A Novel Class of Winged Helix-Turn-Helix Protein: the DNA-Binding Domain of Mu Transposase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure and Evolution of Four POU Domain Genes Expressed in Mouse Brain (POU Bnain-/POU Brain-2/POU Brain4/POU Scip/Homeobox) YOSHINOBU HARA*, ALESSANDRA C
Proc. Natl. Acad. Sci. USA Vol. 89, pp. 3280-3284, April 1992 Neurobiology Structure and evolution of four POU domain genes expressed in mouse brain (POU Bnain-/POU Brain-2/POU Brain4/POU Scip/homeobox) YOSHINOBU HARA*, ALESSANDRA C. ROVESCALLI, YONGSOK KIM, AND MARSHALL NIRENBERG Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 Contributed by Marshall Nirenberg, January 6, 1992 ABSTRACT Four mouse POU domain genomic DNA acid sequences of the proteins are related to one another and clones-Brain-i, Brain-2, Brain-4, and Scip-and Bran-2 suggests that the genes originated by duplication of an cDNA, which are expressed in adult brain, were cloned and the ancestral class III POU domain gene.t coding and noncoding regions ofthe genes were sequenced. The amino acid sequences of the four PoU domains are highly conserved; sequences in other regions of the proteins also are MATERIALS AND METHODS conserved but to a lesser extent. The absence of introns from DNA Coming and Sequencing. Our objective was to clone the coding regions of the four POU domain genes and the POU domain genes expressed in mouse brain. Mixtures of similarity of amino acid sequences of the corresponding pro- oligodeoxynucleotides that correspond to highly conserved teins suggest that the coding region of the ancestral class HI amino acid sequences in POU domains were used as primers POU domain gene lacked introns and therefore may have for amplification ofadult mouse brain POU domain cDNA by originated by reverse transcription of a molecule of POU PCR, and the amplified DNA fragments were cloned. -
BRN2 Is a Transcriptional Repressor of CDH13 (T-Cadherin)
Laboratory Investigation (2012) 92, 1788–1800 & 2012 USCAP, Inc All rights reserved 0023-6837/12 $32.00 BRN2 is a transcriptional repressor of CDH13 (T-cadherin) in melanoma cells Lisa Ellmann1, Manjunath B Joshi2,3, Therese J Resink2, Anja K Bosserhoff1 and Silke Kuphal1 T-cadherin (cadherin 13, H-cadherin, gene name CDH13) has been proposed to act as a tumor-suppressor gene as its expression is significantly diminished in several types of carcinomas, including melanomas. Allelic loss and promoter hypermethylation have been proposed as mechanisms for silencing of CDH13. However, they do not account for loss of T-cadherin expression in all carcinomas, and other genetic or epigenetic alterations can be presumed. The present study investigated transcriptional regulation of CDH13 in melanoma. Bioinformatical analysis pointed to the presence of known BRN2 (also known as POU3F2 and N-Oct-3)-binding motifs in the CDH13 promoter sequence. We found an inverse correlation between BRN2 and T-cadherin protein and transcript expression. Reporter gene analysis and electrophoretic mobility shift assays in melanoma cells demonstrated that CDH13 is a direct target of BRN2 and that BRN2 is a functional transcriptional repressor of CDH13 promoter activity. The regulatory binding element of BRN2 was located À 219 bp of the CDH13 promoter proximal to the start codon and was identified as 50-CATGCAAAA-30. Ectopic expression of BRN2 in BRN2-negative/T-cadherin-positive melanoma cells resulted in suppression of CDH13 promoter activity, whereas BRN2 knockdown in BRN2-positive/T-cadherin-negative melanoma cells resulted in re-expression of T-cadherin transcripts and protein. -
Identification and Characterization of the Forkhead Box
IDENTIFICATION AND CHARACTERIZATION OF THE FORKHEAD BOX FAMILY OF TRANSCRIPTIONAL REGULATORS IN PARASITIC SCHISTOSOMES by MELISSA M. VARRECCHIA Submitted in partial fulfillment of the requirements for the degree of Doctor of philosophy Department of Biology CASE WESTERN RESERVE UNIVERSITY August 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of Melissa M. Varrecchia candidate for the degree of Doctor of Philosophy Committee Chair Michael F. Benard Committee Member Emmitt R. Jolly Committee Member Christopher A. Cullis Committee Member Claudia M. Mizutani Committee Member Brian M. McDermott Date of Defense June 6, 2017 *We also certify that written approval has been obtained for any proprietary material contained therein. ii Dedication I would like to dedicate this dissertation to my Mom and Dad. Mom, thank you for your endless love, support and encouragement throughout the years. Dad, I miss you and I know that you are with me always, cheering me on in spirit. iii Table of Contents Table of Contents………………………………………………………………………...1 List of Tables……………………………………………………………………………..6 List of Figures…………………………………………………………………………....8 Acknowledgements…………………………………………………………………..…11 List of Abbreviations…………………………………………………………………...13 Abstract…………………………………………………………………………………15 Chapter 1: Introduction………………………………………………………………..17 1.1 Schistosomiasis………………………………………………………………17 1.2 Pathogenesis and treatment…………………………………………………..18 1.3 Schistosome life cycle………………………………………………………..20 1.4 Schistosome morphology -
POU Domain Family Values: Flexibility, Partnerships, and Developmental Codes
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW POU domain family values: flexibility, partnerships, and developmental codes Aimee K. Ryan and Michael G. Rosenfeld 1 Howard Hughes Medical Institute, Department and School of Medicine, University of California at San Diego, La Jolla, Califiornia 92093-0648 USA Transcription factors serve critical roles in the progres- primary focus of this review. Crystallization of the Oct-1 sive development of general body plan, organ commit- and Pit-1 POU domains on DNA and in vitro studies ment, and finally, specific cell types. It has been the hope examining the specificity of POU domain cofactor inter- of most developmental biologists that comparison of the actions suggest that the flexibility with which the POU biological roles of a series of individual members within domain recognizes DNA-binding sites is a critical com- a family will permit at least some predictive generaliza- ponent of its ability to regulate gene expression. The tions regarding the developmental events that are likely implications of these data with respect to the mecha- to be regulated by a particular class of transcription fac- nisms utilized by the POU domain family of transcrip- tors. Here, we present an overview of the developmental tion factors to control developmental events will also be functions of the family of transcription factors charac- discussed. terized by the POU DNA-binding motif afforded by re- cent in vivo studies. Conformation of the POU domain on DNA The POU domain family of transcription factors was defined following the observation that the products of High-affinity site-specific DNA binding by POU domain three mammalian genes, Pit-l, Oct-l, and Oct-2 and the transcription factors requires both the POU-specific do- protein encoded by the Caenorhabditis elegans gene main and the POU homeodomain (Sturm and Herr 1988; unc-86 shared a region of homology, known as the POU Ingraham et al. -
The Forkhead-Box Family of Transcription Factors: Key Molecular Players in Colorectal Cancer Pathogenesis Paul Laissue
Laissue Molecular Cancer (2019) 18:5 https://doi.org/10.1186/s12943-019-0938-x REVIEW Open Access The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis Paul Laissue Abstract Colorectal cancer (CRC) is the third most commonly occurring cancer worldwide and the fourth most frequent cause of death having an oncological origin. It has been found that transcription factors (TF) dysregulation, leading to the significant expression modifications of genes, is a widely distributed phenomenon regarding human malignant neoplasias. These changes are key determinants regarding tumour’s behaviour as they contribute to cell differentiation/proliferation, migration and metastasis, as well as resistance to chemotherapeutic agents. The forkhead box (FOX) transcription factor family consists of an evolutionarily conserved group of transcriptional regulators engaged in numerous functions during development and adult life. Their dysfunction has been associated with human diseases. Several FOX gene subgroup transcriptional disturbances, affecting numerous complex molecular cascades, have been linked to a wide range of cancer types highlighting their potential usefulness as molecular biomarkers. At least 14 FOX subgroups have been related to CRC pathogenesis, thereby underlining their role for diagnosis, prognosis and treatment purposes. This manuscript aims to provide, for the first time, a comprehensive review of FOX genes’ roles during CRC pathogenesis. The molecular and functional characteristics of most relevant FOX molecules (FOXO, FOXM1, FOXP3) have been described within the context of CRC biology, including their usefulness regarding diagnosis and prognosis. Potential CRC therapeutics (including genome-editing approaches) involving FOX regulation have also been included. Taken together, the information provided here should enable a better understanding of FOX genes’ function in CRC pathogenesis for basic science researchers and clinicians. -
Significance of Wilms' Tumor Gene 1 As a Biomarker in Acute Leukemia and Solid Tumors
UMEÅ UNIVERSITY MEDICAL DISSERTATIONS New Series No. 1799 ISSN 0346-6612 ISBN 978-91-7601-458-5 Significance of Wilms’ Tumor Gene 1 as a Biomarker in Acute Leukemia and Solid Tumors Charlotta Andersson Department of Medical Biosciences, Clinical Chemistry and Pathology Umeå University, Sweden Umeå 2016 Copyright © 2016 Charlotta Andersson ISBN: 978-91-7601-458-5 ISSN: 0346-6612 Printed by: Print & Media Umeå, Sweden, 2016 In memory of Aihong Li Table of Contents Table of Contents i Abstract iii Abbreviations iv List of Papers v Introduction 1 WT1 structure 1 WT1 target genes 3 WT1 protein partners 5 WT1 in normal and abnormal development 5 Hematopoiesis and WT1 7 WT1 as a tumor suppressor gene 7 WT1 as an oncogene or a chameleon gene 7 Acute leukemia (AL) and WT1 in AL 8 Renal cell carcinoma (RCC) and WT1 in RCC 13 Ovarian carcinoma (OC) and WT1 in OC 15 Aims of the Thesis 20 Materials and Methods 21 Patients and tissue samples (Papers I-IV) 21 Classification and risk group stratification in AL (Papers I and IV) 22 ccRCC grade and stage (Paper II) 22 OC classification, grade and stage (Paper III) 22 Genomic DNA preparation, RNA extraction and cDNA preparation (Papers I, II and IV) 23 Quantitative assessment of WT1 transcript expression with real-time quantitative PCR (RQ-PCR) (Papers I and II) 23 Sequencing analysis of the WT1 gene (Papers II and IV) 24 Immunohistochemistry (IHC) (Paper III) 24 Enzyme-linked immunosorbent assay (ELISA) (Paper III) 25 Statistical analysis 25 Results and Discussion 27 Paper I 27 Paper II 31 Paper III 35 Paper IV 38 Conclusions 42 Acknowledgments 44 References 47 i ii Abstract Wilms’ tumor gene 1 (WT1) is a zinc finger transcriptional regulator with crucial functions in embryonic development. -
Wilms' Tumor Gene 1 in Different Types of Cancer
UMEÅ UNIVERSITY MEDICAL DISSERTATIONS New Series No.1717 ISSN 0346-6612 ISBN 978-91-7601-263-5 Wilms’ tumor gene 1 in different types of cancer Xingru Li Department of Medical Biosciences, Clinical Chemistry Umeå University, Sweden Umeå 2015 Copyright © 2015 Xingru Li ISBN: 978-91-7601-263-5 ISSN: 0346-6612 Printed by: Print & Media Umeå, Sweden, 2015 To my family Table of Contents Abstract .......................................................................................................... 1 Original Articles ............................................................................................. 2 Abbreviations ................................................................................................. 3 Introduction .................................................................................................... 4 WT1 (Wilms’ tumor gene 1) ...................................................................... 4 Structure of WT1 ..................................................................................... 4 WT1, the transcription factor ................................................................. 5 WT1 and its interacting partners ............................................................ 5 WT1 function .......................................................................................... 8 The tumor suppressor ........................................................................ 8 An oncogene ...................................................................................... 8 Mutations and -
Molecular Cloning and Characterization of a Human PAX-7 Cdna Expressed in Normal and Neoplastic Myocytes
4574-4582 Nucleic Acids Research, 1994, Vol. 22, No. 22 .:/ 1994 Oxford University Press Molecular cloning and characterization of a human PAX-7 cDNA expressed in normal and neoplastic myocytes Beat W.Schafer*, Thomas Czerny1, Michele Bernasconi, Michele Genini and Meinrad Busslinger1 University of Zurich, Department of Pediatrics, Division of Clinical Chemistry, Steinwiesstrasse 75, 8032 Zurich, Switzerland and 'Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030 Vienna, Austria Received August 25, 1994; Revised and Accepted October 11, 1994 EMBL accession no. Z35141 ABSTRACT The myogenic basic helix-loop-helix proteins are MRF4 (myf6) of the myogenic basic helix-loop-helix (bHLH) essential components of the regulatory network con- protein family (for review, see ref. 1,2). Recent gene targeting trolling vertebrate myogenesis. However, determined experiments in mice demonstrated that mice lacking either both myoblasts appear in the limb buds which do not initially myoD and myf5, or myogenin alone display severe skeletal express any member of this transcription factor family. muscle deficiencies (3-5) which underscores the importance of In a search for potential novel regulators of myogene- this family of transcription factors for myogenesis. In addition, sis, a human PAX-7 cDNA was isolated from primary these experiments placed myoD and myf5 upstream of myogenin myoblasts. Analysis of the DNA-binding properties of in a possible transcriptional hierarchy (6). The myogenic bHLH the Pax-7 paired domain revealed that it binds DNA in factors have furthermore the potential to convert several non- a sequence-specific manner indistinguishable from that muscle cell types to the muscle phenotype upon ectopic expression of the paralogous Pax-3 protein. -
The Oct1 Homolog Nubbin Is a Repressor of NF-Κb-Dependent Immune Gene Expression That Increases the Tolerance to Gut Microbiota
Dantoft et al. BMC Biology 2013, 11:99 http://www.biomedcentral.com/1741-7007/11/99 RESEARCH ARTICLE Open Access The Oct1 homolog Nubbin is a repressor of NF-κB-dependent immune gene expression that increases the tolerance to gut microbiota Widad Dantoft1, Monica M Davis1, Jessica M Lindvall2, Xiongzhuo Tang1, Hanna Uvell1,3, Anna Junell1, Anne Beskow1,4 and Ylva Engström1* Abstract Background: Innate immune responses are evolutionarily conserved processes that provide crucial protection against invading organisms. Gene activation by potent NF-κB transcription factors is essential both in mammals and Drosophila during infection and stress challenges. If not strictly controlled, this potent defense system can activate autoimmune and inflammatory stress reactions, with deleterious consequences for the organism. Negative regulation to prevent gene activation in healthy organisms, in the presence of the commensal gut flora, is however not well understood. Results: We show that the Drosophila homolog of mammalian Oct1/POU2F1 transcription factor, called Nubbin (Nub), is a repressor of NF-κB/Relish-driven antimicrobial peptide gene expression in flies. In nub1 mutants, which lack Nub-PD protein, excessive expression of antimicrobial peptide genes occurs in the absence of infection, leading to a significant reduction of the numbers of cultivatable gut commensal bacteria. This aberrant immune gene expression was effectively blocked by expression of Nub from a transgene. We have identified an upstream regulatory region, containing a cluster of octamer sites, which is required for repression of antimicrobial peptide gene expression in healthy flies. Chromatin immunoprecipitation experiments demonstrated that Nub binds to octamer-containing promoter fragments of several immune genes. -
The POU-Domain Transcription Factor Oct- 6/POU3F1 As a Regulator of Cellular Response to Genotoxic Stress
Article The POU-Domain Transcription Factor Oct- 6/POU3F1 as a Regulator of Cellular Response to Genotoxic Stress Cinzia Fionda 1,*,†, Danilo Di Bona 2,†, Andrea Kosta 1, Helena Stabile 1, Angela Santoni 1,3,4 and Marco Cippitelli 1,* 1 Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; [email protected] (A.K.), [email protected] (H.S.); [email protected] (A.S.) 2 School and Chair of Allergology, Department of Emergencies and Organ Transplantation, University of Bari “Aldo Moro”, 70124 Bari, Italy; [email protected] 3 IRCCS, Neuromed, 86077 Pozzilli, Italy 4 Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy * Correspondence: [email protected] (C.F.); [email protected] (M.C.); Tel.: +39-0649255152 (C.F. & M.C.); Fax: +39-0644340632 (C.F. & M.C.) † These authors equally contributed to this work. Received: 21 May 2019; Accepted: 6 June 2019; Published: 11 June 2019 Abstract: DNA damage and the generation of reactive oxygen species (ROS) are key mechanisms of apoptotic cell death by commonly used genotoxic drugs. However, the complex cellular response to these pharmacologic agents remains yet to be fully characterized. Several studies have described the role of transcription factor octamer-1 (Oct-1)/Pit-1, Oct-1/2, and Unc-86 shared domain class 2 homeobox 1 (POU2F1) in the regulation of the genes important for cellular response to genotoxic stress. Evaluating the possible involvement of other POU family transcription factors in these pathways, we revealed the inducible expression of Oct-6/POU3F1, a regulator of neural morphogenesis and epidermal differentiation, in cancer cells by genotoxic drugs. -
Review Recognition of Specific DNA Sequences
Molecular Cell, Vol. 8, 937–946, November, 2001, Copyright 2001 by Cell Press Recognition of Specific DNA Sequences Review Colin W. Garvie and Cynthia Wolberger1 teins that mediate recombination, DNA cleavage, meth- Department of Biophysics and Biophysical Chemistry ylation, and other processes. The broad principles of and the Howard Hughes Medical Institute DNA binding outlined here pertain to these proteins as Johns Hopkins University School of Medicine well, although the structural details differ. Baltimore, Maryland 21205 Basic Requirements for DNA Binding Double-stranded DNA is a polymer of relatively uniform Proteins that recognize specific DNA sequences play structure, with a highly negatively charged sugar-phos- a central role in the regulation of transcription. The phate backbone and a core of stacked base pairs whose tremendous increase in structural information on pro- edges are exposed in the major and minor grooves. tein-DNA complexes has uncovered a remarkable Since each base pair has a characteristic set of func- structural diversity in DNA binding folds, while at the tional groups, each DNA sequence has a chemical “sig- same time revealing common themes in binding to nature” characterized by the pattern of these groups target sites in the genome. exposed in the DNA grooves. It is this chemical surface, along with sequence-dependent variations in DNA Introduction structure and flexibility, that is recognized by proteins. Proteins recognize a particular sequence by having a The ability of a protein to bind selectively to a particular surface that is chemically complementary to that of the DNA site in the genome is the foundation upon which DNA, forming a series of favorable electrostatic and van transcriptional regulatory pathways are built. -
Tissue-Specific Metabolic Regulation of FOXO-Binding Protein
cells Review Tissue-Specific Metabolic Regulation of FOXO-Binding Protein: FOXO Does Not Act Alone Noriko Kodani 1 and Jun Nakae 2,* 1 Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; [email protected] 2 Department of Physiology, International University of Health and Welfare School of Medicine, Narita 286-8686, Japan * Correspondence: [email protected]; Tel.: +81-476-20-7701 Received: 17 January 2020; Accepted: 10 March 2020; Published: 13 March 2020 Abstract: The transcription factor forkhead box (FOXO) controls important biological responses, including proliferation, apoptosis, differentiation, metabolism, and oxidative stress resistance. The transcriptional activity of FOXO is tightly regulated in a variety of cellular processes. FOXO can convert the external stimuli of insulin, growth factors, nutrients, cytokines, and oxidative stress into cell-specific biological responses by regulating the transcriptional activity of target genes. However, how a single transcription factor regulates a large set of target genes in various tissues in response to a variety of external stimuli remains to be clarified. Evidence indicates that FOXO-binding proteins synergistically function to achieve tightly controlled processes. Here, we review the elaborate mechanism of FOXO-binding proteins, focusing on adipogenesis, glucose homeostasis, and other metabolic regulations in order to deepen our understanding and to identify a novel therapeutic target for the prevention and treatment of metabolic disorders. Keywords: FOXO; transcription factor; FOXO-binding protein 1. Introduction Forkhead box (FOXO) transcription factors play important roles in apoptosis, the cell cycle, DNA damage repair, oxidative stress, cell differentiation, glucose metabolism, and other cellular functions [1].