Research Article 5329 Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2 Xiaozhong Shi1, Alicia M. Wallis1, Robert D. Gerard2, Kevin A. Voelker3, Robert W. Grange3, Ronald A. DePinho4, Mary G. Garry1 and Daniel J. Garry1,* 1Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA 2Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA 3Department of Human Nutrition, Foods and Exercise, Virginia, USA Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA 4Belfer Institute for Applied Cancer Science, Departments of Medical Oncology, Medicine and Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA *Author for correspondence (
[email protected]) Accepted 9 August 2012 Journal of Cell Science 125, 5329–5337 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.105239 Summary In response to severe injury, adult skeletal muscle exhibits a remarkable regenerative capacity due to a resident muscle stem/progenitor cell population. While a number of factors are expressed in the muscle progenitor cell (MPC) population, the molecular networks that govern this cell population remain an area of active investigation. In this study, utilizing knockdown techniques and overexpression of Foxk1 in the myogenic lineage, we observed dysregulation of Foxo and Mef2 downstream targets. Utilizing an array of technologies, we establish that Foxk1 represses the transcriptional activity of Foxo4 and Mef2 and physically interacts with Foxo4 and Mef2, thus promoting MPC proliferation and antagonizing the myogenic lineage differentiation program, respectively. Correspondingly, knockdown of Foxk1 in C2C12 myoblasts results in cell cycle arrest, and Foxk1 overexpression in C2C12CAR myoblasts retards muscle differentiation.