A Philosophical Treatise of Universal Induction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is the Balance Between Certainty and Uncertainty?
What is the balance between certainty and uncertainty? Susan Griffin, Centre for Health Economics, University of York Overview • Decision analysis – Objective function – The decision to invest/disinvest in health care programmes – The decision to require further evidence • Characterising uncertainty – Epistemic uncertainty, quality of evidence, modelling uncertainty • Possibility for research Theory Objective function • Methods can be applied to any decision problem – Objective – Quantitative index measure of outcome • Maximise health subject to budget constraint – Value improvement in quality of life in terms of equivalent improvement in length of life → QALYs • Maximise health and equity s.t budget constraint – Value improvement in equity in terms of equivalent improvement in health The decision to invest • Maximise health subject to budget constraint – Constrained optimisation problem – Given costs and health outcomes of all available programmes, identify optimal set • Marginal approach – Introducing new programme displaces existing activities – Compare health gained to health forgone resources Slope gives rate at C A which resources converted to health gains with currently funded programmes health HGA HDA resources Slope gives rate at which resources converted to health gains with currently funded programmes CB health HDB HGB Requiring more evidence • Costs and health outcomes estimated with uncertainty • Cost of uncertainty: programme funded on basis of estimated costs and outcomes might turn out not to be that which maximises health -
Generalized Linear Models (Glms)
San Jos´eState University Math 261A: Regression Theory & Methods Generalized Linear Models (GLMs) Dr. Guangliang Chen This lecture is based on the following textbook sections: • Chapter 13: 13.1 – 13.3 Outline of this presentation: • What is a GLM? • Logistic regression • Poisson regression Generalized Linear Models (GLMs) What is a GLM? In ordinary linear regression, we assume that the response is a linear function of the regressors plus Gaussian noise: 0 2 y = β0 + β1x1 + ··· + βkxk + ∼ N(x β, σ ) | {z } |{z} linear form x0β N(0,σ2) noise The model can be reformulate in terms of • distribution of the response: y | x ∼ N(µ, σ2), and • dependence of the mean on the predictors: µ = E(y | x) = x0β Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University3/24 Generalized Linear Models (GLMs) beta=(1,2) 5 4 3 β0 + β1x b y 2 y 1 0 −1 0.0 0.2 0.4 0.6 0.8 1.0 x x Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University4/24 Generalized Linear Models (GLMs) Generalized linear models (GLM) extend linear regression by allowing the response variable to have • a general distribution (with mean µ = E(y | x)) and • a mean that depends on the predictors through a link function g: That is, g(µ) = β0x or equivalently, µ = g−1(β0x) Dr. Guangliang Chen | Mathematics & Statistics, San Jos´e State University5/24 Generalized Linear Models (GLMs) In GLM, the response is typically assumed to have a distribution in the exponential family, which is a large class of probability distributions that have pdfs of the form f(x | θ) = a(x)b(θ) exp(c(θ) · T (x)), including • Normal - ordinary linear regression • Bernoulli - Logistic regression, modeling binary data • Binomial - Multinomial logistic regression, modeling general cate- gorical data • Poisson - Poisson regression, modeling count data • Exponential, Gamma - survival analysis Dr. -
Would ''Direct Realism'' Resolve the Classical Problem of Induction?
NOU^S 38:2 (2004) 197–232 Would ‘‘Direct Realism’’ Resolve the Classical Problem of Induction? MARC LANGE University of North Carolina at Chapel Hill I Recently, there has been a modest resurgence of interest in the ‘‘Humean’’ problem of induction. For several decades following the recognized failure of Strawsonian ‘‘ordinary-language’’ dissolutions and of Wesley Salmon’s elaboration of Reichenbach’s pragmatic vindication of induction, work on the problem of induction languished. Attention turned instead toward con- firmation theory, as philosophers sensibly tried to understand precisely what it is that a justification of induction should aim to justify. Now, however, in light of Bayesian confirmation theory and other developments in epistemology, several philosophers have begun to reconsider the classical problem of induction. In section 2, I shall review a few of these developments. Though some of them will turn out to be unilluminating, others will profitably suggest that we not meet inductive scepticism by trying to justify some alleged general principle of ampliative reasoning. Accordingly, in section 3, I shall examine how the problem of induction arises in the context of one particular ‘‘inductive leap’’: the confirmation, most famously by Henrietta Leavitt and Harlow Shapley about a century ago, that a period-luminosity relation governs all Cepheid variable stars. This is a good example for the inductive sceptic’s purposes, since it is difficult to see how the sparse background knowledge available at the time could have entitled stellar astronomers to regard their observations as justifying this grand inductive generalization. I shall argue that the observation reports that confirmed the Cepheid period- luminosity law were themselves ‘‘thick’’ with expectations regarding as yet unknown laws of nature. -
Climate Scepticism, Epistemic Dissonance, and the Ethics of Uncertainty
SYMPOSIUM A CHANGING MORAL CLIMATE CLIMATE SCEPTICISM, EPISTEMIC DISSONANCE, AND THE ETHICS OF UNCERTAINTY BY AXEL GELFERT © 2013 – Philosophy and Public Issues (New Series), Vol. 3, No. 1 (2013): 167-208 Luiss University Press E-ISSN 2240-7987 | P-ISSN 1591-0660 [THIS PAGE INTENTIONALLY LEFT BLANK] A CHANGING MORAL CLIMATE Climate Scepticism, Epistemic Dissonance, and the Ethics of Uncertainty Axel Gelfert Abstract. When it comes to the public debate about the challenge of global climate change, moral questions are inextricably intertwined with epistemological ones. This manifests itself in at least two distinct ways. First, for a fixed set of epistemic standards, it may be irresponsible to delay policy- making until everyone agrees that such standards have been met. This has been extensively discussed in the literature on the precautionary principle. Second, key actors in the public debate may—for strategic reasons, or out of simple carelessness—engage in the selective variation of epistemic standards in response to evidence that would threaten to undermine their core beliefs, effectively leading to epistemic double standards that make rational agreement impossible. The latter scenario is aptly described as an instance of what Stephen Gardiner calls “epistemic corruption.” In the present paper, I aim to give an explanation of the cognitive basis of epistemic corruption and discuss its place within the moral landscape of the debate. In particular, I argue that epistemic corruption often reflects an agent’s attempt to reduce dissonance between incoming scientific evidence and the agent’s ideological core commitments. By selectively discounting the former, agents may attempt to preserve the coherence of the latter, yet in doing so they threaten to damage the integrity of evidence-based deliberation. -
1.2. INDUCTIVE REASONING Much Mathematical Discovery Starts with Inductive Reasoning – the Process of Reaching General Conclus
1.2. INDUCTIVE REASONING Much mathematical discovery starts with inductive reasoning – the process of reaching general conclusions, called conjectures, through the examination of particular cases and the recognition of patterns. These conjectures are then more formally proved using deductive methods, which will be discussed in the next section. Below we look at three examples that use inductive reasoning. Number Patterns Suppose you had to predict the sixth number in the following sequence: 1, -3, 6, -10, 15, ? How would you proceed with such a question? The trick, it seems, is to discern a specific pattern in the given sequence of numbers. This kind of approach is a classic example of inductive reasoning. By identifying a rule that generates all five numbers in this sequence, your hope is to establish a pattern and be in a position to predict the sixth number with confidence. So can you do it? Try to work out this number before continuing. One fact is immediately clear: the numbers alternate sign from positive to negative. We thus expect the answer to be a negative number since it follows 15, a positive number. On closer inspection, we also realize that the difference between the magnitude (or absolute value) of successive numbers increases by 1 each time: 3 – 1 = 2 6 – 3 = 3 10 – 6 = 4 15 – 10 = 5 … We have then found the rule we sought for generating the next number in this sequence. The sixth number should be -21 since the difference between 15 and 21 is 6 and we had already determined that the answer should be negative. -
There Is No Pure Empirical Reasoning
There Is No Pure Empirical Reasoning 1. Empiricism and the Question of Empirical Reasons Empiricism may be defined as the view there is no a priori justification for any synthetic claim. Critics object that empiricism cannot account for all the kinds of knowledge we seem to possess, such as moral knowledge, metaphysical knowledge, mathematical knowledge, and modal knowledge.1 In some cases, empiricists try to account for these types of knowledge; in other cases, they shrug off the objections, happily concluding, for example, that there is no moral knowledge, or that there is no metaphysical knowledge.2 But empiricism cannot shrug off just any type of knowledge; to be minimally plausible, empiricism must, for example, at least be able to account for paradigm instances of empirical knowledge, including especially scientific knowledge. Empirical knowledge can be divided into three categories: (a) knowledge by direct observation; (b) knowledge that is deductively inferred from observations; and (c) knowledge that is non-deductively inferred from observations, including knowledge arrived at by induction and inference to the best explanation. Category (c) includes all scientific knowledge. This category is of particular import to empiricists, many of whom take scientific knowledge as a sort of paradigm for knowledge in general; indeed, this forms a central source of motivation for empiricism.3 Thus, if there is any kind of knowledge that empiricists need to be able to account for, it is knowledge of type (c). I use the term “empirical reasoning” to refer to the reasoning involved in acquiring this type of knowledge – that is, to any instance of reasoning in which (i) the premises are justified directly by observation, (ii) the reasoning is non- deductive, and (iii) the reasoning provides adequate justification for the conclusion. -
The Foundations of Solomonoff Prediction
The Foundations of Solomonoff Prediction MSc Thesis for the graduate programme in History and Philosophy of Science at the Universiteit Utrecht by Tom Florian Sterkenburg under the supervision of prof.dr. D.G.B.J. Dieks (Institute for History and Foundations of Science, Universiteit Utrecht) and prof.dr. P.D. Gr¨unwald (Centrum Wiskunde & Informatica; Universiteit Leiden) February 2013 ii Parsifal: Wer ist der Gral? Gurnemanz: Das sagt sich nicht; doch bist du selbst zu ihm erkoren, bleibt dir die Kunde unverloren. – Und sieh! – Mich dunkt,¨ daß ich dich recht erkannt: kein Weg fuhrt¨ zu ihm durch das Land, und niemand k¨onnte ihn beschreiten, den er nicht selber m¨ocht’ geleiten. Parsifal: Ich schreite kaum, - doch w¨ahn’ ich mich schon weit. Richard Wagner, Parsifal, Act I, Scene I iv Voor mum v Abstract R.J. Solomonoff’s theory of Prediction assembles notions from information theory, confirmation theory and computability theory into the specification of a supposedly all-encompassing objective method of prediction. The theory has been the subject of both general neglect and occasional passionate promotion, but of very little serious philosophical reflection. This thesis presents an attempt towards a more balanced philosophical appraisal of Solomonoff’s theory. Following an in-depth treatment of the mathematical framework and its motivation, I shift attention to the proper interpretation of these formal results. A discussion of the theory’s possible aims turns into the project of identifying its core principles, and a defence of the primacy of the unifying principle of Universality supports the development of my proposed interpretation of Solomonoff Prediction as the statement, to be read in the context of the philosophical problem of prediction, that in a universal setting, there exist universal predictors. -
A Philosophical Treatise on the Connection of Scientific Reasoning
mathematics Review A Philosophical Treatise on the Connection of Scientific Reasoning with Fuzzy Logic Evangelos Athanassopoulos 1 and Michael Gr. Voskoglou 2,* 1 Independent Researcher, Giannakopoulou 39, 27300 Gastouni, Greece; [email protected] 2 Department of Applied Mathematics, Graduate Technological Educational Institute of Western Greece, 22334 Patras, Greece * Correspondence: [email protected] Received: 4 May 2020; Accepted: 19 May 2020; Published:1 June 2020 Abstract: The present article studies the connection of scientific reasoning with fuzzy logic. Induction and deduction are the two main types of human reasoning. Although deduction is the basis of the scientific method, almost all the scientific progress (with pure mathematics being probably the unique exception) has its roots to inductive reasoning. Fuzzy logic gives to the disdainful by the classical/bivalent logic induction its proper place and importance as a fundamental component of the scientific reasoning. The error of induction is transferred to deductive reasoning through its premises. Consequently, although deduction is always a valid process, it is not an infallible method. Thus, there is a need of quantifying the degree of truth not only of the inductive, but also of the deductive arguments. In the former case, probability and statistics and of course fuzzy logic in cases of imprecision are the tools available for this purpose. In the latter case, the Bayesian probabilities play a dominant role. As many specialists argue nowadays, the whole science could be viewed as a Bayesian process. A timely example, concerning the validity of the viruses’ tests, is presented, illustrating the importance of the Bayesian processes for scientific reasoning. -
How Prediction Statistics Can Help Us Cope When We Are Shaken, Scared and Irrational
EGU21-15219 https://doi.org/10.5194/egusphere-egu21-15219 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. How prediction statistics can help us cope when we are shaken, scared and irrational Yavor Kamer1, Shyam Nandan2, Stefan Hiemer1, Guy Ouillon3, and Didier Sornette4,5 1RichterX.com, Zürich, Switzerland 2Windeggstrasse 5, 8953 Dietikon, Zurich, Switzerland 3Lithophyse, Nice, France 4Department of Management,Technology and Economics, ETH Zürich, Zürich, Switzerland 5Institute of Risk Analysis, Prediction and Management (Risks-X), SUSTech, Shenzhen, China Nature is scary. You can be sitting at your home and next thing you know you are trapped under the ruble of your own house or sucked into a sinkhole. For millions of years we have been the figurines of this precarious scene and we have found our own ways of dealing with the anxiety. It is natural that we create and consume prophecies, conspiracies and false predictions. Information technologies amplify not only our rational but also irrational deeds. Social media algorithms, tuned to maximize attention, make sure that misinformation spreads much faster than its counterpart. What can we do to minimize the adverse effects of misinformation, especially in the case of earthquakes? One option could be to designate one authoritative institute, set up a big surveillance network and cancel or ban every source of misinformation before it spreads. This might have worked a few centuries ago but not in this day and age. Instead we propose a more inclusive option: embrace all voices and channel them into an actual, prospective earthquake prediction platform (Kamer et al. -
Argument, Structure, and Credibility in Public Health Writing Donald Halstead Instructor and Director of Writing Programs Harvard TH Chan School of Public Heath
Argument, Structure, and Credibility in Public Health Writing Donald Halstead Instructor and Director of Writing Programs Harvard TH Chan School of Public Heath Some of the most important questions we face in public health include what policies we should follow, which programs and research should we fund, how and where we should intervene, and what our priorities should be in the face of overwhelming needs and scarce resources. These questions, like many others, are best decided on the basis of arguments, a word that has its roots in the Latin arguere, to make clear. Yet arguments themselves vary greatly in terms of their strength, accuracy, and validity. Furthermore, public health experts often disagree on matters of research, policy and practice, citing conflicting evidence and arriving at conflicting conclusions. As a result, critical readers, such as researchers, policymakers, journal editors and reviewers, approach arguments with considerable skepticism. After all, they are not going to change their programs, priorities, practices, research agendas or budgets without very solid evidence that it is necessary, feasible, and beneficial. This raises an important challenge for public health writers: How can you best make your case, in the face of so much conflicting evidence? To illustrate, let’s assume that you’ve been researching mother-to-child transmission (MTCT) of HIV in a sub-Saharan African country and have concluded that (claim) the country’s maternal programs for HIV counseling and infant nutrition should be integrated because (reasons) this would be more efficient in decreasing MTCT, improving child nutrition, and using scant resources efficiently. The evidence to back up your claim might consist of original research you have conducted that included program assessments and interviews with health workers in the field, your assessment of the other relevant research, the experiences of programs in other countries, and new WHO guidelines. -
Reliability Engineering: Trends, Strategies and Best Practices
Reliability Engineering: Trends, Strategies and Best Practices WHITE PAPER September 2007 Predictive HCL’s Predictive Engineering encompasses the complete product life-cycle process, from concept to design to prototyping/testing, all the way to manufacturing. This helps in making decisions early Engineering in the design process, perfecting the product – thereby cutting down cycle time and costs, and Think. Design. Perfect! meeting set reliability and quality standards. Reliability Engineering: Trends, Strategies and Best Practices | September 2007 TABLE OF CONTENTS Abstract 3 Importance of reliability engineering in product industry 3 Current trends in reliability engineering 4 Reliability planning – an important task 5 Strength of reliability analysis 6 Is your reliability test plan optimized? 6 Challenges to overcome 7 Outsourcing of a reliability task 7 About HCL 10 © 2007, HCL Technologies. Reproduction Prohibited. This document is protected under Copyright by the Author, all rights reserved. Reliability Engineering: Trends, Strategies and Best Practices | September 2007 Abstract In reliability engineering, product industries now follow a conscious and planned approach to effectively address multiple issues related to product certification, failure returns, customer satisfaction, market competition and product lifecycle cost. Today, reliability professionals face new challenges posed by advanced and complex technology. Expertise and experience are necessary to provide an optimized solution meeting time and cost constraints associated with analysis and testing. In the changed scenario, the reliability approach has also become more objective and result oriented. This is well supported by analysis software. This paper discusses all associated issues including outsourcing of reliability tasks to a professional service provider as an alternate cost-effective option. Importance of reliability engineering in product industry The degree of importance given to the reliability of products varies depending on their criticality. -
Ray Solomonoff, Founding Father of Algorithmic Information Theory [Obituary]
UvA-DARE (Digital Academic Repository) Ray Solomonoff, founding father of algorithmic information theory [Obituary] Vitanyi, P.M.B. DOI 10.3390/a3030260 Publication date 2010 Document Version Final published version Published in Algorithms Link to publication Citation for published version (APA): Vitanyi, P. M. B. (2010). Ray Solomonoff, founding father of algorithmic information theory [Obituary]. Algorithms, 3(3), 260-264. https://doi.org/10.3390/a3030260 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:29 Sep 2021 Algorithms 2010, 3, 260-264; doi:10.3390/a3030260 OPEN ACCESS algorithms ISSN 1999-4893 www.mdpi.com/journal/algorithms Obituary Ray Solomonoff, Founding Father of Algorithmic Information Theory Paul M.B. Vitanyi CWI, Science Park 123, Amsterdam 1098 XG, The Netherlands; E-Mail: [email protected] Received: 12 March 2010 / Accepted: 14 March 2010 / Published: 20 July 2010 Ray J.