MARLAP Manual Volume III: Chapter 19, Measurement Uncertainty

Total Page:16

File Type:pdf, Size:1020Kb

MARLAP Manual Volume III: Chapter 19, Measurement Uncertainty 19 MEASUREMENT UNCERTAINTY 19.1 Overview This chapter discusses the evaluation and reporting of measurement uncertainty. Laboratory measurements always involve uncertainty, which must be considered when analytical results are used as part of a basis for making decisions.1 Every measured result reported by a laboratory should be accompanied by an explicit uncertainty estimate. One purpose of this chapter is to give users of radioanalytical data an understanding of the causes of measurement uncertainty and of the meaning of uncertainty statements in laboratory reports. The chapter also describes proce- dures which laboratory personnel use to estimate uncertainties. This chapter has more than one intended audience. Not all readers are expected to have the mathematical skills necessary to read and completely understand the entire chapter. For this reason the material is arranged so that general information is presented first and the more tech- nical information, which is intended primarily for laboratory personnel with the required mathe- matical skills, is presented last. The general discussion in Sections 19.2 and 19.3 requires little previous knowledge of statistical metrology on the part of the reader and involves no mathe- matical formulas; however, if the reader is unfamiliar with the fundamental concepts and terms of probability and statistics, he or she should read Attachment 19A before starting Section 19.3. The technical discussion in Sections 19.4 and 19.5 requires an understanding of basic algebra and at least some familiarity with the fundamental concepts of probability and statistics. The discus- sion of uncertainty propagation requires knowledge of differential calculus for a com- Contents plete understanding. Attachments 19CE are intended for technical specialists. 19.1 Overview ..........................19-1 19.2 The Need for Uncertainty Evaluation .... 19-1 The major recommendations of the chapter 19.3 Evaluating and Expressing Measurement Uncertainty ........................19-3 are summarized in Section 19.3.9. 19.4 Procedures for Evaluating Uncertainty . 19-11 19.5 Radiation Measurement Uncertainty .... 19-34 19.2 The Need for Uncertainty 19.6 Recommendations ..................19-58 19.7 References ........................19-59 Evaluation Attachment 19A: Statistical Concepts and Terms19-63 Attachment 19B: Example Calculations ...... 19-77 Radiochemical laboratories have long recog- Attachment 19C: Multicomponent Measurement nized the need to provide uncertainties with Models ...........................19-83 their results. Almost from the beginning, lab- Attachment 19D: Estimation of Coverage Factors ...........................19-85 oratories have provided the counting uncer- Attachment 19E: Uncertainties of Mass and Volume tainty for each result, because it is usually Measurements .....................19-93 1 Planners and decisionmakers must also consider the variability of the analyte in sampled populations, as discussed in Appendix C; however, the focus of this chapter is on the uncertainty of measuring the analyte in each laboratory sample. JULY 2004 19-1 MARLAP Measurement Uncertainty easy to evaluate (see Sections 19.3.5 and 19.5.2). However, the counting uncertainty is only one component of the total measurement uncertainty. Over the years it has been recommended repeatedly that laboratories perform good evaluations of the total uncertainty of each measure- ment. In 1980 the Environmental Protection Agency published a report entitled Upgrading Environmental Radiation Data, which was produced by an ad hoc committee of the Health Physics Society. Two of the recommendations of this report were stated as follows (EPA 1980). Every reported measurement result (x) should include an estimate of its overall uncertainty (ux) which is based on as nearly a complete an assessment as possible. The uncertainty assessment should include every conceivable or likely source of inaccuracy in the result. More recently ANSI N42.23, American National Standard Measurement and Associated Instru- ment Quality Assurance for Radioassay Laboratories, recommended that service laboratories report both the counting uncertainty and the total propagated uncertainty. ISO/IEC 17025, General Requirements for the Competence of Testing and Calibration Laboratories, which was released as a standard in 1999, requires calibration and testing laboratories to have and apply procedures for estimating measurement uncertainties (ISO/IEC, 1999). The National Environ- mental Laboratory Accreditation Conference (NELAC) has also published a standard on labora- tory quality systems, which requires a radiochemical testing laboratory to report with each result its associated measurement uncertainty (NELAC, 2002, ch. 5). Note that the concept of traceability (see Chapter 18) is defined in terms of uncertainty. Trace- ability is defined as the property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties (ISO, 1993a). Thus, a labora- tory cannot realistically claim that its measurement results are traceable to a standard unless there exists a chain of comparisons, each with an associated uncertainty, connecting its results to that standard. This chapter considers only measurement uncertainty. The claim is often made that field samp- ling uncertainties are so large that they dwarf laboratory measurement uncertainties. Although the claim may be true in some cases, MARLAP rejects this argument as an excuse for failing to per- form a full evaluation of the measurement uncertainty. A realistic estimate of the measurement uncertainty is one of the most useful quality indicators for a result. Although the need for good uncertainty evaluation has long been recognized, not all laboratories have been able to implement the recommendations fully. A certain level of mathematical sophis- tication is required. Implementation requires, at a minimum, a mastery of basic algebra, some knowledge of differential calculus and a grasp of many concepts of probability and statistics; but even more fundamentally it requires an understanding of the various aspects of the measurement MARLAP 19-2 JULY 2004 Measurement Uncertainty process in the laboratory, including chemical and physical principles as well as practical consid- erations. Implementation at a laboratory is certainly easier if there are those who understand both the measurement process and the mathematical methods, but in some cases it may be necessary to use a team approach that brings together all the required expertise. Today there is software that performs the mathematical operations for uncertainty evaluation and propagation, and some of the difficulties of implementation may disappear as such software becomes more widely available. Nevertheless analysts and technicians will still need to under- stand the concepts of measurement uncertainty and how they apply to particular measurement processes in the laboratory. 19.3 Evaluating and Expressing Measurement Uncertainty The methods, terms, and symbols recommended by MARLAP for evaluating and expressing measurement uncertainty are described in the Guide to the Expression of Uncertainty in Meas- urement, hereafter abbreviated as GUM, which was published by the International Organization for Standardization (ISO) in 1993 and corrected and reprinted in 1995 (ISO, 1995). The methods presented in the GUM are summarized in this chapter and adapted for application to radiochem- istry. The terminology and notation used by the GUM and this chapter may be unfamiliar or confusing to readers who are familiar with statistics but not metrology. Metrology (the science of measure- ment) uses the language and methods of probability and statistics, but adds to them its own terms, symbols, and approximation methods. 19.3.1 Measurement, Error, and Uncertainty The result of a measurement is generally used to estimate some particular quantity called the measurand. For example, the measurand for a radioactivity measurement might be the specific activity of 238Pu in a laboratory sample. The difference between the measured result and the actual value of the measurand is the error of the measurement. Both the measured result and the error may vary with each repetition of the measurement, while the value of the measurand (the true value) remains fixed. Measurement error may be caused by random effects and systematic effects in the measurement process. Random effects cause the measured result to vary randomly when the measurement is repeated. Systematic effects cause the result to tend to differ from the value of the measurand by a constant absolute or relative amount, or to vary in a nonrandom manner. Generally, both ran- dom and systematic effects are present in a measurement process. JULY 2004 19-3 MARLAP Measurement Uncertainty A measurement error produced by a random effect is a random error, and an error produced by a systematic effect is a systematic error. A systematic error is often called a bias (see also Attachment 19A).2 The distinction between random and systematic errors depends on the specifi- cation of the measurement process, since a random error in one measurement process may appear systematic in another. For example, a random error in the measurement of the specific activity of a radioactive standard solution may be systematic from the point of view of a laboratory that pur- chases the solution and uses it
Recommended publications
  • What Is the Balance Between Certainty and Uncertainty?
    What is the balance between certainty and uncertainty? Susan Griffin, Centre for Health Economics, University of York Overview • Decision analysis – Objective function – The decision to invest/disinvest in health care programmes – The decision to require further evidence • Characterising uncertainty – Epistemic uncertainty, quality of evidence, modelling uncertainty • Possibility for research Theory Objective function • Methods can be applied to any decision problem – Objective – Quantitative index measure of outcome • Maximise health subject to budget constraint – Value improvement in quality of life in terms of equivalent improvement in length of life → QALYs • Maximise health and equity s.t budget constraint – Value improvement in equity in terms of equivalent improvement in health The decision to invest • Maximise health subject to budget constraint – Constrained optimisation problem – Given costs and health outcomes of all available programmes, identify optimal set • Marginal approach – Introducing new programme displaces existing activities – Compare health gained to health forgone resources Slope gives rate at C A which resources converted to health gains with currently funded programmes health HGA HDA resources Slope gives rate at which resources converted to health gains with currently funded programmes CB health HDB HGB Requiring more evidence • Costs and health outcomes estimated with uncertainty • Cost of uncertainty: programme funded on basis of estimated costs and outcomes might turn out not to be that which maximises health
    [Show full text]
  • 2.1 Introduction Civil Engineering Systems Deal with Variable Quantities, Which Are Described in Terms of Random Variables and Random Processes
    2.1 Introduction Civil Engineering systems deal with variable quantities, which are described in terms of random variables and random processes. Once the system design such as a design of building is identified in terms of providing a safe and economical building, variable resistances for different members such as columns, beams and foundations which can sustain variable loads can be analyzed within the framework of probability theory. The probabilistic description of variable phenomena needs the use of appropriate measures. In this module, various measures of description of variability are presented. 2. HISTOGRAM AND FREQUENCY DIAGRAM Five graphical methods for analyzing variability are: 1. Histograms, 2. Frequency plots, 3. Frequency density plots, 4. Cumulative frequency plots and 5. Scatter plots. 2.1. Histograms A histogram is obtained by dividing the data range into bins, and then counting the number of values in each bin. The unit weight data are divided into 4- kg/m3 wide intervals from to 2082 in Table 1. For example, there are zero values between 1441.66 and 1505 Kg / m3 (Table 1), two values between 1505.74 kg/m3 and 1569.81 kg /m3 etc. A bar-chart plot of the number of occurrences in each interval is called a histogram. The histogram for unit weight is shown on fig.1. Table 1 Total Unit Weight Data from Offshore Boring Total unit Total unit 2 3 Depth weight (x-βx) (x-βx) Depth weight Number (m) (Kg / m3) (Kg / m3)2 (Kg / m3)3 (m) (Kg / m3) 1 0.15 1681.94 115.33 -310.76 52.43 1521.75 2 0.30 1906.20 2050.36 23189.92 2.29 1537.77
    [Show full text]
  • Would ''Direct Realism'' Resolve the Classical Problem of Induction?
    NOU^S 38:2 (2004) 197–232 Would ‘‘Direct Realism’’ Resolve the Classical Problem of Induction? MARC LANGE University of North Carolina at Chapel Hill I Recently, there has been a modest resurgence of interest in the ‘‘Humean’’ problem of induction. For several decades following the recognized failure of Strawsonian ‘‘ordinary-language’’ dissolutions and of Wesley Salmon’s elaboration of Reichenbach’s pragmatic vindication of induction, work on the problem of induction languished. Attention turned instead toward con- firmation theory, as philosophers sensibly tried to understand precisely what it is that a justification of induction should aim to justify. Now, however, in light of Bayesian confirmation theory and other developments in epistemology, several philosophers have begun to reconsider the classical problem of induction. In section 2, I shall review a few of these developments. Though some of them will turn out to be unilluminating, others will profitably suggest that we not meet inductive scepticism by trying to justify some alleged general principle of ampliative reasoning. Accordingly, in section 3, I shall examine how the problem of induction arises in the context of one particular ‘‘inductive leap’’: the confirmation, most famously by Henrietta Leavitt and Harlow Shapley about a century ago, that a period-luminosity relation governs all Cepheid variable stars. This is a good example for the inductive sceptic’s purposes, since it is difficult to see how the sparse background knowledge available at the time could have entitled stellar astronomers to regard their observations as justifying this grand inductive generalization. I shall argue that the observation reports that confirmed the Cepheid period- luminosity law were themselves ‘‘thick’’ with expectations regarding as yet unknown laws of nature.
    [Show full text]
  • Stat 345 - Homework 3 Chapter 4 -Continuous Random Variables
    STAT 345 - HOMEWORK 3 CHAPTER 4 -CONTINUOUS RANDOM VARIABLES Problem One - Trapezoidal Distribution Consider the following probability density function f(x). 8 > x+1 ; −1 ≤ x < 0 > 5 > <> 1 ; 0 ≤ x < 4 f(x) = 5 > 5−x ; 4 ≤ x ≤ 5 > 5 > :>0; otherwise a) Sketch the PDF. b) Show that the area under the curve is equal to 1 using geometry. c) Show that the area under the curve is equal to 1 by integrating. (You will have to split the integral into pieces). d) Find P (X < 3) using geometry. e) Find P (X < 3) with integration. Problem Two - Probability Density Function Consider the following function f(x), where θ > 0. 8 < c (θ − x); 0 < x < θ f(x) = θ2 :0; otherwise a) Find the value of c so that f(x) is a valid PDF. Sketch the PDF. b) Find the mean and standard deviation of X. p c) If nd , 2 and . θ = 2 P (X > 1) P (X > 3 ) P (X > 2 − 2) c) Compute θ 3θ . P ( 10 < X < 5 ) Problem Three - Cumulative Distribution Functions For each of the following probability density functions, nd the CDF. The Median (M) of a distribution is dened by the property: 1 . Use the CDF to nd the Median of each distribution. F (M) = P (X ≤ M) = 2 a) (Special case of the Beta Distribution) 8 p <1:5 x; 0 < x < 1 f(x) = :0; otherwise b) (Special case of the Pareto Distribution) 8 < 1 ; x > 1 f(x) = x2 :0; otherwise c) Take the derivative of your CDF for part b) and show that you can get back the PDF.
    [Show full text]
  • Climate Scepticism, Epistemic Dissonance, and the Ethics of Uncertainty
    SYMPOSIUM A CHANGING MORAL CLIMATE CLIMATE SCEPTICISM, EPISTEMIC DISSONANCE, AND THE ETHICS OF UNCERTAINTY BY AXEL GELFERT © 2013 – Philosophy and Public Issues (New Series), Vol. 3, No. 1 (2013): 167-208 Luiss University Press E-ISSN 2240-7987 | P-ISSN 1591-0660 [THIS PAGE INTENTIONALLY LEFT BLANK] A CHANGING MORAL CLIMATE Climate Scepticism, Epistemic Dissonance, and the Ethics of Uncertainty Axel Gelfert Abstract. When it comes to the public debate about the challenge of global climate change, moral questions are inextricably intertwined with epistemological ones. This manifests itself in at least two distinct ways. First, for a fixed set of epistemic standards, it may be irresponsible to delay policy- making until everyone agrees that such standards have been met. This has been extensively discussed in the literature on the precautionary principle. Second, key actors in the public debate may—for strategic reasons, or out of simple carelessness—engage in the selective variation of epistemic standards in response to evidence that would threaten to undermine their core beliefs, effectively leading to epistemic double standards that make rational agreement impossible. The latter scenario is aptly described as an instance of what Stephen Gardiner calls “epistemic corruption.” In the present paper, I aim to give an explanation of the cognitive basis of epistemic corruption and discuss its place within the moral landscape of the debate. In particular, I argue that epistemic corruption often reflects an agent’s attempt to reduce dissonance between incoming scientific evidence and the agent’s ideological core commitments. By selectively discounting the former, agents may attempt to preserve the coherence of the latter, yet in doing so they threaten to damage the integrity of evidence-based deliberation.
    [Show full text]
  • Measurement, Uncertainty, and Uncertainty Propagation 205
    Measurement, Uncertainty, and Uncertainty Propagation 205 Name _____________________ Date __________ Partners ________________ TA ________________ Section _______ ________________ Measurement, Uncertainty, and Uncertainty Propagation Objective: To understand the importance of reporting both a measurement and its uncertainty and to address how to properly treat uncertainties in the lab. Equipment: meter stick, 2-meter stick DISCUSSION Understanding nature requires measuring things, be it distance, time, acidity, or social status. However, measurements cannot be “exact”. Rather, all measurements have some uncertainty associated with them.1 Thus all measurements consist of two numbers: the value of the measured quantity and its uncertainty2. The uncertainty reflects the reliability of the measurement. The range of measurement uncertainties varies widely. Some quantities, such as the mass of the electron me = (9.1093897 ± 0.0000054) ×10-31 kg, are known to better than one part per million. Other quantities are only loosely bounded: there are 100 to 400 billion stars in the Milky Way. Note that we not talking about “human error”! We are not talking about mistakes! Rather, uncertainty is inherent in the instruments and methods that we use even when perfectly applied. The goddess Athena cannot not read a digital scale any better than you. Significant Figures The electron mass above has eight significant figures (or digits). However, the measured number of stars in the Milky Way has barely one significant figure, and it would be misleading to write it with more than one figure of precision. The number of significant figures reported should be consistent with the uncertainty of the measurement. In general, uncertainties are usually quoted with no more significant figures than the measured result; and the last significant figure of a result should match that of the uncertainty.
    [Show full text]
  • Uncertainty 2: Combining Uncertainty
    Introduction to Mobile Robots 1 Uncertainty 2: Combining Uncertainty Alonzo Kelly Fall 1996 Introduction to Mobile Robots Uncertainty 2: 2 1.1Variance of a Sum of Random Variables 1 Combining Uncertainties • The basic theory behind everything to do with the Kalman Filter can be obtained from two sources: • 1) Uncertainty transformation with the Jacobian matrix • 2) The Central Limit Theorem 1.1 Variance of a Sum of Random Variables • We can use our uncertainty transformation rules to compute the variance of a sum of random variables. Let there be n random variables - each of which are normally distributed with the same distribution: ∼()µσ, , xi N ,i=1n • Let us define the new random variabley as the sum of all of these. n yx=∑i i=1 • By our transformation rules: σ2 σ2T y=JxJ • where the Jacobian is simplyn ones: J=1…1 • Hence: Alonzo Kelly Fall 1996 Introduction to Mobile Robots Uncertainty 2: 3 1.2Variance of A Continuous Sum σ2 σ2 y = n x • Thus the variance of a sum of identical random variables grows linearly with the number of elements in the sum. 1.2 Variance of A Continuous Sum • Consider a problem where an integral is being computed from noisy measurements. This will be important later in dead reckoning models. • In such a case where a new random variable is added at a regular frequency, the expression gives the development of the standard deviation versus time because: t n = ----- ∆t in a discrete time system. • In this simple model, uncertainty expressed as standard deviation grows with the square root of time.
    [Show full text]
  • STAT 345 Spring 2018 Homework 5 - Continuous Random Variables Name
    STAT 345 Spring 2018 Homework 5 - Continuous Random Variables Name: Please adhere to the homework rules as given in the Syllabus. 1. Trapezoidal Distribution. Consider the following probability density function. 8 x+1 ; −1 ≤ x < 0 > 5 > 1 < 5 ; 0 ≤ x < 4 f(x) = 5−x > ; 4 ≤ x ≤ 5 > 5 :>0; otherwise a) Sketch the PDF. b) Show that the area under the curve is equal to 1 using geometry. c) Show that the area under the curve is equal to 1 by integrating. (You will have to split the integral into peices). d) Find P (X < 3) using geometry. e) Find P (X < 3) with integration. 2. Let X have the following PDF, for θ > 0. ( c (θ − x); 0 < x < θ f(x) = θ2 0; otherwise a) Find the value of c which makes f(x) a valid PDF. Sketch the PDF. b) Find the mean and standard deviation of X. θ 3θ c) Find P 10 < X < 5 . 3. PDF to CDF. For each of the following PDFs, find and sketch the CDF. The Median (M) of a continuous distribution is defined by the property F (M) = 0:5. Use the CDF to find the Median of each distribution. a) (Special case of Beta Distribution) p f(x) = 1:5 x; 0 < x < 1 b) (Special case of Pareto Distribution) 1 f(x) = ; x > 1 x2 4. CDF to PDF. For each of the following CDFs, find the PDF. a) 8 0; x < 0 <> F (x) = 1 − (1 − x2)2; 0 ≤ x < 1 :>1; x ≥ 1 b) ( 0; x < 0 F (x) = 1 − e−x2 ; x ≥ 0 5.
    [Show full text]
  • Measurements and Uncertainty Analysis
    Measurements & Uncertainty Analysis Measurement and Uncertainty Analysis Guide “It is better to be roughly right than precisely wrong.” – Alan Greenspan Table of Contents THE UNCERTAINTY OF MEASUREMENTS .............................................................................................................. 2 TYPES OF UNCERTAINTY .......................................................................................................................................... 6 ESTIMATING EXPERIMENTAL UNCERTAINTY FOR A SINGLE MEASUREMENT ................................................ 9 ESTIMATING UNCERTAINTY IN REPEATED MEASUREMENTS ........................................................................... 9 STANDARD DEVIATION .......................................................................................................................................... 12 STANDARD DEVIATION OF THE MEAN (STANDARD ERROR) ......................................................................... 14 WHEN TO USE STANDARD DEVIATION VS STANDARD ERROR ...................................................................... 14 ANOMALOUS DATA ................................................................................................................................................. 15 FRACTIONAL UNCERTAINTY ................................................................................................................................. 15 BIASES AND THE FACTOR OF N–1 ......................................................................................................................
    [Show full text]
  • Investment Behaviors Under Epistemic Versus Aleatory Uncertainty
    Investment Behaviors Under Epistemic versus Aleatory Uncertainty 2 Daniel J. Walters, Assistant Professor of Marketing, INSEAD Europe, Marketing Department, Boulevard de Constance, 77300 Fontainebleau, 01 60 72 40 00, [email protected] Gülden Ülkümen, Gülden Ülkümen, Associate Professor of Marketing at University of Southern California, 701 Exposition Boulevard, Hoffman Hall 516, Los Angeles, CA 90089- 0804, [email protected] Carsten Erner, UCLA Anderson School of Management, 110 Westwood Plaza, Los Angeles, CA, USA 90095-1481, [email protected] David Tannenbaum, Assistant Professor of Management, University of Utah, Salt Lake City, UT, USA, (801) 581-8695, [email protected] Craig R. Fox, Harold Williams Professor of Management at the UCLA Anderson School of Management, Professor of Psychology and Medicine at UCLA, 110 Westwood Plaza #D511 Los Angeles, CA, USA 90095-1481, (310) 206-3403, [email protected] 3 Abstract In nine studies, we find that investors intuitively distinguish two independent dimensions of uncertainty: epistemic uncertainty that they attribute to missing knowledge, skill, or information, versus aleatory uncertainty that they attribute to chance or stochastic processes. Investors who view stock market uncertainty as higher in epistemicness (knowability) are more sensitive to their available information when choosing whether or not to invest, and are more likely to reduce uncertainty by seeking guidance from experts. In contrast, investors who view stock market uncertainty as higher
    [Show full text]
  • The Flaw of Averages)
    THE NEED FOR GREATER REFLECTION OF HETEROGENEITY IN CEA or (The fLaw of averages) Warren Stevens PhD CONFIDENTIAL © 2018 PAREXEL INTERNATIONAL CORP. Shimmering Substance Jackson Pollock, 1946. © 2018 PAREXEL INTERNATIONAL CORP. / 2 CONFIDENTIAL 1 Statistical summary of Shimmering Substance Jackson Pollock, 1946. Average color: Brown [Beige-Black] Average position of brushstroke © 2018 PAREXEL INTERNATIONAL CORP. / 3 CONFIDENTIAL WE KNOW DATA ON EFFECTIVENESS IS FAR MORE COMPLEX THAN WE LIKE TO REPRESENT IT n Many patients are better off with the comparator QALYS gained © 2018 PAREXEL INTERNATIONAL CORP. / 4 CONFIDENTIAL 2 A THOUGHT EXPERIMENT CE threshold Mean CE Mean CE treatment treatment #1 #2 n Value of Value of Cost per QALY treatment treatment #2 to Joe #1 to Bob © 2018 PAREXEL INTERNATIONAL CORP. / 5 CONFIDENTIAL A THOUGHT EXPERIMENT • Joe is receiving a treatment that is cost-effective for him, but deemed un cost-effective by/for society • Bob is receiving an treatment that is not cost-effective for him, but has been deemed cost-effective by/for society • So who’s treatment is cost-effective? © 2018 PAREXEL INTERNATIONAL CORP. / 6 CONFIDENTIAL 3 HYPOTHETICALLY THERE ARE AS MANY LEVELS OF EFFECTIVENESS (OR COST-EFFECTIVENESS) AS THERE ARE PATIENTS What questions or uncertainties stop us recognizing this basic truth in scientific practice? 1. Uncertainty (empiricism) – how do we gauge uncertainty in a sample size of 1? avoiding false positives 2. Policy – how do we institute a separate treatment policy for each and every individual? 3. Information (data) – how we do make ‘informed’ decisions without the level of detail required in terms of information (we know more about populations than we do about people) © 2018 PAREXEL INTERNATIONAL CORP.
    [Show full text]
  • Estimating and Combining Uncertainties 8Th Annual ITEA Instrumentation Workshop Park Plaza Hotel and Conference Center, Lancaster Ca
    Estimating and Combining Uncertainties 8th Annual ITEA Instrumentation Workshop Park Plaza Hotel and Conference Center, Lancaster Ca. 5 May 2004 Howard Castrup, Ph.D. President, Integrated Sciences Group www.isgmax.com [email protected] Abstract. A general measurement uncertainty model we treat these variations as statistical quantities and say is presented that can be applied to measurements in that they follow statistical distributions. which the value of an attribute is measured directly, and to multivariate measurements in which the value of an We also acknowledge that the measurement reference attribute is obtained by measuring various component we are using has some unknown bias. All we may quantities. In the course of the development of the know of this quantity is that it comes from some model, axioms are developed that are useful to population of biases that also follow a statistical uncertainty analysis [1]. Measurement uncertainty is distribution. What knowledge we have of this defined statistically and expressions are derived for distribution may derive from periodic calibration of the estimating measurement uncertainty and combining reference or from manufacturer data. uncertainties from several sources. In addition, guidelines are given for obtaining the degrees of We are likewise cognizant of the fact that the finite freedom for both Type A and Type B uncertainty resolution of our measuring system introduces another estimates. source of measurement error whose sign and magnitude are unknown and, therefore, can only be described Background statistically. Suppose that we are making a measurement of some These observations lead us to a key axiom in quantity such as mass, flow, voltage, length, etc., and uncertainty analysis: that we represent our measured values by the variable x.
    [Show full text]