Epistemic Uncertainty and the Limits of Objective Safety

Total Page:16

File Type:pdf, Size:1020Kb

Epistemic Uncertainty and the Limits of Objective Safety Safety and Security Engineering 63 Analysing safety: epistemic uncertainty and the limits of objective safety N. Möller Philosophy Unit, Royal Institute of Technology, Sweden Abstract Much research has been devoted to studies of safety, but the concept of safety is in itself under-theorised. Often, safety is indirectly defined through processes and classifications vital for practical safety engineering. However, without a substantial understanding of the concept, the subject matter of risk and safety research remains fuzzy. The aim of this paper is to provide a framework for such a substantial understanding, capturing what experts in risk and safety research as well as ordinary laypersons should include in the concept of safety. When safety is directly defined, it is traditionally defined as the inverse of risk: the lower the risk, the higher the safety. I argue that such a definition of safety is inadequate, since it leaves out the crucial aspect of deficiencies in knowledge. In socio- technical contexts, every evaluation of risk is an estimation, and therefore involves a certain amount of epistemic uncertainty. An analysis of safety must consider that complication. Epistemic uncertainty points to the epistemic primacy of safety. It is concluded that, strictly speaking, an objective safety concept is not attainable. Instead, an epistemic, intersubjective concept is proposed that brings us as close as possible to the ideal of an objective concept. Keywords: conceptual analysis, safety, risk, uncertainty, objectivity, intersubjectivity. 1 Introduction Even though much research has been devoted to studies of safety, the concept itself is under-theorised. The actual meaning of ‘safety’ is often entirely taken for granted or is very loosely defined. A typical example comes from the context of nuclear power, where safety is defined in the following way: “Safety is what provides protection, averts danger, fosters confidence.” ([1], ch. 1, p. 6). Such a WIT Transactions on The Built Environment, Vol 82, © 2005 WIT Press www.witpress.com, ISSN 1743-3509 (on-line) 64 Safety and Security Engineering vague characterisation may be sufficient for some contexts, especially if used only as a preamble for a deeper discussion. However, even in technical manuals there exists no such direct deepening of the notion. Instead, reference is made to standards and processes only. My aim in this paper is to provide a conceptual analysis of safety. Three points will be stressed. First, I argue for the importance of a substantial notion of safety. Second, I argue for a more complete understanding of safety than as the inverse of risk, an understanding according to which safety is analysed in the three dimensions of harm, probability and epistemic uncertainty. Third, I argue for an intersubjective notion of safety instead of the unattainable goal of an objective concept. 2 Substantial and procedural definitions Normally, discussions of safety only indirectly determine the meaning of the concept. From what is brought up for discussion and from the treatment of different themes, there emerges an understanding of the subject matter. However, no direct determination is provided. One way of capturing this difference is by invoking the distinction between procedural and substantial definitions. A procedural definition of safety uses no independent criterion, but states that something is safe when a correct procedure is (successfully) applied. In contrast, a substantial definition of safety supplies an independent criterion for when something is safe. Consider an analogue with two definitions of ‘warm’ to determine whether the shower of the two subjects Eva and Niklas is sufficiently heated: Wp: The water in the shower is warm if and only if neither Niklas nor Eva has any complaints regarding the temperature when entering the shower. Ws: The water in the shower is warm if and only if the water temperature is above 30 degrees Celsius. In the first definition, we test whether the shower is warm or not by applying the procedure of having Niklas and Eva enter the shower and observe if they complain about the temperature or not. Since they could also complain about the water being too cold (or hot rather than warm), this procedural definition is imperfect in any case; but the important point is that there is no independent criterion to use but a procedure to follow in order to judge whether the shower is warm or not. In the second definition, the independent criterion for ‘warm’ is given in terms of a temperature range (>30 ºC). It is thus a substantial definition. In the context of safety engineering, there is ambivalence between substantial and procedural notions of safety. On the one hand, safety is conceived as something substantial, something having to do with not being harmed. On the other, the primary focus of safety work is procedural. For the most part, no substantial notion of safety is referred to. Instead, reference is normally made to different types of procedures to follow for acceptable safety. The checklist used WIT Transactions on The Built Environment, Vol 82, © 2005 WIT Press www.witpress.com, ISSN 1743-3509 (on-line) Safety and Security Engineering 65 by the flight captains before takeoff is a paradigm case of such a procedural usage of the safety concept. Naturally, in safety engineering as with other areas concerned with safety, procedures for reaching a high level of safety is paramount. However, without a substantial grounding of the concept of safety, the subject matter of risk and safety research remains fuzzy. The general idea may be understood using only such vague substantial definitions to guide safety engineering as exemplified above: the aim of providing protection, averting danger and foster confidence. However, they are in the local context insufficient for making nuanced choices between different alternatives for bringing about safety, and are in the overall context insufficient for decision-making. This is especially true in cases of limited resources and/or time frames. If there is no clear overall notion of, say, traffic safety, how is the aim of reaching it to be carried out? If we have no clear concept of what safety means, how are we to judge whether the level of driver safety attained by one safety belt is higher than for another, when one is better at preventing damage to most part of the body than another, but more prone to cause whiplash damage? And how are we, when trying to improve the overall safety of a car, to prioritise among the improvements of different parts if we have only a partial understanding of the goal at hand? Considering that safety is an overall aim, not something that can be dealt with only eclectically, a substantial concept of safety must be developed. The upshot of this paper is an outline of a framework for such a concept. 3 Objective and subjective safety What type of claim are we making in analyses of safety? An important distinction is that between an objective and a subjective notion of safety. The concept of objectivity tries to capture the intuition that safety is something independent of our opinion or awareness. A full account of the notion of objectivity is a large and controversial matter outside the scope of this paper (for different perspectives, see [2,3]). For our purposes, however, a sufficiently precise criterion of objectivity is the existence of a criterion independent of individual beliefs and feelings. That my height is 178 cm and that the snow outside my window is white are examples of propositions whose truth and falsehood usually are said to be a matter of objective fact fitting with such a criterion. Whether I am aware of it or not, these propositions are either true or false depending (in the relevant sense) only on the external world. In contrast, on a subjective interpretation, “X is safe,” means that S believes that X is safe, where S is a subject from whose viewpoint the safety of X is assessed. This is a different distinction from the one between procedural and substantial definitions. However, in this case the above definitions Ws and Wp may serve also as an example of the distinction between the objective and the subjective: Ws defines ‘warm’ in terms of an independent property (i.e. temperature) whereas Wp refers to the experiences of Eva and Niklas. Obviously, in the case of safety engineering the primary interest is in the objective safety concept. If we only use the subjective safety concept we will not WIT Transactions on The Built Environment, Vol 82, © 2005 WIT Press www.witpress.com, ISSN 1743-3509 (on-line) 66 Safety and Security Engineering have a language fit for dealing with the dangers of the real world. The airplane is not safe just because the pilots (and, say, the technicians) believe that it is working properly; rather, the degree of safety is dependent on whether their belief is justified by how it in fact is: the status of all functional systems of the airplane is what is really important. The objective safety concept constitutes a terminological ideal that may be difficult to realise. If we do not have objective knowledge about all the determinants of safety, it may be impossible to construct a fully objective concept of safety. We will return to this issue after having introduced the three necessary dimensions of the safety concept, extracting the first two from the standard notion of safety in the next section and supplementing this notion with the additional aspect of epistemic uncertainty in Section 5. Before going into the analysis of a substantial concept of safety, I will, to avoid confusion, point out one further distinction: the distinction between an absolute and a relative concept of safety. According to an absolute concept, safety against a certain harm implies that the risk of that harm has been eliminated.
Recommended publications
  • What Is the Balance Between Certainty and Uncertainty?
    What is the balance between certainty and uncertainty? Susan Griffin, Centre for Health Economics, University of York Overview • Decision analysis – Objective function – The decision to invest/disinvest in health care programmes – The decision to require further evidence • Characterising uncertainty – Epistemic uncertainty, quality of evidence, modelling uncertainty • Possibility for research Theory Objective function • Methods can be applied to any decision problem – Objective – Quantitative index measure of outcome • Maximise health subject to budget constraint – Value improvement in quality of life in terms of equivalent improvement in length of life → QALYs • Maximise health and equity s.t budget constraint – Value improvement in equity in terms of equivalent improvement in health The decision to invest • Maximise health subject to budget constraint – Constrained optimisation problem – Given costs and health outcomes of all available programmes, identify optimal set • Marginal approach – Introducing new programme displaces existing activities – Compare health gained to health forgone resources Slope gives rate at C A which resources converted to health gains with currently funded programmes health HGA HDA resources Slope gives rate at which resources converted to health gains with currently funded programmes CB health HDB HGB Requiring more evidence • Costs and health outcomes estimated with uncertainty • Cost of uncertainty: programme funded on basis of estimated costs and outcomes might turn out not to be that which maximises health
    [Show full text]
  • Would ''Direct Realism'' Resolve the Classical Problem of Induction?
    NOU^S 38:2 (2004) 197–232 Would ‘‘Direct Realism’’ Resolve the Classical Problem of Induction? MARC LANGE University of North Carolina at Chapel Hill I Recently, there has been a modest resurgence of interest in the ‘‘Humean’’ problem of induction. For several decades following the recognized failure of Strawsonian ‘‘ordinary-language’’ dissolutions and of Wesley Salmon’s elaboration of Reichenbach’s pragmatic vindication of induction, work on the problem of induction languished. Attention turned instead toward con- firmation theory, as philosophers sensibly tried to understand precisely what it is that a justification of induction should aim to justify. Now, however, in light of Bayesian confirmation theory and other developments in epistemology, several philosophers have begun to reconsider the classical problem of induction. In section 2, I shall review a few of these developments. Though some of them will turn out to be unilluminating, others will profitably suggest that we not meet inductive scepticism by trying to justify some alleged general principle of ampliative reasoning. Accordingly, in section 3, I shall examine how the problem of induction arises in the context of one particular ‘‘inductive leap’’: the confirmation, most famously by Henrietta Leavitt and Harlow Shapley about a century ago, that a period-luminosity relation governs all Cepheid variable stars. This is a good example for the inductive sceptic’s purposes, since it is difficult to see how the sparse background knowledge available at the time could have entitled stellar astronomers to regard their observations as justifying this grand inductive generalization. I shall argue that the observation reports that confirmed the Cepheid period- luminosity law were themselves ‘‘thick’’ with expectations regarding as yet unknown laws of nature.
    [Show full text]
  • Climate Scepticism, Epistemic Dissonance, and the Ethics of Uncertainty
    SYMPOSIUM A CHANGING MORAL CLIMATE CLIMATE SCEPTICISM, EPISTEMIC DISSONANCE, AND THE ETHICS OF UNCERTAINTY BY AXEL GELFERT © 2013 – Philosophy and Public Issues (New Series), Vol. 3, No. 1 (2013): 167-208 Luiss University Press E-ISSN 2240-7987 | P-ISSN 1591-0660 [THIS PAGE INTENTIONALLY LEFT BLANK] A CHANGING MORAL CLIMATE Climate Scepticism, Epistemic Dissonance, and the Ethics of Uncertainty Axel Gelfert Abstract. When it comes to the public debate about the challenge of global climate change, moral questions are inextricably intertwined with epistemological ones. This manifests itself in at least two distinct ways. First, for a fixed set of epistemic standards, it may be irresponsible to delay policy- making until everyone agrees that such standards have been met. This has been extensively discussed in the literature on the precautionary principle. Second, key actors in the public debate may—for strategic reasons, or out of simple carelessness—engage in the selective variation of epistemic standards in response to evidence that would threaten to undermine their core beliefs, effectively leading to epistemic double standards that make rational agreement impossible. The latter scenario is aptly described as an instance of what Stephen Gardiner calls “epistemic corruption.” In the present paper, I aim to give an explanation of the cognitive basis of epistemic corruption and discuss its place within the moral landscape of the debate. In particular, I argue that epistemic corruption often reflects an agent’s attempt to reduce dissonance between incoming scientific evidence and the agent’s ideological core commitments. By selectively discounting the former, agents may attempt to preserve the coherence of the latter, yet in doing so they threaten to damage the integrity of evidence-based deliberation.
    [Show full text]
  • Investment Behaviors Under Epistemic Versus Aleatory Uncertainty
    Investment Behaviors Under Epistemic versus Aleatory Uncertainty 2 Daniel J. Walters, Assistant Professor of Marketing, INSEAD Europe, Marketing Department, Boulevard de Constance, 77300 Fontainebleau, 01 60 72 40 00, [email protected] Gülden Ülkümen, Gülden Ülkümen, Associate Professor of Marketing at University of Southern California, 701 Exposition Boulevard, Hoffman Hall 516, Los Angeles, CA 90089- 0804, [email protected] Carsten Erner, UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA, USA 90095-1481, [email protected] David Tannenbaum, Assistant Professor of Management, University of Utah, Salt Lake City, UT, USA, (801) 581-8695, [email protected] Craig R. Fox, Harold Williams Professor of Management at the UCLA Anderson School of Management, Professor of Psychology and Medicine at UCLA, 110 Westwood Plaza #D511 Los Angeles, CA, USA 90095-1481, (310) 206-3403, [email protected] 3 Abstract In nine studies, we find that investors intuitively distinguish two independent dimensions of uncertainty: epistemic uncertainty that they attribute to missing knowledge, skill, or information, versus aleatory uncertainty that they attribute to chance or stochastic processes. Investors who view stock market uncertainty as higher in epistemicness (knowability) are more sensitive to their available information when choosing whether or not to invest, and are more likely to reduce uncertainty by seeking guidance from experts. In contrast, investors who view stock market uncertainty as higher
    [Show full text]
  • The Flaw of Averages)
    THE NEED FOR GREATER REFLECTION OF HETEROGENEITY IN CEA or (The fLaw of averages) Warren Stevens PhD CONFIDENTIAL © 2018 PAREXEL INTERNATIONAL CORP. Shimmering Substance Jackson Pollock, 1946. © 2018 PAREXEL INTERNATIONAL CORP. / 2 CONFIDENTIAL 1 Statistical summary of Shimmering Substance Jackson Pollock, 1946. Average color: Brown [Beige-Black] Average position of brushstroke © 2018 PAREXEL INTERNATIONAL CORP. / 3 CONFIDENTIAL WE KNOW DATA ON EFFECTIVENESS IS FAR MORE COMPLEX THAN WE LIKE TO REPRESENT IT n Many patients are better off with the comparator QALYS gained © 2018 PAREXEL INTERNATIONAL CORP. / 4 CONFIDENTIAL 2 A THOUGHT EXPERIMENT CE threshold Mean CE Mean CE treatment treatment #1 #2 n Value of Value of Cost per QALY treatment treatment #2 to Joe #1 to Bob © 2018 PAREXEL INTERNATIONAL CORP. / 5 CONFIDENTIAL A THOUGHT EXPERIMENT • Joe is receiving a treatment that is cost-effective for him, but deemed un cost-effective by/for society • Bob is receiving an treatment that is not cost-effective for him, but has been deemed cost-effective by/for society • So who’s treatment is cost-effective? © 2018 PAREXEL INTERNATIONAL CORP. / 6 CONFIDENTIAL 3 HYPOTHETICALLY THERE ARE AS MANY LEVELS OF EFFECTIVENESS (OR COST-EFFECTIVENESS) AS THERE ARE PATIENTS What questions or uncertainties stop us recognizing this basic truth in scientific practice? 1. Uncertainty (empiricism) – how do we gauge uncertainty in a sample size of 1? avoiding false positives 2. Policy – how do we institute a separate treatment policy for each and every individual? 3. Information (data) – how we do make ‘informed’ decisions without the level of detail required in terms of information (we know more about populations than we do about people) © 2018 PAREXEL INTERNATIONAL CORP.
    [Show full text]
  • The Problem of Induction
    The Problem of Induction Gilbert Harman Department of Philosophy, Princeton University Sanjeev R. Kulkarni Department of Electrical Engineering, Princeton University July 19, 2005 The Problem The problem of induction is sometimes motivated via a comparison between rules of induction and rules of deduction. Valid deductive rules are necessarily truth preserving, while inductive rules are not. So, for example, one valid deductive rule might be this: (D) From premises of the form “All F are G” and “a is F ,” the corresponding conclusion of the form “a is G” follows. The rule (D) is illustrated in the following depressing argument: (DA) All people are mortal. I am a person. So, I am mortal. The rule here is “valid” in the sense that there is no possible way in which premises satisfying the rule can be true without the corresponding conclusion also being true. A possible inductive rule might be this: (I) From premises of the form “Many many F s are known to be G,” “There are no known cases of F s that are not G,” and “a is F ,” the corresponding conclusion can be inferred of the form “a is G.” The rule (I) might be illustrated in the following “inductive argument.” (IA) Many many people are known to have been moral. There are no known cases of people who are not mortal. I am a person. So, I am mortal. 1 The rule (I) is not valid in the way that the deductive rule (D) is valid. The “premises” of the inductive inference (IA) could be true even though its “con- clusion” is not true.
    [Show full text]
  • Certainty and Uncertainty in Tax Law: Do Opposites Attract?
    laws Article Certainty and Uncertainty in Tax Law: Do Opposites Attract? Alexander V. Demin Law Institute, Siberian Federal University, 660075 Krasnoyarsk, Russia; [email protected] Received: 14 October 2020; Accepted: 26 November 2020; Published: 4 December 2020 Abstract: The principle of certainty of taxation is the dimension of a general requirement of certainty in the legal system. The purpose of this article is to argue the thesis that uncertainty in tax law is not always an absolute evil, sometimes it acts as a means of the most optimal (and in some cases the only possible) settlement of relations in the field of taxes. On the contrary, uncertainty and fragmentation in tax law are colossal problems subject to overcome by the efforts of scientists, legislators, judges, and practicing lawyers. Uncertainty in tax law is manifested in two ways: on the one hand, negatively—as a defect (omission) of the legislator and, on the other hand, positively—as a set of specific legal means and technologies that are purposefully used in lawmaking and law enforcement. In this context, relatively determined legal tools are an effective channel for transition from uncertainty to certainty in the field of taxation. A tendency towards increased use of relatively determined legal tools in lawmaking processes (for example, principles, evaluative concepts, judicial doctrines, standards of good faith and reasonableness, discretion, open-ended lists, recommendations, framework laws, silence of the law, presumptive taxation, analogy, etc.), and involving various actors (courts, law enforcement agencies and officials, international organizations, citizens, organizations and their associations) allow making tax laws more dynamic flexible, and adequate to changing realities of everyday life.
    [Show full text]
  • WP56: Scientific Uncertainty: a User Guide
    The Munich Re Programme: Evaluating the Economics of Climate Risks and Opportunities in the Insurance Sector Scientific uncertainty: a user’s guide Seamus Bradley August 2011 Centre for Climate Change Economics and Policy Working Paper No. 65 Munich Re Programme Technical Paper No. 9 Grantham Research Institute on Climate Change and the Environment Working Paper No. 56 The Centre for Climate Change Economics and Policy (CCCEP) was established by the University of Leeds and the London School of Economics and Political Science in 2008 to advance public and private action on climate change through innovative, rigorous research. The Centre is funded by the UK Economic and Social Research Council and has five inter-linked research programmes: 1. Developing climate science and economics 2. Climate change governance for a new global deal 3. Adaptation to climate change and human development 4. Governments, markets and climate change mitigation 5. The Munich Re Programme - Evaluating the economics of climate risks and opportunities in the insurance sector (funded by Munich Re) More information about the Centre for Climate Change Economics and Policy can be found at: http://www.cccep.ac.uk. The Munich Re Programme is evaluating the economics of climate risks and opportunities in the insurance sector. It is a comprehensive research programme that focuses on the assessment of the risks from climate change and on the appropriate responses, to inform decision-making in the private and public sectors. The programme is exploring, from a risk management perspective, the implications of climate change across the world, in terms of both physical impacts and regulatory responses.
    [Show full text]
  • A Philosophical Treatise of Universal Induction
    Entropy 2011, 13, 1076-1136; doi:10.3390/e13061076 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article A Philosophical Treatise of Universal Induction Samuel Rathmanner and Marcus Hutter ? Research School of Computer Science, Australian National University, Corner of North and Daley Road, Canberra ACT 0200, Australia ? Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 20 April 2011; in revised form: 24 May 2011 / Accepted: 27 May 2011 / Published: 3 June 2011 Abstract: Understanding inductive reasoning is a problem that has engaged mankind for thousands of years. This problem is relevant to a wide range of fields and is integral to the philosophy of science. It has been tackled by many great minds ranging from philosophers to scientists to mathematicians, and more recently computer scientists. In this article we argue the case for Solomonoff Induction, a formal inductive framework which combines algorithmic information theory with the Bayesian framework. Although it achieves excellent theoretical results and is based on solid philosophical foundations, the requisite technical knowledge necessary for understanding this framework has caused it to remain largely unknown and unappreciated in the wider scientific community. The main contribution of this article is to convey Solomonoff induction and its related concepts in a generally accessible form with the aim of bridging this current technical gap. In the process we examine the major historical contributions that have led to the formulation of Solomonoff Induction as well as criticisms of Solomonoff and induction in general. In particular we examine how Solomonoff induction addresses many issues that have plagued other inductive systems, such as the black ravens paradox and the confirmation problem, and compare this approach with other recent approaches.
    [Show full text]
  • Turns in the Evolution of the Problem of Induction*
    CARL G. HEMPEL TURNS IN THE EVOLUTION OF THE PROBLEM OF INDUCTION* 1. THE STANDARD CONCEPTION: INDUCTIVE "INFERENCE" Since the days of Hume's skeptical doubt, philosophical conceptions of the problem of induction and of ways in which it might be properly solved or dissolved have undergone a series of striking metamor- phoses. In my paper, I propose to examine some of those turnings, which seem to me to raise particularly important questions about the nature of empirical knowledge and especially scientific knowledge. Many, but by no means all, of the statements asserted by empirical science at a given time are accepted on the basis of previously established evidence sentences. Hume's skeptical doubt reflects the realization that most of those indirectly, or inferentially, accepted assertions rest on evidence that gives them no complete, no logically conclusive, support. This is, of course, the point of Hume's obser- vation that even if we have examined many occurrences of A and have found them all to be accompanied by B, it is quite conceivable, or logically possible, that some future occurrence of A might not be accompanied by B. Nor, we might add, does our evidence guarantee that past or present occurrences of A that we have not observed were- or are- accompanied by B, let alone that all occurrences ever of A are, without exception, accompanied by B. Yet, in our everyday pursuits as well as in scientific research we constantly rely on what I will call the method of inductive ac- ceptance, or MIA for short: we adopt beliefs, or expectations, about empirical matters on logically incomplete evidence, and we even base our actions on such beliefs- to the point of staking our lives on some of them.
    [Show full text]
  • Uncertainty Guide
    ICSBEP Guide to the Expression of Uncertainties Editor V. F. Dean Subcontractor to Idaho National Laboratory Independent Reviewer Larry G. Blackwood (retired) Idaho National Laboratory Guide to the Expression of Uncertainties for the Evaluation of Critical Experiments ACKNOWLEDGMENT We are most grateful to Fritz H. Fröhner, Kernforschungszentrum Karlsruhe, Institut für Neutronenphysik und Reaktortechnik, for his preliminary review of this document and for his helpful comments and answers to questions. Revision: 4 i Date: November 30, 2007 Guide to the Expression of Uncertainties for the Evaluation of Critical Experiments This guide was prepared by an ICSBEP subgroup led by G. Poullot, D. Doutriaux, and J. Anno of IRSN, France. The subgroup membership includes the following individuals: J. Anno IRSN (retired), France J. B. Briggs INL, USA R. Bartholomay Westinghouse Safety Management Solutions, USA V. F. Dean, editor Subcontractor to INL, USA D. Doutriaux IRSN (retired), France K. Elam ORNL, USA C. Hopper ORNL, USA R. Jeraj J. Stefan Institute, Slovenia Y. Kravchenko RRC Kurchatov Institute, Russian Federation V. Lyutov VNIITF, Russian Federation R. D. McKnight ANL, USA Y. Miyoshi JAERI, Japan R. D. Mosteller LANL, USA A. Nouri OECD Nuclear Energy Agency, France G. Poullot IRSN (retired), France R. W. Schaefer ANL (retired), USA N. Smith AEAT, United Kingdom Z. Szatmary Technical University of Budapest, Hungary F. Trumble Westinghouse Safety Management Solutions, USA A. Tsiboulia IPPE, Russian Federation O. Zurron ENUSA, Spain The contribution of French participants had strong technical support from Benoit Queffelec, Director of the Société Industrielle d’Etudes et Réalisations, Enghien (France). He is a consultant on statistics applied to industrial and fabrication processes.
    [Show full text]
  • MARLAP Manual Volume III: Chapter 19, Measurement Uncertainty
    19 MEASUREMENT UNCERTAINTY 19.1 Overview This chapter discusses the evaluation and reporting of measurement uncertainty. Laboratory measurements always involve uncertainty, which must be considered when analytical results are used as part of a basis for making decisions.1 Every measured result reported by a laboratory should be accompanied by an explicit uncertainty estimate. One purpose of this chapter is to give users of radioanalytical data an understanding of the causes of measurement uncertainty and of the meaning of uncertainty statements in laboratory reports. The chapter also describes proce- dures which laboratory personnel use to estimate uncertainties. This chapter has more than one intended audience. Not all readers are expected to have the mathematical skills necessary to read and completely understand the entire chapter. For this reason the material is arranged so that general information is presented first and the more tech- nical information, which is intended primarily for laboratory personnel with the required mathe- matical skills, is presented last. The general discussion in Sections 19.2 and 19.3 requires little previous knowledge of statistical metrology on the part of the reader and involves no mathe- matical formulas; however, if the reader is unfamiliar with the fundamental concepts and terms of probability and statistics, he or she should read Attachment 19A before starting Section 19.3. The technical discussion in Sections 19.4 and 19.5 requires an understanding of basic algebra and at least some familiarity with the fundamental concepts of probability and statistics. The discus- sion of uncertainty propagation requires knowledge of differential calculus for a com- Contents plete understanding.
    [Show full text]