Andres Acuna
Total Page:16
File Type:pdf, Size:1020Kb
Hybrid Laser Welding in API X65 and X70 Steels THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Andrês Fabrício Fischdick Acuña Graduate Program in Welding Engineering The Ohio State University 2016 Master's Examination Committee: Antonio J. Ramirez “Advisor” John C. Lippold Copyright by Andrês Fabrício Fischdick Acuña 2016 Abstract Hybrid laser welding presents an important advance in productivity due to high welding speeds. However, fast cooling rates are inherent to the process, affecting the resultant microstructures and joint performance. In this research, three API steels were welded using hybrid laser welding with three distinct preheating conditions. The specimens, which were obtained using one hybrid laser root pass and two other GMAW filling passes, were subjected to microstructural characterization and performance evaluation using hardness and toughness measurements. Incomplete joints with only the hybrid root pass and completed joints (root and filling passes) were evaluated. Hardness mapping revealed as the critical area the top portion of hybrid laser fusion zone, which was subsequently reheated by the GMAW filling pass. Optical and scanning electron microscopy revealed a bainitic-martensitic microstructure with the proportion of those two phases varying as a function of the preheating. Miniaturized Charpy V-notch testing was used to evaluate the local toughness and ductile-to-brittle transition of several regions within the joint. Fractographic analysis confirmed the abrupt transition from ductile-to-brittle behavior. The localized fracture toughness testing showed an adequate joint performance for all tested conditions. Nevertheless, the hardness values meet the requirements only for higher preheating temperature conditions. ii Dedication This document is dedicated to my family, my father and mother which taught me to always seek for knowledge, my beloved wife Raquel, my daughter Nicole and my son Lucca which always supported me in everything. iii Acknowledgments I want to acknowledge everyone who directly indirectly contributed to the development of this research and in special: To God because everything comes from Him. “ You shall remember the Lord your God, for it is He who gives you power to get wealth, that he may confirm his covenant that he swore to your fathers, as it is this day.” Deuteronomy 8:18 ESV To my wife Raquel, my daughter Nicole and my son Lucca, which supported me every day and embraced all the changes and challenges in their lives so we could start this master project abroad. To my Mom and Dad for all their support and comprehension. To the professor Antonio Ramirez for the guidance, support and help as my advisor. To all the faculty and staff from the welding engineering department that made this work possible. To all the graduate and undergraduate students, which shared so many ideas, advice tips and time to discuss the development of the work. To Petrobras for funding all the tuition cost and support me in a foreign country, especially to Leonardo Paixão for all the time shared in the discussions and meetings with SENAI, and Gilmar Zacca for the help reviewing and discussing the thesis. To EWI that not only allowed me to analyze some previous welds but also produced new HLAW welds in the material and parameters required To SENAI CTS Solda, which prepared part of my welds and specimens in Brazil only, guided by our digital meetings. iv To NIST, especially to Jeffrey Sowards and Enrico Lucon for support and for the impact testing and data analysis. To LAMEF from Universidade Federal do Rio Grande do Sul, for their support for the SEM analyses. v Vita 2001................................................................Colégio Adventista de Esteio 2004................................................................Electronic Technician, Colégio Cristo Redentor 2008................................................................B.S. Mechanic Engineering, Universidade Federal do Rio Grande do Sul 2008................................................................Equipment Engineer, Petrobras 2009................................................................Terminals and Pipeline Engineering, Petrobras University 2010................................................................Welding Engineering, Petrobras University 2014 to present ..............................................Graduate Student, Department of Materials Science, The Ohio State University Publications ZACCA, G. ; MENEZES, M. S. ; ACUNA, A. F. F. ; SCHNEIDER, E. ; SILVEIRA, T. L. ; ARAUJO, C. R. Welding and Heat Treatment of Heavy Wall API 5l X65 Sour Service Pipes. 2014. ZACCA, G. ; ACUNA, A. F. F. ; MENEZES, M. S. ; SCHNEIDER, E. ; SILVEIRA, T. vi L. Welding and heat treatment of heavy wall API 5L X65 sour service pipes. 2013. MAGALHAES, V. A. N. ; VILARINHO, L. O. ; ACUNA, A. F. F. ; CARVALHO, L. P. ; FREITAS, J. C. EVALUATION OF CONVENTIONAL AND CONTROLLED SHORT-CIRCUIT GMAW PROCESSES FOR ROOT PASS IN PIPE WELDING. 2013. ACUNA, A. F. F. ; AWRUCH, A. M. Um modelo computacional de silos em estruturas metálicas. 2008. ACUNA, A. F. F. ; AWRUCH, A. M. Pontes ferroviárias metálicas: determinação do número de ciclos de carga significativos para análise de fadiga. 2007. Fields of Study Major Field: Welding Engineering vii Table of Contents Abstract ............................................................................................................................... ii Dedication .......................................................................................................................... iii Acknowledgments.............................................................................................................. iv Vita ..................................................................................................................................... vi Publications ........................................................................................................................ vi Fields of Study .................................................................................................................. vii Table of Contents ............................................................................................................. viii List of Tables .................................................................................................................... xii List of Figures .................................................................................................................. xiii Chapter 1: Introduction and Objectives ............................................................................. 1 1.1. Introduction .......................................................................................................... 1 1.2. Objectives ............................................................................................................. 3 Chapter 2: Literature review ............................................................................................... 4 2.1. The Laser Welding for the Oil industry ............................................................... 4 2.2. Laser Beam Welding (LBW) ............................................................................... 4 2.3. Welding Modes .................................................................................................... 7 viii 2.3.1. Conduction Mode.......................................................................................... 8 2.3.2. Keyhole Mode Welding ................................................................................ 9 2.4. Hybrid Laser Welding ........................................................................................ 13 2.5. The requirement for gap-bridging ...................................................................... 16 2.5.1. The API 5L ................................................................................................. 17 2.5.2. The API 1104 .............................................................................................. 19 2.6. Geometrical Characteristics of Hybrid Laser Weld ........................................... 20 2.7. Welding Parameters ........................................................................................... 23 2.8. Typical HLAW Welded Microstructure on Steels ............................................. 26 2.9. The Hybrid Laser Welding on API steel JIP ...................................................... 30 3.1. Materials used .................................................................................................... 34 3.1.1. Base Materials ............................................................................................. 34 3.1.2. Filler Metals ................................................................................................ 35 3.2. Chemical Composition ....................................................................................... 35 3.3. Welding Pre Heat ............................................................................................... 35 3.4. Welding Matrix .................................................................................................. 37 3.5. Welding System ................................................................................................. 38 3.5.1. Material A (X65 Plate) Welding Parameters .............................................. 39 3.5.2. Material B (X65 Seamless