrium, Echeneibothrium, Myzophyllobothrium, Orygmatobothrium, Pithophorus

Fuhrmann (1931) Order Tetraphyllidea Family Onchobothriidae Onchobothrium, Acanthobothrium, Balanobothrium, Calliobothrium, Cylindrophorus, Pedibothrium, Platybothrium, Spiniloculus, Thysanocephalum Uncibilocularis, Yorkeria Family Phyllobothriidae Phyllobothrium, Anthobothrium, Bilocularia, Calyptrobothrium, Carpobothrium, Ceratobothrium, Dinobothrium, Echeneibothrium, Myzophyllobothrium, Orygmatobothrium, Scyphophyllidium, Trilocularia, Tritaphros Family Lecanicephalidae Lecanicephalum, Adelobothrium, Anthemobothrium, Polypocephalus Family Monticelliidae Monticellia, Goezeella, Ephedrocephalus, Marsypocephalus, Peltidocotyle Family Proteocephalidae Proteocephalus, Acanthoteania, Corallobotilrium, Crepidobothrium, Ophioteania Family Cephalobothriidae Cephalobothrium, Tylocephalum, Discobothrium

- 300 - Family Discocephalidae Discocephalum

Joyeux & Baer (1936) Order Tetraphyllidea Family Onchobothiidae Onchobothrium, Acanthobothrium, Calliobothrium, Cylindrophorus Family Phyllobothriidae Phyllobothrium, Anthobothrium, Ceratobothrium, Dinobothrium, Echeneibothrium, Orygmatobothrium, Prosobothrium, Scyphophyllidium Family Ichthyotaeniidae Ichthyotaenia, Ophiotaenia Family Cephalobothriidae Discobothrium Family Disculicipitidae Disculiceps

Hyman (1951) Order Tetraphyllidea Family Onchobothriidae Onchobothrium, Acanthobothrium, Calliobothrium, Thysanocephalum Family Phyllobothriidae Phyllobothrium, Anthobothrium, Carpobothrium, Dinobothrium, Echeneibothrium, Myzophyllobothrium, Orygmatobothrium, Trilocularia

Wardle & McLeod (1952) Order Tetraphyllidea Family Onchobothriidae Onchobothrium, Acanthobothrium, Calliobothrium, Thysanocephalum Family Phyllobothriidae Phyllobothrium, Anthobothrium, Carpobothrium, Dinobothrium, Echeneibothrium, Mysophorus, Myzophyllobothrium, Orygmatobothrium, Pithophorus, Pelichnibothrium, Scyphophyllidium

- 301 - Euzet (1959) Order Tetraphyllidea Superfamily Phyllobothrioidea Family Onchobothriidae Onchobothrium, Acanthobothrium, Calliobothrium Family Phyllobothriidae Subfamily Phyllobothriinae Phyllobothrium, Anthobothrium, Calyptrobothrium, Ceratobothrium, Crossobothrium, Dinobothrium, Monorygma, Orygmatobothrium, Scyphophyllidium, Sphaerobothrium Subfamily Echeneibothriinae Echeneibothrium, Clydonobothrium, Tritaphros Subfamily Rhinebothriinae Rhinebothrium, Caulobothrium, Rhabdotobothrium Subfamily Thysanocephalinae Thysanocephalum Superfamily Prosobothrioidea Family Prosobothriidae Subfamily Prosobothriinae Prosobothrium Subfamily Platybothriinae Platybothrium Family Phoreiobothriidae Subfamily Phoreiobothriinae Phoreiobothrium Subfamily Reesiinae Reesium, Trilocularia Family Gastrolecithidae Gastrolecithus Superfamily Lecanicephaloidea Family Lecanicephalidae Lecanicephalum, Tetragonocephalum Family Disculicipitidae Disculiceps Family Cephalobothriidae Cephalobothrium

- 302 - Yamaguti (1959) Order Tetraphyllidea Family Onchobothriidae Onchobothrium, Acanthobothrium, Calliobothrium, Ceratobothrium, Cylindrophorus, Phoreiobothrium, Pinguicollum, Platybothrium, Spiniloculus, Thysanocephalum, Uncibilocularis, Yorkeria Family Phyllobothriidae Phyllobothrium, Anthobothrium, Aocobothrium, Carpobothrium, Cyatocotyle, Dinobothrium, Echeneibothrium, Gastrolecithus, Marsupiobothrium, Monorygma, Orygmatobothrium, Pelichnibothrium, Pithophorus, Pseudanthobothrium, Reesium, Rhodobothrium, Scyphophyllidium Family Maccallumiellidae Maccallumiella Family Triloculariidae Trilocularia

Joyeux & Baer (1961) Order Tetraphyllidea Superfamily Phyllobothrioidea Family Onchobothriidae Onchobothrium, Acanthobothrium, Balanobothrium, Calliobothrium, Pediobothrium, Pinguicollum, Spiniloculus, Uncibilocularis, Yorkeria Family Phyllobothriidae Subfamily Phyllobothiinae Phyllobothrium, Anthobothrium, Calyptrobothrium, Carpobothrium, Ceratobothrium, Crossobothrium, Dinobothrium, Inermiphyllidium, Marsupiobothrium, Monorygma, Orygmatobothrium, Pillersium, Pithophorus, Polypobothrium, Scyphophyllidium, Sphaerobothrium, Staurobothrium Subfamily Echeneibothriinae Clydonobothrium, Echeneibothrium, Pseudanthobothrium, Tritaphros Subfamily Rhinebothriinae Caulobothrium, Rhabdotobothrium, Rhinebothrium, Tiarabothrium Subfamily Thysanocephalinae Myzocephalus, Myzophyllobothrium, Rhoptrobothrium, Thysanocephalum

- 303 - Superfamily Lecanicephaloidea Family Lecanicephalidae Anthemobothrium, Calycobothrium, Lecanocephalum, Polypocephalus Family Cephalobothriidae Adelobothrium, Cephalobothrium, Hexacanalis, Tetragonocephalum Superfamily Prosobothrioidea Family Disculicepitidae Disculiceps Family Gastrolecithidae Gastrolecithus Family Phoreiobothriidae Subfamily Phoreiobothiinae Phoreiobothrium Subfamily Reesiinae Reesium, Trilocularia Family Prosobothiidae Subfamily Platybothriinae Dicranobothrium, Platybothrium

Schmidt (1986) Order Tetraphyllidea Family Onchobothriidae Onchobothrium, Acanthobothroides, Acanthobothrium, Calliobothrium, Ceratobothrium, Cylindrophorus, Pachybothrium, Pedibothrium, Phoreiobothrium, Pinguicollum, Platybothrium, Pomatotrygonocestus, Spiniloculus, Thysanocephalum, Uncibilocularis, Yorkeria Family Phyllobothriidae Phyllobothrium, Anthobothrium, Aocobothrium, Carpobothrium, Caulobothrium, Clydonobothrium, Cyatocotyle, Dinobothrium, Duplicibothrium, Echeneibothrium, Gastrolecithus, Glyphobothrium, Marsupiobothrium, Mixophyllobothrium, Monorygma, Myzophyllobothrium, Orygmatobothrium, Pelichnibothrium, Phormobothrium, Pithophorus, Pseudanthobothrium, Rhabdotobothrium, Rhinebothrium, Rhinebothroides, Rhodobothrium, Reesium, Scyphophyllidium Family Triloculariidae Trilocularia, Pentaloculum, Zyxibothrium

- 304 - Family Cathetocephalidae Cathetocephalus

Euzet (1994) Order Tetraphyllidea Family Onchobothriidae Onchobothrium, Acanthobothroides, Acanthobothrium, Balanobothrium, Calliobothrium, Dicranobothriun, Megalonchos, Pachybothrium, Pedibothrium, Phoreiobothrium, Platybothrium, Pomatotrygonocestus, Spiniloculus, Uncibilocularis, Yorkeria Family Phyllobothriidae Subfamily Thysanocephalinae Thysanocephalum, Myzocephalus, Myzophyllobothrium Subfamily Echeneibothriinae Pseudoanthobothrium, Clydonobothrium, Phormbothrium, Tritaphros, Echeneibothrium Subfamily Phyllobothriinae Phyllobothrium, Anthobothrium, Calyptrobothrium, Carpobothrium, Ceratobothrium, Clistobothrium, Crossobothrium, Dinobothrium, Gastrolecithus, Marsupiobothrium, Monorygma, Orygmatobothrium, Pithophorus, Rhodobothrium, Scyphophyllidium Subfamily Triloculariinae Trilocularia, Pentaloculum, Zyxibothrium Subfamily Rhinebothriinae Rhinebothrium, Caulobothrium, Duplicibothrium, Glyphobothrium, Rhabdotobothrium, Rhinebothroides Family Disculidpitidae Disculiceps Family Prosobothriidae Prosohothrium Family Dioecotaeniidae Dioecotaenia Family Litobothriidae Litobothrium Family Cathetocephalidae Cathetocephalus

- 305 - Family Chimaerocestidae Chimaerocestos

Caira et al. (2014) Order Phyllobothriidea Family Phyllobothriidae Phyllobothrium, Calyptrobothrium, Chimaerocestos, Marsupiobothrium, Nandocestus, Orectolobicestus, Orygmatobothrium, Paraorygmatobothrium, Ruhnkecestus, Scyphophyllidium, Thysanocephalum Order Tetraphyllidea incertae sedis Alexandercestus, Anthobothrium, Balanobothrium, Bibursibothrium, Biloculuncus, Calliobothrium, Caulobothrium, Carpobothrium, Cardiobothrium, Ceratobothrium, Clistobothrium, Crossobothrium, Dinobothrium, Dioecotaenia, Duplicibothrium, Erudituncus, Flexibothrium, Megalonchos, Myzocephalus, Myzophyllobothrium, Pachybothrium, Pedibothrium, Pelichnibothrium, Rhoptrobothrium, Spiniloculus, Trilocularia, Yorkeria

This study Order Phyllobothriidea 付録については,5年以内に雑誌等で刊行予定のため,非公開.Family Phyllobothriidae Phyllobothrium, Alexandercestus, Bilocularia, Calliobothrium, Calyptrobothrium, Chimaerocestos, Crossobothrium, Mitsukuricestus, Monorygma, Orygmatobothrium, Pelichnibothrium, Scyphophyllidium, Symcallio, Trilocularia, Thysanocephalum, Yamaguticestus, Vertebraeobicestus Order Tetraphyllidea incertae sedis Anthobothrium, Balanobothrium, Bibursibothrium, Biloculuncus, Caulobothrium, Carpobothrium, Cardiobothrium, Ceratobothrium, Dinobothrium, Dioecotaenia, Duplicibothrium, Erudituncus, Flexibothrium, Megalonchos, Myzocephalus, Myzophyllobothrium, Pachybothrium, Pedibothrium, Rhoptrobothrium, Rosebothrium, Spiniloculus, Yorkeria

- 306 - $SSHQGL[ 7DEOH  5HYLVHG QRPLQDO VSHFLHV RI 3K\OORERWKULLGHD 7D[RQRPLF VWDWXV H[FHSWHG VSHFLHV XVLQJ LQ WKLV VWXG\ ZHUH JLYHQ IURP 5XKQNH  DQG IROORZHG GHVFULSWLRQV 6SHFLHV 7D[RQRPLFVWDWXV P 付録については,5年以内に雑誌等で刊行予定のため,非公開.hyllobothrium Phyllobothrium lactuca YDQ%HQHGHQ 7\SH Phyllobothrium hoshizame 9DOLG Phyllobothrium riseri 5XKQNH 9DOLG Phyllobothrium serratum

- 307 - $SSHQGL[7DEOHFRQWLQXHG 6SHFLHV 7D[RQRPLFVWDWXV 付録については,5年以内に雑誌等で刊行予定のため,非公開.Calliobothrium Calliobothrium verticillatum 5XGROSKL 7\SH Calliobothrium australis 2VWURZVNLGH1XQH] 9DOLG Calliobothrium creeveyae %XWOHU 9DOLG Calliobothrium euzeti %HUQRW&DLUD 3LFNHULQJ 9DOLG Calliobothrium nodosum 

- 308 - $SSHQGL[7DEOHFRQWLQXHG 6SHFLHV 7D[RQRPLFVWDWXV 付録については,5年以内に雑誌等で刊行予定のため,非公開.Scyphophyllidium arnoldi 5XKQNH 7KRPSVRQ 9DOLG Scyphophyllidium bai 5XKQNH &DUSHQWHU 9DOLG Scyphophyllidium barberi 5XKQNH 9DOLG Scyphophyllidium carcharhinus 9DOLG Scyphophyllidium chiloscylli  5XKQNH&DLUD &DUSHQWHU 9DOLG Scyphophyllidium exiguum

- 309 - $SSHQGL[7DEOHFRQWLQXHG 6SHFLHV 7D[RQRPLFVWDWXV 付録については,5年以内に雑誌等で刊行予定のため,非公開.Symcallio lunae  ,YDQRY %URRNV 9DOLG Symcallio pellucidum  5LVHU 9DOLG Symcallio riseri  1DVLQ&DLUD (X]HW 9DOLG Symcallio schneiderae  3LFNHULQJ &DLUD 9DOLG Symcallio violae 1DVLQ&DLUD (X]HW 9DOLG Thysanocephalum Thysanocephalum thysanocephalum /LQWRQ 7\SH Trilocularia Trilocularia gracilis 2OVVRQ 7\SH Trilocularia eberti 3LFNHULQJ &DLUD 9DOLG Vertebraeovicestus Vertebraeovicestus dobukasube 7\SH Yamaguticestus Yamaguticestus megacotyla

- 310 - 1.00 Litobothrium nickoli (Host: Al. pelagicus) Litobothrium amplifica (Host: Al. pelagicus) Litobothriidea OUTGROUP 1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea 付録については,5年以内に雑誌等で刊行予定のため,非公開.1.00 Phyllobothrium biacetabulatum (Host: Rh. schlegelii) 1.00 Anthocephalum cf. centrurum (Host: Da. centroura) 1.00 Rhinebothrium megacanthophallus (Host: Hi. polylepis) Rhinebothriidea Rhodobothrium paucitesticulare (Host: Rh. bonasus) 1.00 Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 1.00 Tetrabothrius erostris (Host: La. argentatus) Tetrabothriidae 0.99 Hymenolepis diminuta (Host: Ra. norvegicus) Cyclophyllidea Nippotaenia chaenogobii (Host: Ch. urotaenia) Nippoteaniidea 1.00 Acanthobothrium santarosaliense (Host: He. mexicanus) (Host: Ur. maculatus) 1.00 0.83 Acanthobothrium parviuncinatum 1.00 Uncibilocularis okei (Host: Pa. atrus) 0.68 1.00 Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) Proteocephalus macrocephalus (Host: An. anguilla) 0.71 0.82 1.00 1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) Onchoproteocephalidea Proteocephalus perplexus (Host: Am. calva ) 1.00 Platybothrium jondoeorum (Host: Ne. acutidens) 0.60 1.00 Platybothrium auriculatum (Host: Pr. glauca) 1.00 Prosobothrium armigerum (Host: Pr. glauca) 0.97 Phoreiobothrium lewinense (Host: Sp. lewini) 0.99 Triloculatum andersonorum (Host: Ne. acutidens) Megalonchos shawae (Host: He. elongata) 1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) Ceratobothrium sp. (Host: Ca. carcharias) 0.70 Yorkeria hilli (Host: Ch. punctatum) 1.00 Balanobothrium sp.(Host: St. fasciatum) 0.97 0.90 Pachybothrium hutsoni (Host: Ne. ferrugineus) 1.00 Pedibothrium mounseyi (Host: Ne. ferrugineus) 1.00 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) Tetraphyllidea 0.69 1.00 Anthobothrium caseyi (Host: Pr. glauca) 1.00 Anthobothrium caseyi (Host: Pr. glauca) 1.00 Anthobothrium sp. (Host: Ca. tilstoni) 1.00 1.00 Anthobothrium sp. 1 (Host: Ca. brevipinna) 0.75 Anthobothrium sp. 4(Host: Ca. longimanus) 1.00 Anthobothrium sp. 2 (Host: Ca. brevipinna) Anthobothrium sp. 3 (Host: Ca. dussumieri) 1.00 Monorygma chamydoselachi (Host: Ch. anguineus) Marsupiobothrium gobelinus (Host: Mi. owstoni) 1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 1.00 Callibothrium shirozame (Host: Mu. griseus) (Host: Mu. canis) 0.60 Symcallio violae Trilocularia gracilis (Host: Sq. acanthias) (Host: He. griseus) 1.00 1.00 Crossobothrium laciniatum Crossobothrium campanulatum (Host: He. griseus) 0.74 Crossobothrium dohrni (Host: He. perlo) 1.00 Crossobothrium cf. dohrni (Host: He. perlo) 1.00 Pelichnibothrium speciosum (Host: Al. ferox) 1.00 Pelichnibothrium speciosum (Host: Pr. glauca) 0.63 1.00 Pelichnibothrium caudatum (Host: On. keta) 0.56 Clistobothrium montaukensis Genotype 1 (Host: Is. oxyrinchus) 0.53 Clistobothrium montaukensis Genotype 2 (Host: Is. oxyrinchus) 1.00 Phyllobothrium delphini (Host: St. coeruleoalba) 1.00 Monorygma grimaldii (Host: St. coeruleoalba) Clistobothrium carcharodoni (Host: Ca. carcharias) Clistobothrium tumidum (Host: Ca. carcharias) 1.00 Bilocularia hyperapolytica (Host: Da. licha) Calyptrobothrium sp. (Host: To. nobiliana) 1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) 1.00 Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) 0.80 Phyllobothriium squali Genotype 1 (Host: Sq. japonicus) 0.64 1.00 Monorygma megacotyla Genotype 1 (Host: Ce. umbratile) 0.56 0.55 Phyllobothriium squali Genotype 2 (Host: Sq. mitsukurii) 1.00 Monorygma megacotyla Genotype 2 (Host: Ce. umbratile) 0.99 Monorygma megacotyla Genotype 3 (Host: Ga. nipponensis) 1.00 Phyllobothriium squali Genotype 3 (Host: Sq. japonicus) Phyllobothriium squali Genotype 5 (Host: Sq. acanthias) 1.00 Phyllobothriium squali Genotype 4 (Host: Sq. mitsukurii) 0.98 1.00 Monorygma megacotyla Genotype 4 (Host: Ce. umbratile) 1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos sp. 2 (Host: Rh. pacifica) 0.94 Phyllobothriidea gen. sp. (Host: Sp. lewini) 1.00 1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) Phyllobothriidea 0.98 Phyllobothrium hoshizame (Host: Mu. manazo) (Host: Mu. mustelus) 0.73 1.00 Orygmatobothrium cf. musteli 2 1.00 Orygmatobothrium musteli Genotype 1 (Host: Mu. manazo) Orygmatobothrium musteli Genotype 2 (Host: Mu. griseus) Orygmatobothrium cf. musteli 1 (Host: Mu. mustelus) 0.55 1.00 Thysanocephalum thysanocephalum (Host: Ga. cuvier) Thysanocephalum crispum (Host: Ga. cuvier) 1.00 Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 1.00 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) 1.00 Paraorygmatobothrium sp. 1 (Host: Ca. galapagensis) 1.00 Marsupiobothrium sp. (Host: Al. pelagicus) 1.00 Paraorygmatobothrium triacis (Host: Tr. scyllium) Nandocestus guariticus (Host: Pa. aiereba) 1.00 Orectolobicestus tyleri (Host: Ch. punctatum) 0.78 Orectolobicestus randyi (Host: Ch. hasseltii) 1.00 Paraorygmatobothrium sp. 2 (Host: He. japanica) Paraorygmatobothrium exiguum (Host: Al. vulpinus) 0.97 0.94 Scyphophyllidium cf. giganteum (Host: Ga. galeus) Paraorygmatobothrium prionacis (Host: Pr. glauca) Paraorygmatobothrium prionacis (Host: Pr. glauca) 1.00 Paraorygmatobothrium paulum (Host: Ga. cuvier) 1.00 Paraorygmatobothrium sp. 3 (Host: Tr. obesus) 1.00 Paraorygmatobothrium sp. 3 (Host: Ca. galapagensis) Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 1.00 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 0.86 (Host: Ca. longimanus) 1.00 Paraorygmatobothrium sp. 7 0.68 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) 1.00 1.00 Paraorygmatobothrium sp. 8 (Host: Ca. galapagensis) Paraorygmatobothrium sp. 8 (Host: Ca. leucas) Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) 1.00 Ruhnkecestus latipi (Host: Sc. macrorhynchus) 1.00 Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) 0.02 substitutions per site 1.00 Paraorygmatobothrium sp. 10 (Host: Ca. galapagensis) Appendix Fig. 1 Bayesan Inference tree of Analysis 7 (Dataset 1, ssrDNA+lsrDNA). BPP were showed upper orders clade. Current scientific names are used and some of them were revised in this study (see Table 15). Sequences obtained in this study are shown in black color, and those collected from GenBank are in gray color. Open boxes indicate the revised orders in this study (see Section 3.3 of Chapter I).

- 311 - 1.00 Litobothrium nickoli (Host: Al. pelagicus) Litobothriidea Litobothrium amplifica (Host: Al. pelagicus) OUTGROUP 1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea 付録については,5年以内に雑誌等で刊行予定のため,非公開.1.00 Phyllobothrium biacetabulatum (Host: Rh. schlegelii) 1.00 Anthocephalum cf. centrurum (Host: Da. centroura) 1.00 (Host: Hi. polylepis) Rhinebothriidea 0.78 Rhinebothrium megacanthophallus Rhodobothrium paucitesticulare (Host: Rh. bonasus) Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 1.00 Pelichnibothrium speciosum (Host: Al. ferox) Pelichnibothrium speciosum (Host: Pr. glauca) 0.96 Pelichnibothrium caudatum (Host: On. keta) 0.98 Clistobothrium montaukensis Haplotype 1 (Host: Is. oxyrinchus) 0.97 Clistobothrium montaukensis Haplotype 2 (Host: Is. oxyrinchus) Clistobothrium carcharodoni (Host: Ca. carcharias)

1.00 1.00 Clistobothrium tumidum (Host: Ca. carcharias) Phyllobothrium delphini (Host: St. coeruleoalba) Monorygma grimaldii (Host: St. coeruleoalba) 0.71 Trilocularia gracilis (Host: Sq. acanthias) 0.98 0.77 Crossobothrium laciniatum (Host: He. griseus) 1.00 Crossobothrium campanulatum (Host: He. griseus) 0.93 Crossobothrium dohrni (Host: He. perlo) 1.00 Crossobothrium cf. dohrni (Host: He. perlo) Monorygma chamydoselachi (Host: Ch. anguineus) Marsupiobothrium gobelinus (Host: Mi. owstoni) 1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 1.00 Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) Megalonchos shawae (Host: He. elongata) 1.00 1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) Ceratobothrium sp. (Host: Ca. carcharias) 0.96 Yorkeria hilli (Host: Ch. punctatum) 1.00 (Host: St. fasciatum) 1.00 Balanobothrium sp. Pachybothrium hutsoni (Host: Ne. ferrugineus) 1.00 1.00 Pedibothrium mounseyi (Host: Ne. ferrugineus) Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) Tetraphyllidea 0.93 Anthobothrium caseyi (Host: Pr. glauca)

1.00 Anthobothrium caseyi (Host: Pr. glauca) Anthobothrium sp. 1 (Host: Ca. brevipinna) Anthobothrium sp. (Host: Ca. tilstoni) 1.00 1.00 0.77 Anthobothrium sp. 4(Host: Ca. longimanus) 0.57 1.00 Anthobothrium sp. 2 (Host: Ca. brevipinna) 1.00 Anthobothrium sp. 3 (Host: Ca. dussumieri) Triloculatum andersonorum (Host: Ne. acutidens) Phoreiobothrium lewinense (Host: Sp. lewini) Acanthobothrium santarosaliense (Host: He. mexicanus) 0.69 1.00 Acanthobothrium parviuncinatum (Host: Ur. maculatus) 0.99 Uncibilocularis okei (Host: Pa. atrus) 1.00 0.58 Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) Proteocephalus macrocephalus (Host: An. anguilla) 0.99 0.99 Onchoproteocephalidea 1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) Proteocephalus perplexus (Host: Am. calva ) 0.99 Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) 0.70 1.00 Platybothrium jondoeorum (Host: Ne. acutidens) 1.00 Platybothrium auriculatum (Host: Pr. glauca) 0.53 Prosobothrium armigerum (Host: Pr. glauca) (Host: Ra. norvegicus) 0.99 Hymenolepis diminuta Cyclophyllidea Tetrabothrius erostris (Host: La. argentatus) Tetrabothriidae Nippotaenia chaenogobii (Host: Ch. urotaenia) Nippoteaniidea Bilocularia hyperapolytica (Host: Da. licha) Calyptrobothrium sp. (Host: To. nobiliana) 1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) Phyllobothriium squali Genotype 1(Host: Sq. japonicus) 0.99 Monorygma megacotyla Genotype 1 (Host: Ga. nipponensis)

0.99 Monorygma megacotyla Genotype 2 (Host: Ce. umbratile) Genotype 5 (Host: Sq. acanthias) 0.90 Phyllobothriium squali Phyllobothriium squali Genotype 2 (Host: Sq. mitsukurii) 0.98 Phyllobothriium squali Genotype 3 (Host: Sq. japonicus) Monorygma megacotyla Genotype 3 (Host: Ce. umbratile) 0.61 Phyllobothriium squali Genotype 4 (Host: Sq. mitsukurii) 0.99 Monorygma megacotyla Genotype 4 (Host: Ce. umbratile) Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) 1.00 Orygmatobothrium musteli Genotype 1 (Host: Mu. manazo) 1.00 Orygmatobothrium musteli Genotype 2 (Host: Mu. griseus) Orygmatobothrium cf. musteli 1 (Host: Mu. mustelus)

0.99 Phyllobothriidea gen. sp. (Host: Sp. lewini) Phyllobothrium cf. lactuca (Host: Mu. mento) 1.00 Phyllobothrium serratum (Host: Tr. scyllium) 0.52 0.86 Phyllobothrium hoshizame (Host: Mu. manazo) 1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos sp. 2 (Host: Rh. pacifica) 1.00 Thysanocephalum thysanocephalum (Host: Ga. cuvier) Thysanocephalum crispum (Host: Ga. cuvier) Phyllobothriidea Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 0.98 1.00 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) 0.82 Paraorygmatobothrium sp. 1 (Host: Ca. galapagensis) 1.00 Marsupiobothrium sp. (Host: Al. pelagicus) Paraorygmatobothrium triacis (Host: Tr. scyllium) 0.66 1.00 Nandocestus guariticus (Host: Pa. aiereba) 0.71 1.00 Orectolobicestus tyleri (Host: Ch. punctatum) Orectolobicestus randyi (Host: Ch. hasseltii) Paraorygmatobothrium sp. 2 (Host: He. japanica) 1.00 0.95 Paraorygmatobothrium exiguum (Host: Al. vulpinus) Scyphophyllidium cf. giganteum (Host: Ga. galeus) 1.00 Paraorygmatobothrium prionacis (Host: Pr. glauca) 0.72 Paraorygmatobothrium prionacis (Host: Pr. glauca) 0.90 Paraorygmatobothrium paulum (Host: Ga. cuvier) 1.00 Paraorygmatobothrium sp. 3 (Host: Tr. obesus) Paraorygmatobothrium sp. 3 (Host: Ca. galapagensis) Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 0.90 0.79 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 0.86 Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) 1.00 1.00 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) Paraorygmatobothrium sp. 8 (Host: Ca. galapagensis) Paraorygmatobothrium sp. 8 (Host: Ca. leucas) 1.00 1.00 Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) Ruhnkecestus latipi (Host: Sc. macrorhynchus) 1.00 Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) 0.01 substitutions per site Paraorygmatobothrium sp. 10 (Host: Ca. galapagensis) Appendix Fig. 2 Bayesan Inference tree of Analysis 8 (Dataset 1, ssrDNA). See Apendix Fig. 1 for the explanations of symbols in the tree. Phyllobothriidea, Tetraphyllidea and Onchoproteocephalidea were polyphyletic in this analysis (connected by dotted lines).

- 312 - 1.00 Litobothrium nickoli (Host: Al. pelagicus) Litobothrium amplifica (Host: Al. pelagicus) Litobothriidea OUTGROUP 1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea 付録については,5年以内に雑誌等で刊行予定のため,非公開.Phyllobothrium biacetabulatum (Host: Rh. schlegelii) 1.00 1.00 Anthocephalum cf. centrurum (Host: Da. centroura) 1.00 Rhinebothrium megacanthophallus (Host: Hi. polylepis) Rhinebothriidea 1.00 Rhodobothrium paucitesticulare (Host: Rh. bonasus) Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 1.00 Acanthobothrium santarosaliense (Host: He. mexicanus) (Host: Ur. maculatus) 0.99 Acanthobothrium parviuncinatum 1.00 Uncibilocularis okei (Host: Pa. atrus) 1.00 1.00 Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) 1.00 Proteocephalus macrocephalus (Host: An. anguilla) 0.92 1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) Onchoproteocephalidea Proteocephalus perplexus (Host: Am. calva ) Triloculatum andersonorum (Host: Ne. acutidens) Phoreiobothrium lewinense (Host: Sp. lewini) (Host: Ne. acutidens) 0.88 1.00 Platybothrium jondoeorum 0.86 Platybothrium auriculatum (Host: Pr. glauca) 1.00 Prosobothrium armigerum (Host: Pr. glauca) Tetrabothrius erostris (Host: La. argentatus) Tetrabothriidae 1.00 Pelichnibothrium speciosum (Host: Al. ferox) 1.00 Pelichnibothrium speciosum (Host: Pr. glauca) 0.81 Pelichnibothrium caudatum (Host: On. keta) 0.99 Clistobothrium montaukensis Genotype 1 (Host: Is. oxyrinchus) Clistobothrium montaukensis Genotype 2 (Host: Is. oxyrinchus) 0.65 Clistobothrium carcharodoni (Host: Ca. carcharias) Clistobothrium tumidum (Host: Ca. carcharias) 0.72 Phyllobothrium delphini (Host: St. coeruleoalba) 1.00 Monorygma grimaldii (Host: St. coeruleoalba) 0.70 1.00 Monorygma chamydoselachi (Host: Ch. anguineus) Marsupiobothrium gobelinus (Host: Mi. owstoni) 1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 1.00 Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) 0.90 Trilocularia gracilis (Host: Sq. acanthias) 0.92 (Host: He. griseus) 1.00 Crossobothrium laciniatum Crossobothrium campanulatum (Host: He. griseus) 0.78 Crossobothrium dohrni (Host: He. perlo) 1.00 Crossobothrium cf. dohrni (Host: He. perlo) 0.83 Megalonchos shawae (Host: He. elongata) 1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) Ceratobothrium sp. (Host: Ca. carcharias) 0.80 1.00 Yorkeria hilli (Host: Ch. punctatum) 0.98 Balanobothrium sp.(Host: St. fasciatum) 0.83 0.56 Pachybothrium hutsoni (Host: Ne. ferrugineus) 0.99 Pedibothrium mounseyi (Host: Ne. ferrugineus) 1.00 Rosebothrium ootenjikuzame n. gen. n. sp.(Host: Ne. ferrugineus) Tetraphyllidea 0.77 1.00 Anthobothrium caseyi (Host: Pr. glauca) Anthobothrium caseyi (Host: Pr. glauca) 1.00 1.00 Anthobothrium sp. (Host: Ca. tilstoni) 1.00 1.00 Anthobothrium sp. 1 (Host: Ca. brevipinna) Anthobothrium sp. 4 (Host: Ca. longimanus) 1.00 Anthobothrium sp. 2 (Host: Ca. brevipinna) Anthobothrium sp. 3 (Host: Ca. dussumieri) Phyllobothriidea gen. sp. (Host: Sp. lewini) Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) 1.00 Orygmatobothrium musteli Genotype 1 (Host: Mu. manazo) 1.00 Orygmatobothrium musteli Genotype 2 (Host: Mu. griseus) Orygmatobothrium cf. musteli 1 (Host: Mu. mustelus)

1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) 0.99 Phyllobothrium hoshizame (Host: Mu. manazo) Phyllobothriidea 1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) (Host: Rh. pacifica) 0.51 Chimaerocestos sp. 2 1.00 Bilocularia hyperapolytica (Host: Da. licha) Calyptrobothrium sp. (Host: To. nobiliana) 1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) 1.00 Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) Phyllobothriium squali Genotype 1 (Host: Sq. japonicus) 1.00 Phyllobothriium squali Genotype 2 (Host: Sq. mitsukurii) Monorygma megacotyla Genotype 1 (Host: Ce. umbratile) 1.00 0.98 Monorygma megacotyla Genotype 2 (Host: Ce. umbratile) Phyllobothriium squali Genotype 3 (Host: Sq. japonicus) 0.88 Monorygma megacotyla Genotype 3 (Host: Ga. nipponensis) Phyllobothriium squali Genotype 5 (Host: Sq. acanthias) 1.00 Phyllobothriium squali Genotype 4 (Host: Sq. mitsukurii) 0.98 Monorygma megacotyla Genotype 4 (Host: Ce. umbratile) 1.00 Thysanocephalum thysanocephalum (Host: Ga. cuvier) Thysanocephalum crispum (Host: Ga. cuvier) Cyclophyllidea 0.99 Hymenolepis diminuta (Host: Ra. norvegicus) 0.77 Nippotaenia chaenogobii (Host: Ch. urotaenia) Nippoteaniidea Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) Nandocestus guariticus (Host: Pa. aiereba) 1.00 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) 1.00 1.00 Paraorygmatobothrium sp. 1 (Host: Ca. galapagensis) 1.00 0.67 Marsupiobothrium sp. (Host: Al. pelagicus) Paraorygmatobothrium triacis (Host: Tr. scyllium) 1.00 Orectolobicestus tyleri (Host: Ch. punctatum) Orectolobicestus randyi (Host: Ch. hasseltii) 0.69 1.00 Paraorygmatobothrium prionacis (Host: Pr. glauca) Paraorygmatobothrium prionacis (Host: Pr. glauca) Paraorygmatobothrium sp. 2 (Host: He. japanica) 1.00 Paraorygmatobothrium exiguum (Host: Al. vulpinus) 0.99 0.93 Scyphophyllidium cf. giganteum (Host: Ga. galeus) Paraorygmatobothrium paulum (Host: Ga. cuvier) 0.88 1.00 Paraorygmatobothrium sp. 3 (Host: Tr. obesus) 0.97 Paraorygmatobothrium sp. 3 (Host: Ca. galapagensis) Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 0.65 0.97 Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 1.00 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) 1.00 0.90 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) 0.67 Paraorygmatobothrium sp. 8 (Host: Ca. galapagensis)

1.00 Paraorygmatobothrium sp. 8 (Host: Ca. leucas) Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) Ruhnkecestus latipi (Host: Sc. macrorhynchus) 0.97 Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) 0.02 substitutions per site 1.00 Paraorygmatobothrium sp. 10 (Host: Ca. galapagensis) Appendix Fig. 3 Bayesan Inference tree of Analysis 9 (Dataset 1, lsrDNA). See Apendix Fig. 1 for the explanations of symbols in the tree. Phyllobothriidea were polyphyletic in this analysis (connected by dotted lines).

- 313 - Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) 1.00 Lecanicephalidea OUTGROUP Paraberrapex manifestus (Host: Sq. californica) 付録については,5年以内に雑誌等で刊行予定のため,非公開.Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) 1.00 Ceratobothrium sp. (Host: Ca. carcharias) Balanobothrium sp. (Host: St. fasciatum) 1.00 Tetraphyllidea Pachybothrium hutsoni (Host: Ne. ferrugineus) 1.00 Pedibothrium mounseyi (Host: Ne. ferrugineus) 1.00 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) 1.00 Acanthobothrium santarosaliense (Host: He. mexicanus) 1.00 0.97 Acanthobothrium parviuncinatum (Host: Ur. maculatus) 1.00 Uncibilocularis okei (Host: Pa. atrus) Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) 1.00 1.00 Proteocephalus perplexus (Host: Am. calva ) 1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) 1.00 Proteocephalus macrocephalus (Host: An. anguilla) 1.00 Onchoproteocephalidea Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) 1.00 1.00 Platybothrium jondoeorum (Host: Ne. acutidens) Platybothrium auriculatum (Host: Pr. glauca) 1.00 Prosobothrium armigerum (Host: Pr. glauca) 0.88 Phoreiobothrium lewinense (Host: Sp. lewini) 1.00 Triloculatum andersonorum (Host: Ne. acutidens) 1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 1.00 Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) 0.61 Trilocularia gracilis (Host: Sq. acanthias) 1.00 1.00 Crossobothrium laciniatum (Host: He. griseus) Crossobothrium campanulatum (Host: He. griseus) 0.89 Crossobothrium dohrni (Host: He. perlo) Monorygma chamydoselachi (Host: Ch. anguineus) 1.00 Marsupiobothrium gobelinus (Host: Mi. owstoni) 0.98 Pelichnibothrium speciosum (Host: Al. ferox) 0.98 1.00 Pelichnibothrium caudatum (Host: On. keta) Clistobothrium montaukensis Genotyle 1 (Host: Is. oxyrinchus) 0.65 Phyllobothrium delphini (Host: St. coeruleoalba) 1.00 Monorygma grimaldii (Host: St. coeruleoalba) 0.52 Clistobothrium tumidum (Host: Ca. carcharias) 1.00 Clistobothrium carcharodoni (Host: Ca. carcharias) Bilocularia hyperapolytica (Host: Da. licha) 1.00 1.00 Calyptrobothrium sp. (Host: To. nobiliana) 1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) 1.00 Phyllobothriium squali Genotyle 2 (Host: Sq. japonicus) 1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos sp. 2 (Host: Rh. pacifica) 1.00 0.64 Phyllobothriidea gen. sp. (Host: Sp. lewini) 1.00 1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) 0.98 0.98 Phyllobothrium hoshizame (Host: Mu. manazo) 1.00 Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) Phyllobothriidea Orygmatobothrium musteli Genotyle 1 (Host: Mu. manazo) Thysanocephalum thysanocephalum (Host: Ga. cuvier) Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 1.00 1.00 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) 1.00 Marsupiobothrium sp. (Host: Al. pelagicus) 1.00 Paraorygmatobothrium triacis (Host: Tr. scyllium) 1.00 Nandocestus guariticus (Host: Pa. aiereba) 1.00 Orectolobicestus tyleri (Host: Ch. punctatum) 0.97 Orectolobicestus randyi (Host: Ch. hasseltii) Paraorygmatobothrium sp. 2 (Host: He. japanica) 1.00 1.00 Paraorygmatobothrium exiguum (Host: Al. vulpinus) 0.98 Scyphophyllidium cf. giganteum (Host: Ga. galeus) 1.00 Paraorygmatobothrium prionacis (Host: Pr. glauca) Paraorygmatobothrium paulum (Host: Ga. cuvier) 0.92 Paraorygmatobothrium sp. 3 (Host: Tr. obesus) 0.51 Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 1.00 1.00 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 0.88 1.00 Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) (Host: Ca. limbatus) 1.00 1.00Paraorygmatobothrium sp. 8 Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) 1.00 1.00 Ruhnkecestus latipi (Host: Sc. macrorhynchus) 0.02 substitutions per site Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) Appendix Fig. 4 Bayesan Inference tree of Analysis 10 (Dataset 2, ssrDNA and lsrDNA). See Apendix Fig. 1 for the explanations of symbols in the tree.

- 314 - Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) 1.00 Lecanicephalidea OUTGROUP Paraberrapex manifestus (Host: Sq. californica) 付録については,5年以内に雑誌等で刊行予定のため,非公開.Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea Marsupiobothrium gobelinus (Host: Mi. owstoni) Monorygma chamydoselachi (Host: Ch. anguineus) Trilocularia gracilis (Host: Sq. acanthias) Crossobothrium laciniatum (Host: He. griseus) Crossobothrium campanulatum (Host: He. griseus) Crossobothrium dohrni (Host: He. perlo) 1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 1.00 Callibothrium shirozame (Host: Mu. griseus) Symcallio violae (Host: Mu. canis) Pelichnibothrium speciosum (Host: Al. ferox) 0.97 (Host: On. keta) 1.00 Pelichnibothrium caudatum (Host: Is. oxyrinchus) 0.81 Clistobothrium montaukensis Genotyle 1 Clistobothrium carcharodoni (Host: Ca. carcharias) 0.97 Clistobothrium tumidum (Host: Ca. carcharias) Phyllobothrium delphini (Host: St. coeruleoalba) 0.71 Monorygma grimaldii (Host: St. coeruleoalba) 0.96 Bilocularia hyperapolytica (Host: Da. licha) (Host: To. nobiliana) 0.91 Calyptrobothrium sp. Calyptrobothrium sp. 1 (Host: To. tokionis) Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) 0.97 Phyllobothriium squali Genotyle 2 (Host: Sq. japonicus) 1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) 0.96 Ceratobothrium sp. (Host: Ca. carcharias) Balanobothrium sp. (Host: St. fasciatum) 1.00 Tetraphyllidea Pachybothrium hutsoni (Host: Ne. ferrugineus) 0.55 0.96 Pedibothrium mounseyi (Host: Ne. ferrugineus) 1.00 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) Acanthobothrium santarosaliense (Host: He. mexicanus) Acanthobothrium parviuncinatum (Host: Ur. maculatus) 0.97 0.64 1.00 Uncibilocularis okei (Host: Pa. atrus) Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) (Host: Am. calva ) 1.00 0.52 1.00 Proteocephalus perplexus Onchoproteocephalidea Peltidocotyle rugosa (Host: Ps. fasciatum) 1.00 Proteocephalus macrocephalus (Host: An. anguilla) 1.00 Platybothrium jondoeorum (Host: Ne. acutidens) 0.97 1.00 Platybothrium auriculatum (Host: Pr. glauca) Prosobothrium armigerum (Host: Pr. glauca) Phoreiobothrium lewinense (Host: Sp. lewini) 1.00 Triloculatum andersonorum (Host: Ne. acutidens) 1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) (Host: Rh. pacifica) 0.58 Chimaerocestos sp. 2 1.00 Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) Orygmatobothrium musteli Genotyle 1 (Host: Mu. manazo) Phyllobothriidea gen. sp. (Host: Sp. lewini) 1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) 1.00 0.84 Phyllobothrium serratum (Host: Tr. scyllium) Phyllobothriidea Phyllobothrium hoshizame (Host: Mu. manazo) Thysanocephalum thysanocephalum (Host: Ga. cuvier) Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 1.00 0.59 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) Marsupiobothrium sp. (Host: Al. pelagicus) 1.00 Paraorygmatobothrium triacis (Host: Tr. scyllium) 0.98 1.00 Nandocestus guariticus (Host: Pa. aiereba) 1.00 Orectolobicestus tyleri (Host: Ch. punctatum) Orectolobicestus randyi (Host: Ch. hasseltii) Paraorygmatobothrium paulum (Host: Ga. cuvier) 0.55 0.85 Paraorygmatobothrium sp. 2 (Host: He. japanica) 1.00 Paraorygmatobothrium exiguum (Host: Al. vulpinus) 0.56 Scyphophyllidium cf. giganteum (Host: Ga. galeus) 0.90 0.77 Paraorygmatobothrium prionacis (Host: Pr. glauca) (Host: Tr. obesus) 0.61 Paraorygmatobothrium sp. 3 Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 1.00 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 0.75 1.00 Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) 1.00 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) (Host: Ca. dussumieri) 0.98 Paraorygmatobothrium sp. 9 1.00 Ruhnkecestus latipi (Host: Sc. macrorhynchus) 1.00 0.02 substitutions per site Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) Appendix Fig. 5 Bayesan Inference tree of Analysis 11 (Dataset 2, ssrDNA). See Apendix Fig. 1 for the explanations of symbols in the tree. Phyllobothriidea were polyphyletic in this analysis (connected by dotted lines).

- 315 - 1.00 Adelobothrium cf. aetiobatidis (Host: Ae. ocellatus) OUTGROUP Paraberrapex manifestus (Host: Sq. californica) Lecanicephalidea 付録については,5年以内に雑誌等で刊行予定のため,非公開.Cathetocephalus thatcheri (Host: Ca. leucas) Cathetocephalidea 1.00 Ceratobothrium xanthocephalum (Host: Is. oxyrinchus) 1.00 Ceratobothrium sp. (Host: Ca. carcharias) Balanobothrium sp. (Host: St. fasciatum) 1.00 Tetraphyllidea Pachybothrium hutsoni (Host: Ne. ferrugineus) 0.98 Pedibothrium mounseyi (Host: Ne. ferrugineus) 1.00 Rosebothrium ootenjikuzame n. gen. n. sp. (Host: Ne. ferrugineus) Trilocularia gracilis (Host: Sq. acanthias) 1.00 1.00 Crossobothrium laciniatum (Host: He. griseus) Crossobothrium campanulatum (Host: He. griseus) 1.00 0.95 Crossobothrium dohrni (Host: He. perlo) 1.00 Monorygma chamydoselachi (Host: Ch. anguineus) Marsupiobothrium gobelinus (Host: Mi. owstoni) 0.96 Pelichnibothrium speciosum (Host: Al. ferox) 1.00 Pelichnibothrium caudatum (Host: On. keta) 1.00 Clistobothrium montaukensis Genotyle 1 (Host: Is. oxyrinchus) 1.00 Phyllobothrium delphini (Host: St. coeruleoalba) 1.00 Monorygma grimaldii (Host: St. coeruleoalba) Clistobothrium carcharodoni (Host: Ca. carcharias) Clistobothrium tumidum (Host: Ca. carcharias) 1.00 Calliobothrium cf. verticillatum (Host: Mu. canis) 1.00 Callibothrium shirozame (Host: Mu. griseus) 0.53 Symcallio violae (Host: Mu. canis) 1.00 Bilocularia hyperapolytica (Host: Da. licha) Calyptrobothrium sp. (Host: To. nobiliana) 1.00 Calyptrobothrium sp. 1 (Host: To. tokionis) 1.00 Vertebraeovicestus dobukasube n. gen. n. sp. (Host: Ba. smirnovi) 1.00 Phyllobothriium squali Haplotyle 2 (Host: Sq. japonicus) 1.00 Chimaerocestos sp. 1 (Host: Rh. pacifica) Chimaerocestos sp. 2 (Host: Rh. pacifica) 1.00 Phyllobothrium cf. lactuca (Host: Mu. mento) Phyllobothrium serratum (Host: Tr. scyllium) 0.99 Phyllobothrium hoshizame (Host: Mu. manazo) Phyllobothriidea 1.00 Orygmatobothrium cf. musteli 2 (Host: Mu. mustelus) Orygmatobothrium musteli Genotyle 1 (Host: Mu. manazo) Phyllobothriidea gen. sp. (Host: Sp. lewini) 1.00 Acanthobothrium santarosaliense (Host: He. mexicanus) Acanthobothrium parviuncinatum (Host: Ur. maculatus) 0.98 1.00 Uncibilocularis okei (Host: Pa. atrus) 1.00 Onchoproteocephalidea gen. sp. 1 (Host: Pristis clavata) Potamotrygonocestus cf. fitzgeraldae (Host: Po. castexi) 1.00 Proteocephalus macrocephalus (Host: An. anguilla) 0.59 0.94 1.00 1.00 Peltidocotyle rugosa (Host: Ps. fasciatum) Onchoproteocephalidea Proteocephalus perplexus (Host: Am. calva ) 1.00 Phoreiobothrium lewinense (Host: Sp. lewini) 1.00 Triloculatum andersonorum (Host: Ne. acutidens) 1.00 Platybothrium jondoeorum (Host: Ne. acutidens) Platybothrium auriculatum (Host: Pr. glauca) 0.61 1.00 Prosobothrium armigerum (Host: Pr. glauca) Thysanocephalum thysanocephalum (Host: Ga. cuvier) Alexandercestus oomejirozame n. sp. (Host: Ca. leucas) 1.00 Nandocestus guariticus (Host: Pa. aiereba) 1.00 Paraorygmatobothrium triacis (Host: Tr. scyllium) 0.61 1.00 Paraorygmatobothrium sp. 1 (Host: Ca. plumbeus) 1.00 Marsupiobothrium sp. (Host: Al. pelagicus) 1.00 Orectolobicestus tyleri (Host: Ch. punctatum) 0.56 Orectolobicestus randyi (Host: Ch. hasseltii) Paraorygmatobothrium sp. 2 (Host: He. japanica) 1.00 Paraorygmatobothrium exiguum (Host: Al. vulpinus) 1.00 Scyphophyllidium cf. giganteum (Host: Ga. galeus) 0.95 Paraorygmatobothrium paulum (Host: Ga. cuvier) 1.00 Paraorygmatobothrium sp. 3 (Host: Tr. obesus) 0.95 Paraorygmatobothrium sp. 6 (Host: Tr. obesus) 0.96 Paraorygmatobothrium sp. 4 (Host: Ca. brevipinna) 0.88 1.00 0.70 Paraorygmatobothrium sp. 5 (Host: Ca. limbatus) Paraorygmatobothrium prionacis (Host: Pr. glauca) 1.00 Paraorygmatobothrium sp. 7 (Host: Ca. longimanus) 0.59 1.00 Paraorygmatobothrium sp. 8 (Host: Ca. limbatus) Paraorygmatobothrium sp. 9 (Host: Ca. dussumieri) 1.00 0.95 Ruhnkecestus latipi (Host: Sc. macrorhynchus) 0.02 substitutions per site Paraorygmatobothrium sp. 10 (Host: Ca. brevipinna) Appendix Fig. 6 Bayesan Inference tree of Analysis 12 (Dataset 2, lsrDNA). See Apendix Fig. 1 for the explanations of symbols in the tree. Phyllobothriidea were polyphyletic in this analysis (connected by dotted lines).

- 316 - Genus Family Order Sinobatis Anacanthobatidae Cruriraja Crurirajidae Rioraja Atlantoraja Arhynchobatis Sympterygia** Psammobatis Irolita Arhynchobatidae Pavoraja Brochiraja* Notoraja Insentriraja Brochiraja* Rhinoraja Bathyraja** Rajiformes* Neoraja Malacoraja Okamejei* Raja* Rostroraja Leucoraja** Amblyraja Rajidae Rajella Raja* Okamejei* Raja* Spiniraja Zearaja Dipturus** Platyrhinoides Narcine Narcinidae Torpediniformes Typhlonarke Torpedo Torpedinidae Trygonorrhina

Zapteryx Batoidea Aptychotrema Rhinobatidae Rhinobatos* Rajiformes* Rhinobatos* Glaucostegus Rhina Rhinidae Rhynchobatus Rhynchobatidae Anoxypristis Pristidae Pristiformes Pristis Rhinobatos* Dasyatidae* Zanobatus Zanobatidae Hexatrygon Hexatrygonidae Trygonoptera Urolophidae Urolophus Plesiobatis Plesiobatidae Gymnura Gymnuridae Aetobatus Aetomylaeus Myliobatidae Myliobatis Pteromylaeus Manta Mobula** Mobulidae Rhinoptera Rhinopteridae Himantura* Dasyatidae* Paratrygon Myliobatiformes Potamotrygonidae Potamotrygon Urobatis Urotrygonidae Taeniura* Neotrygon Pastinachus Dasyatis* Taeniurops Dasyatis* Pteroplatytrygon Dasyatidae* Dasyatis* Dasyatis* Taeniura* Squalomorphi (Apendix Fig. 8) Dasyatis* Galeomorphi (Apendix Fig. 9) Urogymnus Himantura** Appendix Fig. 7 Phylogenetic tree of Batoidea of Elasmobranchii (Naylor et al., 2012). Single asterisks mean polyphyletic taxa, and double asterisks mean paraphyletic taxa.

- 317 - Genus Family Order Batoidea (Apendix Fig. 7) Chlamydoselachus Chlamydoselachidae Notorhynchus Hexanchiformes Heptranchias Hexanchidae Hexanchus Pristiophorus** Pristiophoridae Pristiophoriformes Pliotrema Squatina Squatinidae Squatiniformes Echinorhinus Echinorhinidae Euprotomicrus Squaliolus** Squalomorphi Dalatiidae Isistius Dalatias Centroscyllium Etmopteridae Etomopterus Somniosus Zameus Squaliformes Centroselachus Somniosidae Scymnodon Proscymnodon Oxynotus Oxynotidae Centroscymnus Somniosidae Deania Centrophoridae Centrophorus Cirrhigaleus Squalidae Galeomorphi (Apendix Fig. 9) Squalus Appendix Fig. 8 Phylogenetic tree of Squalomorphi of Elasmobranchii (Naylor et al., 2012). Single asterisks mean polyphyletic taxa, and double asterisks mean paraphyletic taxa.

- 318 - Batoidea (Apendix Fig. 7) Squalomorphi (Apendix Fig. 8) Genus Family Order Heterodontus Heterodontidae Heterodontiformes Parascyllium Parascylliidae Brachalurus Brachaeluridae Eucrossorhinus Orectolobidae Orectolobus Nebrius Ginglymostoma Ginglymostomatidae Orectolobiformes Pseudoginglymostoma Rhincodon Rhincodontidae Stegostoma Stegostomatidae Hemiscyllium Hemiscyllinidae Chiloscyllium** Mitsukurina Mitsukurinidae Pseudocharcharias Pseudocarchariidae Odontaspis Odontaspididae* Megachasma Megachasmidae Alopias Alopiidae Lamniformes Carcharias Odontaspididae* Cetorhinus Cetorhinidae Lamna Carcharodon Lamnidae Isurus Cephaloscyllium Scyliorhinus Poroderma Schroederichthys Scyliorhinidae* Parmaturus* Atelomycterus* Aulohalaelurus Atelomycterus* Eridacnis Proscyllium Gollum Pseudotriakidae Pseudotriakis Galeomorphi Bythaelurus Figaro Asymbolus Apristurus* Galeus* Holohalaelurus Halaelurus Scyliorhinidae* Haploblepharus Parmaturus* Galeus* Apristurus* Triakis* Furgaleus Hemitriakis Hypogaleus Carcharhiniformes Galeorhinus Triakidae Lago Triakis* Scylliogaleus Mustelus Mustelus Leptocharias Leptochariidae Hemipristis Paragaleus Hemigaleidae Hemigaleus Galeocerdo Eusphyra Sphyrnidae Sphyma Loxodon Scoliodon Rhizoprionodon Negaprion Glyphis Lamipsis Tiaenodon Carcharhinidae Isogomphodon Carcharhinus* ** Nasolamia Carcharhinus* ** Prionace Carcharhinus* ** Appendix Fig. 9 Phylogenetic tree of Galeomorphi of Elasmobranchii (Naylor et al., 2012). Single asterisks mean polyphyletic taxa, and double asterisks mean paraphyletic taxa.

- 319 -