Análise Da Composiç˜Ao Qu´Imica Das Gêmeas Solares HIP 100963, HD

Total Page:16

File Type:pdf, Size:1020Kb

Análise Da Composiç˜Ao Qu´Imica Das Gêmeas Solares HIP 100963, HD Universidade de S~aoPaulo Instituto de Astronomia, Geof´ısicae Ci^enciasAtmosf´ericas Departamento de Astronomia Jhon Yana Galarza An´alise da composi¸c~aoqu´ımicadas g^emeas solares HIP 100963, HD 45184 e a descoberta da g^emeasolar Inti 1 S~aoPaulo 2016 Jhon Yana Galarza An´alise da composi¸c~aoqu´ımicadas g^emeas solares HIP 100963, HD 45184 e a descoberta da g^emeasolar Inti 1 Disserta¸c~aoapresentada ao Departamento de Astronomia do Instituto de Astronomia, Geof´ısica e Ci^enciasAtmosf´ericasda Universidade de S~aoPaulo como requisito parcial para a ob- ten¸c~aodo t´ıtulode Mestre em Ci^encias. Vers~aoCorrigida. O original encontra- se dispon´ıvel na Unidade Area´ de Concentra¸c~ao:Astronomia Orientador: Prof. Dr. Jorge Mel´endez S~aoPaulo 2016 Dedico este trabalho `aminha professora, orientadora e amiga Mar´ıaLuisa Aguilar Hurtado, quem foi a primeira astro^noma do Peru. Agradecimentos A` minha querida fam´ılia: Aurelio Yana, Ines Galarza e Luis Yana Galarza, pelo seu apoio, assist^enciae carinho ao longo dos anos sem os quais a realiza¸c~aodesta disserta¸c~ao teria sido imposs´ıvel. A` minha noiva Cecilia Toledo, pela companhia de todos os dias, pelo apoio nos momen- tos mais dif´ıceise tamb´empelos bons momentos que ajudaram ao sucesso deste trabalho. Ao meu orientador Dr. Jorge Mel´endez,pela orienta¸c~ao,paci^encia,prestatividade e as in´umerasoportunidades que me deu, permitindo a minha forma¸c~aocient´ıfica. Aos meus colegas do grupo SAMPA: Leonardo dos Santos, Mar´ıliaCarlos, Henrique Reggiani, Lorenzo Spina e Marcelo Tucci, pelas importantes discuss~oesastrof´ısicasque contribu´ıramao desenvolvimento desta disserta¸c~ao. Ao meu colega de sala Rafael Campos, pela ajuda nas corre¸c~oesdeste trabalho. Tamb´em aos meus colegas do IAG por propiciarem um ambiente instigante `apesquisa. Aos professores cuja ajuda foi indispens´avel para enriquecer meus conhecimentos. Agrade¸co em especial `aDra. Silvia Rossi pela prestatividade. A` CNPq pela concess~aoda bolsa de mestrado. Esta tese/disserta¸c~aofoi escrita em LATEX com a classe IAGTESE, para teses e disserta¸c~oesdo IAG. \O universo n~aofoi feito `amedida do ser humano, mas tampouco lhe ´eadverso: ´e-lhe indiferente." Carl Sagan \Ser jovem e n~aoser revolucion´ario´euma contradi¸c~aogen´etica." Ernesto Guevara de la Serna, o "Che Guevara" Resumo O objetivo deste trabalho ´erealizar uma an´alisediferencial detalhada linha a linha para verificar se 2MASS J23263267-0239363 (nomeada de Inti 1) ´euma g^emeasolar. Tamb´em investigar a origem do padr~aode abund^anciasde HIP 100963, a correla¸c~aode l´ıtioe idade, os elementos vol´ateis e refrat´arios, e os elementos pesados atrav´esdos processos -s e -r. Os espectros das estrelas Inti 1, HD 45184, HIP 100963 e o Sol (empregando luz refle- tida nos asteroides Vesta e Iris) foram obtidos usando o espectr´ografoHIRES do telesc´opio Keck I, atingindo uma alta resolu¸c~ao e raz~aode sinal-ruido. Medi manualmente as lar- guras equivalentes (EWs) das linhas do ferro para determinar os par^ametrosatmosf´ericos atrav´esdo equil´ıbrioespectrosc´opico diferencial. A temperatura efetiva e a gravidade su- perficial tamb´emforam obtidas empregando calibra¸c~oesfotom´etricase usando o m´etodo trigonom´etrico.Determinei a composi¸c~aoqu´ımicados elementos vol´ateis,refrat´ariose de captura de n^eutrons.Desenvolvi o c´odigo terra para reproduzir os padr~oesde abund^ancias observados em HD 45184 e Inti 1. As idades foram obtidas usando is´ocronas(usando q2), a rela¸c~ao[Y/Mg], e atividade estelar (apenas para HIP 100963). Conclui que a estrela Inti 1 ´euma g^emea solar fraca e tem um padr~aode abund^ancias similar ao do Sol. HD 45184 mostra um padr~aosimilar `asg^emeassolares pr´oximas,isto ´e,ricas em elementos refrat´ariosem rela¸c~aoaos vol´ateis.Confirmou-se que HIP 100963 ´e uma g^emeasolar e demonstrei que seu padr~aode abund^ancias´esolar depois de corrigir por GCE; isto poderia significar que HIP 100963 e Inti 1 poderiam ter formado planetas rochosos. HIP 100963 mostra enriquecimento de elementos dos processos -s e -r, sugerindo que os elementos de captura de n^eutronss~aoricos em estrelas jovens. Da mesma forma que com outras g^emeassolares, HIP 100963 apresenta uma deple¸c~aode l´ıtioque ´ecausada pela evolu¸c~aoestelar, e sua abund^anciade l´ıtiosegue a correla¸c~aol´ıtioe idade. Abstract The aim of this work is to perform a detailed line-by-line differential analysis to verify whether 2MASS J23263267-0239363 (designated as Inti 1) is indeed a solar twin. I also investigate the origin of the abundance pattern of HIP 100963, the Li-age correlation, the volatile and refractory elements, and the heavy elements from the s- and r-processes. The spectra of the stars Inti 1, HD 45184, HIP 100963 and the Sun (using reflected light from the asteroids Vesta and Iris) were obtained employing the HIRES spectrograph on the Keck I telescope, reaching a high-resolution and high signal-to-noise ratio. I measu- red by hand the equivalent widths (EWs) of iron lines to determine the stellar parameters through the differential spectroscopic equilibrium. The effective temperature and surface gravity were also obtained by using photometric calibrations and through the trigonome- tric technique. I determined the composition of volatile, refractory, and neutron-capture elements. I developed the code terra to reproduce the abundance patterns observed in HD 45184 and Inti 1. The age and mass were obtained using isochrones (using q2), the [Y/Mg] ratio, and stellar activity (only for HIP 100963). I conclude that the star Inti 1 is a faint solar twin and has an abundance pattern similar to the Sun. HD 45184 shows an pattern similar to nearby solar twins, meaning enhanced in refractory relative to volatile elements. I confirmed that HIP 100963 is a solar twin and demonstrate that its abundance pattern is about solar after corrections for GCE; this could mean that HIP 10063 and Inti 1 may have formed rocky planets. HIP 100963 present enrichment in s- and r-process elements, suggesting that neutron capture elements are enhanced in young stars. Like in other solar twins, HIP 100963 shows a depletion in lithium that is caused by stellar evolution, and its lithium abundance follows the Li-age correlation. Lista de Figuras 1.1 Amostra das 88 g^emeassolares de Ram´ırezet al. (2014) em fun¸c~aoda tem- peratura efetiva. A linha pontilhada representa `atemperatura solar. 30 1.2 Diferen¸cas∆[X/Fe] (Sol - <g^emeassolares>) entre a composi¸c~aoqu´ımica do Sol e g^emeassolares vs. n´umeroat^omico(painel esquerdo) e temperatura de condensa¸c~ao(painel direito) (Mel´endez et al., 2009). 32 1.3 Painel esquerdo: a m´ediado padr~aode abund^anciasde 22 g^emeassolares em fun¸c~aoda temperatura de condensa¸c~ao.Painel direito: a inclina¸c~ao da m´ediado padr~aode abund^ancias dos elementos refrat´ariose a m´ediadas abund^anciasdos elementos vol´ateisem fun¸c~aodos par^ametrosatmosf´ericos. Cr´editosdas imagens: Ram´ırezet al. (2009). 33 1.4 A m´ediado padr~aode abund^anciasqu´ımicasdas amostras estudadas por Ram´ırezet al. (2010). Notar que nesta figura s~aomostrados apenas os tra- balhos onde os par^ametrosestelares foram determinados usando os espectros (equil´ıbrioespectrosc´opico). 33 1.5 Diferen¸casem abund^ancias qu´ımicasno Sol, observadas em latitudes altas e no equador solar. Fonte: Kiselman et al. (2011). 34 1.6 Diferen¸casentre as abund^anciasdo Sol obtidas com o asteroide Juno e Ceres (painel esquerdo), como tamb´emde Ceres e Vesta (painel direito). Cr´editos das imagem: Mel´endezet al. (2012) e Bedell et al. (2014). 36 1.7 Raz~aode abund^anciasentre a m´ediadas g^emeassolares em rela¸c~aoao Sol (linha vermelha) e as abund^anciasdo Sistema Solar polu´ıdas por estrelas AGB, supernovas e hipernovas. Cr´editosda imagem: Mel´endezet al. (2012). 37 1.8 Diferen¸caentre as abund^anciasqu´ımicasde 16 Cyg A e 16 Cyg B. A linha pontilhada ´ea m´ediados elementos vol´ateise a linha s´olida´eo padr~aodos elementos refrat´arios.A linha vermelha tracejada e pontilhada ´ea m´ediado padr~aode abund^anciasdas g^emeassolares. Fonte: Tucci Maia et al. (2014). 38 1.9 Imagem da estrela jovem TW Hydrae e seu disco protoplanet´ariorealizado pelo ALMA. Os espa¸cosvazios indicam que existe forma¸c~aoplanet´ariano sistema. Fonte: ESO e Andrews et al. (2016). 40 1.10 Distribui¸c~aode temperaturas na nebulosa solar. Fonte: Freedman e Kauf- mann (2005). 41 1.11 As abund^anciaselementais da fotosfera solar (Asplund et al., 2009) vs. a composi¸c~aoqu´ımicados condritos CI (Lodders et al., 2009). 42 1.12 Abund^ancia dos primeiros 41 elementos qu´ımicos presentes na fotosfera solar (Asplund et al., 2009). 43 1.13 Composi¸c~aoda fotosfera solar adicionando 4 massas terrestres de material tipo terra (painel superior), de tipo condr´ıticoCM (painel do meio) e uma mistura de material terrestre e condr´ıtico(painel inferior). A linha repre- senta o ajuste das 11 g^emeassolares analisadas por Mel´endezet al. (2009). Imagem tirada de Chambers (2010). 44 2.1 Abund^anciasdiferenciais da g^emeasolar HIP 100963 estimadas usando os modelos de atmosfera de Castelli e Kurucz (2004) e de Gustafsson et al. (2008), em fun¸c~aodo n´umeroat^omico(Z). 51 2.2 Esquema ilustrativo da defini¸c~aode largura equivalente. Imagem tirada e modificada de Rutten (2003). 53 2.3 Ilustra¸c~aogr´aficade uma curva de crescimento mostrando seus tr^esregimes (linha fraca, saturada e forte).
Recommended publications
  • The Nearest Stars: a Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific
    www.astrosociety.org/uitc No. 5 - Spring 1986 © 1986, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Nearest Stars: A Guided Tour by Sherwood Harrington, Astronomical Society of the Pacific A tour through our stellar neighborhood As evening twilight fades during April and early May, a brilliant, blue-white star can be seen low in the sky toward the southwest. That star is called Sirius, and it is the brightest star in Earth's nighttime sky. Sirius looks so bright in part because it is a relatively powerful light producer; if our Sun were suddenly replaced by Sirius, our daylight on Earth would be more than 20 times as bright as it is now! But the other reason Sirius is so brilliant in our nighttime sky is that it is so close; Sirius is the nearest neighbor star to the Sun that can be seen with the unaided eye from the Northern Hemisphere. "Close'' in the interstellar realm, though, is a very relative term. If you were to model the Sun as a basketball, then our planet Earth would be about the size of an apple seed 30 yards away from it — and even the nearest other star (alpha Centauri, visible from the Southern Hemisphere) would be 6,000 miles away. Distances among the stars are so large that it is helpful to express them using the light-year — the distance light travels in one year — as a measuring unit. In this way of expressing distances, alpha Centauri is about four light-years away, and Sirius is about eight and a half light- years distant.
    [Show full text]
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • Livre-Ovni.Pdf
    UN MONDE BIZARRE Le livre des étranges Objets Volants Non Identifiés Chapitre 1 Paranormal Le paranormal est un terme utilisé pour qualifier un en- mé n'est pas considéré comme paranormal par les semble de phénomènes dont les causes ou mécanismes neuroscientifiques) ; ne sont apparemment pas explicables par des lois scien- tifiques établies. Le préfixe « para » désignant quelque • Les différents moyens de communication avec les chose qui est à côté de la norme, la norme étant ici le morts : naturels (médiumnité, nécromancie) ou ar- consensus scientifique d'une époque. Un phénomène est tificiels (la transcommunication instrumentale telle qualifié de paranormal lorsqu'il ne semble pas pouvoir que les voix électroniques); être expliqué par les lois naturelles connues, laissant ain- si le champ libre à de nouvelles recherches empiriques, à • Les apparitions de l'au-delà (fantômes, revenants, des interprétations, à des suppositions et à l'imaginaire. ectoplasmes, poltergeists, etc.) ; Les initiateurs de la parapsychologie se sont donné comme objectif d'étudier d'une manière scientifique • la cryptozoologie (qui étudie l'existence d'espèce in- ce qu'ils considèrent comme des perceptions extra- connues) : classification assez injuste, car l'objet de sensorielles et de la psychokinèse. Malgré l'existence de la cryptozoologie est moins de cultiver les mythes laboratoires de parapsychologie dans certaines universi- que de chercher s’il y a ou non une espèce animale tés, notamment en Grande-Bretagne, le paranormal est inconnue réelle derrière une légende ; généralement considéré comme un sujet d'étude peu sé- rieux. Il est en revanche parfois associé a des activités • Le phénomène ovni et ses dérivés (cercle de culture).
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Chapter 16 the Sun and Stars
    Chapter 16 The Sun and Stars Stargazing is an awe-inspiring way to enjoy the night sky, but humans can learn only so much about stars from our position on Earth. The Hubble Space Telescope is a school-bus-size telescope that orbits Earth every 97 minutes at an altitude of 353 miles and a speed of about 17,500 miles per hour. The Hubble Space Telescope (HST) transmits images and data from space to computers on Earth. In fact, HST sends enough data back to Earth each week to fill 3,600 feet of books on a shelf. Scientists store the data on special disks. In January 2006, HST captured images of the Orion Nebula, a huge area where stars are being formed. HST’s detailed images revealed over 3,000 stars that were never seen before. Information from the Hubble will help scientists understand more about how stars form. In this chapter, you will learn all about the star of our solar system, the sun, and about the characteristics of other stars. 1. Why do stars shine? 2. What kinds of stars are there? 3. How are stars formed, and do any other stars have planets? 16.1 The Sun and the Stars What are stars? Where did they come from? How long do they last? During most of the star - an enormous hot ball of gas day, we see only one star, the sun, which is 150 million kilometers away. On a clear held together by gravity which night, about 6,000 stars can be seen without a telescope.
    [Show full text]
  • The Sky Tonight
    MARCH POUTŪ-TE-RANGI HIGHLIGHTS Conjunction of Saturn and the Moon A conjunction is when two astronomical objects appear close in the sky as seen THE- SKY TONIGHT- - from Earth. The planets, along with the TE AHUA O TE RAKI I TENEI PO Sun and the Moon, appear to travel across Brightest Stars our sky roughly following a path called the At this time of the year, we can see the ecliptic. Each body travels at its own speed, three brightest stars in the night sky. sometimes entering ‘retrograde’ where they The brightness of a star, as seen from seem to move backwards for a period of time Earth, is measured as its apparent (though the backwards motion is only from magnitude. Pictured on the cover is our vantage point, and in fact the planets Sirius, the brightest star in our night sky, are still orbiting the Sun normally). which is 8.6 light-years away. Sometimes these celestial bodies will cross With an apparent magnitude of −1.46, paths along the ecliptic line and occupy the this star can be found in the constellation same space in our sky, though they are still Canis Major, high in the northern sky. millions of kilometres away from each other. Sirius is actually a binary star system, consisting of Sirius A which is twice the On March 19, the Moon and Saturn will be size of the Sun, and a faint white dwarf in conjunction. While the unaided eye will companion named Sirius B. only see Saturn as a bright star-like object (Saturn is the eighth brightest object in our Sirius is almost twice as bright as the night sky), a telescope can offer a spectacular second brightest star in the night sky, view of the ringed planet close to our Moon.
    [Show full text]
  • La Photosynthèse Serait Apparue Chez Certains Organismes Primitifs Entre 2.800 Et -2.400 Millions D’Années Si L’On En Croit Certaines Archives Géologiques Terrestres
    La photosynthèse serait apparue chez certains organismes primitifs entre 2.800 et -2.400 millions d’années si l’on en croit certaines archives géologiques terrestres. Mais certains la font remonter bien plus tôt en faisant l’hypothèse que les stromatolites que l’on retrouve dans des couches plus anciennes encore sont bien le produit d’une activité biologique. Actuellement, nous n’en sommes sûrs que pour ceux datant de -2.724 millions d’années mais des stromatolites existaient déjà sur Terre il y a 3,5 milliards d’années environ. Quoiqu'il en soit, une certitude demeure, concernant les immenses dépôts de fer du bassin de Hamersley en Australie. Ils datent de l’époque du Sidérien alors que la surface des continents était devenue suffisamment importante pour que se forment des mers peu profondes entourées de grande plates-formes continentales. Les conditions étaient remplies pour que de grands tapis de bactéries construisent des stromatolites en quantités importantes et dégagent massivement de l’oxygène par photosynthèse. Ce gaz corrosif a alors pu oxyder le fer en solution dans les océans et entraîner sa précipitation sous forme d’hydroxyde de fer, de carbonate de fer, de silicate ou de sulfures, selon des variations de l’acidité et du degré d’oxydoréduction de l’eau de mer. C’est ce qu’on appelle la Grande oxydation ou la Catastrophe de l’oxygène. Vers -1.900 millions d’années, la presque totalité du fer présent dans les océans avait précipité et il se retrouve aujourd’hui dans les grands gisements de minerai mondiaux tels que ceux de Hamersley.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Ghost Imaging of Space Objects
    Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL.
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]