Discovery of an Activity Cycle in the Solar Analog HD 45184? Exploring Balmer and Metallic Lines As Activity Proxy Candidates

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of an Activity Cycle in the Solar Analog HD 45184? Exploring Balmer and Metallic Lines As Activity Proxy Candidates A&A 589, A135 (2016) Astronomy DOI: 10.1051/0004-6361/201628145 & c ESO 2016 Astrophysics Discovery of an activity cycle in the solar analog HD 45184? Exploring Balmer and metallic lines as activity proxy candidates M. Flores1; 5, J. F. González1; 3; 5, M. Jaque Arancibia1; 5, A. Buccino2; 4; 5, and C. Saffe1; 3; 5 1 Instituto de Ciencias Astronómicas, de la Tierra y del Espacio (ICATE), España Sur 1512, CC 49, 5400 San Juan, Argentina e-mail: [mflores; fgonzalez; mjaque; csaffe]@icate-conicet.gob.ar 2 Instituto de Astronomía y Física del Espacio (IAFE), Buenos Aires, Argentina e-mail: [email protected] 3 Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, 5400 San Juan, Argentina 4 Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 5 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina Received 16 January 2016 / Accepted 2 April 2016 ABSTRACT Context. Most stellar activity cycles similar to that found in the Sun have been detected by using the chromospheric Ca ii H&K lines as stellar activity proxies. However, it is unclear whether such activity cycles can be identified using other optical lines. Aims. We aim to detect activity cycles in solar-analog stars and determine whether they can be identified through other optical lines, such as Fe II and Balmer lines. We study the solar-analog star HD 45184 using HARPS spectra. The temporal coverage and high quality of the spectra allow us to detect both long- and short-term activity variations. Methods. We analysed the activity signatures of HD 45184 by using 291 HARPS spectra obtained between 2003 and 2014. To search for line-core flux variations, we focused on Ca ii H&K and Balmer Hα and Hβ lines, which are typically used as optical chromospheric activity indicators. We calculated the HARPS-S index from Ca ii H&K lines and converted it into the Mount Wilson scale. In addition, we also considered the equivalent widths of Balmer lines as activity indicators. Moreover, we analysed the possible variability of Fe ii and other metallic lines in the optical spectra. The spectral variations were analysed for periodicity using the Lomb-Scargle periodogram. Results. We report for the first time a long-term 5.14-yr activity cycle in the solar-analog star HD 45184 derived from Mount Wilson S index. This makes HD 45184 one of most similar stars to the Sun with a known activity cycle. The variation is also evident in the first lines of the Balmer series, which do not always show a correlation with activity in solar-type stars. Notably, unlike the solar case, we also found that the equivalent widths of the high photospheric Fe ii lines (4924 Å, 5018 Å and 5169 Å) are modulated (±2 mÅ) by the chromospheric cycle of the star. These metallic lines show variations above 4σ in the rms spectrum, while some Ba ii and Ti ii lines present variations at 3σ level, which could be considered as marginal variations. From short-term modulation of the S index we calculate a rotational period of 19.98 days, which agrees with its mean chromospheric activity level. We also clearly show that the activity cycles of HD 45184 can be detected in both Fe ii and Balmer lines. Key words. stars: activity – stars: chromospheres – stars: solar-type – stars: individual: HD 45184 1. Introduction Activity cycles have been identified in stars of spectral types F to M (even stars with exoplanets), including stars with multiple The pioneer research on stellar activity by Wilson(1978) and cycles. The Ca ii H&K lines are commonly used as optical activ- subsequent works (e.g. Vaughan et al. 1978; Duncan et al. 1991; ity proxies (e.g. Baliunas & Jastrow 1990; Baliunas et al. 1998; Gray & Baliunas 1995) have allowed to better understand the Hall et al. 2007), as are other lines, such as those of the Balmer activity phenomenon in stars other than the Sun. A main con- series (Robertson et al. 2013a; Reiners et al. 2012) or the Mg ii tribution to this subject was made by Baliunas et al.(1998), who infrared triplet (see e.g. Busà et al. 2007; Pietarila & Livingston analysed the flux variability of Ca ii H&K lines and found three 2011). However, it is unclear whether the activity cycles can be different types of behaviour. They found cycles with periods of identified using other optical lines. These activity cycles have between 2.5 and 25 yr that are often associated with stars with important implications on different fields. For instance, studying moderate activity. Very active stars display fluctuations of activ- a range of stars with physical characteristics similar to the Sun ity rather than cycles, while inactive stars seem to be in a state across a range of ages and other parameters is very useful for un- similar to the solar Maunder minimum, the time period between derstanding how typical the Sun is (e.g. Hall et al. 2007, 2009). 1645 and 1715, when the Sun deviated from its usual 11-yr ac- It also helps in particular to understand the frequency of Earth- tivity cycle. influencing behaviours (e.g. Maunder minimum). The discovery Since the pioneering surveys, several stellar cycles have been of activity cycles also helps in the important task of distinguish- reported to date (e.g. Hall et al. 2007; Metcalfe et al. 2010, 2013; ing stellar and planetary signals in radial-velocity surveys (e.g. DeWarf et al. 2010; Buccino et al. 2014; Egeland et al. 2015). Robertson et al. 2013b; Carolo et al. 2014). ? Based on data products from observations made with ESO Tele- scopes at the La Silla Paranal Observatory under programs 072.C-0488 We started a program aiming to detect activity cycles in and 183.C-0972. solar-analog stars using the extensive database of HARPS Article published by EDP Sciences A135, page 1 of6 A&A 589, A135 (2016) spectra. Our initial sample comprises close solar-analog stars taken from Nissen(2015), who carefully selected stars with 1 physical parameters very similar to the Sun (±100 K in Teff, ±0.15 dex in log g, and ±0.10 dex in [Fe/H]), and we also re- quired that the sample spectra have a very high signal-to-noise ratio S/N(≥600). The similarity between these stars and the Sun, together with the possibility to include spectra with high S/N and a homogeneous parameter determination, encouraged us to ini- tially select these objects. However, we do not discard the future possible inclusion of more stars to extend our sample. An inspection of the preliminary data showed a notable vari- ation in the chromospheric activity of G1.5V (Gray et al. 2006) star HD 45184 (=HR 2318, V = 6:39, B−V = 0:62). It is located at a distance of ∼22 pc (van Leeuwen 2007) and hosts a debris Fig. 1. Removal of telluric lines. For two observations of different runs disk of 1–2 M⊕ (Lawler et al. 2009). The reported fundamental the original spectra are shown in the top panel. Below the clean spectra parameters are Teff = 5871 ± 6 K, log g = 4:445 ± 0:012 dex, (black) are overplotted with the telluric model spectra used in each case −1 [Fe/H] = 0:047 ± 0:006 dex, and vturb = 1:06 ± 0:017 km s (light blue). (Nissen 2015). Nissen also derived a mass of 1.06 ± 0.01 M (only internal error) and age of 2.7 ± 0.5 Gyr, showing that HD 45184 is ∼1.8 Gyr younger than the Sun. Then, with the aim of detecting possible activity cycles, we collected all the Telluric features were removed by dividing each observed available HARPS spectra for this object. Multiple observations spectrum S obs by an empirical telluric spectrum T appropriately are required to properly identify both long- and short-term activ- scaled: ity variations. For HD 45184, we gathered a total of 291 spectra −α covering more than ten years of observations, which makes this S corr = S obs · T ; source a very good target in which to search for a possible ac- tivity cycle. HD 45184 has also been identified as a candidate to where α represents the relative optical thickness of the terres- trial atmosphere. This coefficient α was chosen to reproduce the host a planetary mass companion of 0:04 MJup that was detected by radial velocity (Mayor et al. 2011), and it is included in the telluric line intensities, most of which are due to water vapour Extrasolar Planets Encyclopaedia2. All this makes HD 45184 a in our spectral region. We repeated this procedure using a tem- very interesting object and encouraged us to perform the study plate of the O2 γ-band around 6300 Å. In this way, we were able presented here. to satisfactorily correct observations taken with different atmo- This work is organised as follows. In Sect. 2 we describe the spheric water vapour content. Figure1 shows an example of the observations and data reduction, while in Sect. 3 we describe our removal of telluric lines in two small spectral windows. Telluric results, and finally in Sect. 4 we present our discussion. lines in the left side of the bottom panel are due to atmospheric O2, while the right side corresponds to H2O. 2. Observations and data reduction 3. Results The spectra were obtained from the European Southern Obser- 3.1. Chromospheric Ca II H&K lines vatory (ESO) archive3 under the ESO programs 072.C-0488(E) (PI: M.
Recommended publications
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • Chemical Abundance Study of Planetary Hosting Stars P
    CHEMICAL ABUNDANCE STUDY OF PLANETARY HOSTING STARS P. Rittipruk and Y. W. Kang Department of Astronomy and Space Science Sejong University, Korea Planetary Hosting Stars Metallicity ∝ Probability of Hosting Planets Planetary Hosting Stars Planetary Hosting Stars 0.8 0.6 with planet 0.4 without planet 0.2 0.0 -0.2 -0.4 -0.6 Corr-Coef of [X/H] vs EP -0.8 -1.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 [M/H] Chemical abundances of 1111 FGK stars (Adibekyan et al, 2012) 1.2 c 0.8 0.4 0.0 -0.4 -0.8 Corr-Coef of [X/H] vs T with planet without planet -1.2 -1.5 -1.0 -0.5 0.0 0.5 1.0 [M/H] Chemical abundances of 1111 FGK stars (Adibekyan et al, 2012) HD 20794 ‘s Planets Earth to Sun = 1 AU Mass = 0.70 Msun Radius = 0.92 Rsun Distance = 6.06 pc Age = 14±6 Gyr (Bernkopf+2012) = 5.76±0.66 (Gyr)(Pepe+ 2011) bcde M sin i 0.0085 0.0076 0.0105 0.0150 (MJ) (2.7) (2.4) (4.8) (4.7) a(AU) 0.1207 0.2036 0.3499 0.509 P(days) 18.315 40.114 90.309 147.2 HD 47536 ‘s Planets ■ Mass = 0.94 Msun Earth to Sun = 1AU ■ Radius = 23.47 Rsun ■ Distance = 121.36 pc ■ Age = 9.33 Gyr (Silva+2006) HD 47536b HD 47536c** M sin i (MJ) 4.96 6.98 a(AU) 1.61 3.72 P(days) 430 2500 Observation CHIRON Echelle Spectrometer Wavelength cover : 4200 – 8800 A Narrow Slit (R = 120,000) SMART-1.5m at CTIO, La Serena, Chile Observed Spectrum Echelle Spectrum of HD20794 obtained using CHIRON Spectrometers Reduced Spectrum Spectrum of HD20794 after reduction plotted with synthesis spectrum Algorithms Rotational Velocity (v sin i) Determination Reiners & Schmitt (2003) ⁄ sin 0.610 0.062 0.027 0.012 0.004
    [Show full text]
  • Metallicity of Solar-Type Stars with Debris Discs and Planets⋆⋆⋆
    A&A 541, A40 (2012) Astronomy DOI: 10.1051/0004-6361/201218800 & c ESO 2012 Astrophysics Metallicity of solar-type stars with debris discs and planets, J. Maldonado1,C.Eiroa1, E. Villaver1, B. Montesinos2,andA.Mora3 1 Universidad Autónoma de Madrid, Dpto. Física Teórica, Módulo 15, Facultad de Ciencias, Campus de Cantoblanco, 28049 Madrid, Spain e-mail: [email protected] 2 Centro de Astrobiología (INTA-CSIC), LAEFF Campus, European Space Astronomy Center (ESAC), PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain 3 ESA-ESAC Gaia SOC, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain Received 10 January 2012 / Accepted 6 February 2012 ABSTRACT Context. Around 16% of the solar-like stars in our neighbourhood show IR-excesses due to dusty debris discs and a fraction of them are known to host planets. Determining whether these stars follow any special trend in their properties is important to understand debris disc and planet formation. Aims. We aim to determine in a homogeneous way the metallicity of a sample of stars with known debris discs and planets. We attempt to identify trends related to debris discs and planets around solar-type stars. Methods. Our analysis includes the calculation of the fundamental stellar parameters Teff,logg, microturbulent velocity, and metal- licity by applying the iron ionisation equilibrium conditions to several isolated Fe i and Fe ii lines. High-resolution échelle spectra (R ∼ 57 000) from 2, 3 m class telescopes are used. Our derived metallicities are compared with other results in the literature, which finally allows us to extend the stellar samples in a consistent way.
    [Show full text]
  • The HARPS Search for Southern Extra-Solar Planets. XLII. Eight HARPS Multi-Planet Systems Hosting 20 Super-Earth and Neptune-Mass Companions S
    The HARPS search for southern extra-solar planets. XLII. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions S. Udry, X. Dumusque, C. Lovis, D. Segransan, R Diaz, W. Benz, F. Bouchy, A Coffinet, G Curto, M. Mayor, et al. To cite this version: S. Udry, X. Dumusque, C. Lovis, D. Segransan, R Diaz, et al.. The HARPS search for southern extra- solar planets. XLII. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions. Astronomy and Astrophysics - A&A, EDP Sciences, 2019. hal-02109189 HAL Id: hal-02109189 https://hal.archives-ouvertes.fr/hal-02109189 Submitted on 24 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astronomy & Astrophysics manuscript no. udry2018 c ESO 2019 January 29, 2019 The HARPS search for southern extra-solar planets. XLII. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions ? ?? ??? S. Udry1, X. Dumusque1, C. Lovis1, D. Ségransan1, R.F. Diaz1, W. Benz2, F. Bouchy1; 3, A. Coffinet1, G. Lo Curto4, M. Mayor1, C. Mordasini2, F. Motalebi1, F. Pepe1, D. Queloz1, N.C. Santos5; 6, A.
    [Show full text]
  • Serendipitous Discovery of the Faint Solar Twin Inti 1? Jhon Yana Galarza1, Jorge Meléndez1, and Judith G
    Astronomy & Astrophysics manuscript no. inti1 c ESO 2018 September 25, 2018 Serendipitous discovery of the faint solar twin Inti 1? Jhon Yana Galarza1, Jorge Meléndez1, and Judith G. Cohen2 1 Universidade de São Paulo, IAG, Departamento de Astronomia, São Paulo, Rua do Matão 1226, 05508-090 SP, Brasil e-mail: [email protected] 2 California Institute of Technology, 1200 E. California Blvd., MC 249-17, Pasadena, CA 91195, USA September 25, 2018 ABSTRACT Context. Solar twins are increasingly the subject of many studies owing to their wide range of applications from testing stellar evolution models to the calibration of fundamental observables; these stars are also of interest because high precision abundances could be achieved that are key to investigating the chemical anomalies imprinted by planet formation. Furthermore, the advent of photometric surveys with large telescopes motivates the identification of faint solar twins in order to set the zero point of fundamental calibrations. Aims. We intend to perform a detailed line-by-line differential analysis to verify whether 2MASS J23263267-0239363 (designated here as Inti 1) is indeed a solar twin. Methods. We determine the atmospheric parameters and differential abundances using high-resolution (R ≈ 50000), high signal-to- noise (S/N ≈ 110 - 240 per pixel) Keck HIRES spectra for our solar twin candidate, the previously known solar twin HD 45184, and the Sun (using reflected light from the asteroid Vesta). −1 Results. For the bright solar twin HD 45184, we found Teff = 5864 ± 9 K, log g = 4:45 ± 0:03 dex, vt = 1:11 ± 0:02 km s , and [Fe/H]= 0:04 ± 0:01 dex, which are in good agreement with previous works.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • Arxiv:1207.6212V2 [Astro-Ph.GA] 1 Aug 2012
    Draft: Submitted to ApJ Supp. A Preprint typeset using LTEX style emulateapj v. 5/2/11 PRECISE RADIAL VELOCITIES OF 2046 NEARBY FGKM STARS AND 131 STANDARDS1 Carly Chubak2, Geoffrey W. Marcy2, Debra A. Fischer5, Andrew W. Howard2,3, Howard Isaacson2, John Asher Johnson4, Jason T. Wright6,7 (Received; Accepted) Draft: Submitted to ApJ Supp. ABSTRACT We present radial velocities with an accuracy of 0.1 km s−1 for 2046 stars of spectral type F,G,K, and M, based on ∼29000 spectra taken with the Keck I telescope. We also present 131 FGKM standard stars, all of which exhibit constant radial velocity for at least 10 years, with an RMS less than 0.03 km s−1. All velocities are measured relative to the solar system barycenter. Spectra of the Sun and of asteroids pin the zero-point of our velocities, yielding a velocity accuracy of 0.01 km s−1for G2V stars. This velocity zero-point agrees within 0.01 km s−1 with the zero-points carefully determined by Nidever et al. (2002) and Latham et al. (2002). For reference we compute the differences in velocity zero-points between our velocities and standard stars of the IAU, the Harvard-Smithsonian Center for Astrophysics, and l’Observatoire de Geneve, finding agreement with all of them at the level of 0.1 km s−1. But our radial velocities (and those of all other groups) contain no corrections for convective blueshift or gravitational redshifts (except for G2V stars), leaving them vulnerable to systematic errors of ∼0.2 km s−1 for K dwarfs and ∼0.3 km s−1 for M dwarfs due to subphotospheric convection, for which we offer velocity corrections.
    [Show full text]
  • Download This Article in PDF Format
    A&A 622, A37 (2019) Astronomy https://doi.org/10.1051/0004-6361/201731173 & © ESO 2019 Astrophysics The HARPS search for southern extra-solar planets XLIV. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions?,??,??? S. Udry1, X. Dumusque1, C. Lovis1, D. Ségransan1, R. F. Diaz1, W. Benz2, F. Bouchy1,3, A. Coffinet1, G. Lo Curto4, M. Mayor1, C. Mordasini2, F. Motalebi1, F. Pepe1, D. Queloz1, N. C. Santos5,6, A. Wyttenbach1, R. Alonso7, A. Collier Cameron8, M. Deleuil3, P. Figueira5, M. Gillon9, C. Moutou3,10, D. Pollacco11, and E. Pompei4 1 Observatoire astronomique de l’Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland e-mail: [email protected] 2 Physikalisches Institut, Universitat Bern, Silderstrasse 5, 3012 Bern, Switzerland 3 Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388, Marseille, France 4 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany 5 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 6 Departamento de Física e Astronomia, Faculdade de Cièncias, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 7 Instituto de Astrofísica de Canarias, 38025, La Laguna, Tenerife, Spain 8 School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, UK 9 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bat. B5C, 4000 Liège, Belgium 10 Canada France Hawaii Telescope Corporation, Kamuela, HI 96743, USA 11 Department of Physics, University of Warwick, Coventry, CV4 7AL, UK Received 15 May 2017 / Accepted 16 October 2018 ABSTRACT Context.
    [Show full text]
  • Properties of Members of Stellar Kinematic Groups and Stars with Circumstellar Dusty Debris Discs
    UNIVERSIDAD AUTONOMA´ DE MADRID Facultad de Ciencias Departamento de F´ısica Teorica´ A spectroscopic study of the nearby late-type stellar population: Properties of members of stellar kinematic groups and stars with circumstellar dusty debris discs. PhD dissertation submitted by Jesus´ Maldonado Prado for the degree of Doctor in Physics Supervised by Dr. Carlos Eiroa de San Francisco Madrid, June 2012 UNIVERSIDAD AUTONOMA´ DE MADRID Facultad de Ciencias Departamento de F´ısica Teorica´ Estudio espectroscopico´ de la poblacion´ estelar fr´ıa cercana: Propiedades de estrellas en grupos cinematicos´ estelares y de estrellas con discos circunestelares de tipo debris. Memoria de tesis doctoral presentada por Jesus´ Maldonado Prado para optar al grado de Doctor en Ciencias F´ısicas Trabajo dirigido por el Dr. Carlos Eiroa de San Francisco Madrid, Junio de 2012 A mis padres y hermanos Agradecimientos La finalizaci´on de una tesis doctoral es siempre un momento para el balance y la reflexi´on. Conf´ıo que estas breves palabras sirvan de peque˜no reconocimiento a todas las personas que durante todo este largo, y no siempre f´acil, per´ıodo de tiempo han tenido a bien brindarme su ayuda, su apoyo y, en muchos casos, su simpat´ıa. A todos los que de alguna manera me habe´ıs ayudado, gracias. Las primeras palabras de estas notas deben ser para mi supervisor de tesis, Carlos Eiroa, por su confianza, su apoyo y dedicaci´on y sobre todo por esa mi- rada cr´ıtica tan suya que, desde siempre, ha tratado de transmitirme. A Benjam´ın Montesinos debo agradecerle muchas cosas, en particular su cercan´ıa y su forma de ser, a David Montes y a Raquel Mart´ınez, su esfuerzo y dedicaci´on.
    [Show full text]
  • February 2019 BRAS Newsletter
    Monthly Meeting February 11th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Speaker: Chris Desselles on Astrophotography What's In This Issue? President’s Message Secretary's Summary Outreach Report Astrophotography Group Asteroid and Comet News Light Pollution Committee Report Recent BRAS Forum Entries Messages from the HRPO Science Academy International Astronomy Day Friday Night Lecture Series Globe at Night Adult Astronomy Courses Nano Days Observing Notes – Canis Major – The Great Dog & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Newsletter of the Baton Rouge Astronomical Society February 2019 © 2019 President’s Message The highlight of January was the Total Lunar Eclipse 20/21 January 2019. There was a great turn out at HRPO, and it was a lot of fun. If any of the members wish to volunteer at HRPO, please speak to Chris Kersey, BRAS Liaison for BREC, to fill out the paperwork. MONTHLY SPEAKERS: One of the club’s needs is speakers for our monthly meetings if you are willing to give a talk or know of a great speaker let us know. UPCOMING BRAS MEETINGS: Light Pollution Committee - HRPO, Wednesday, February 6, 6:15 P.M. Business Meeting – HRPO, Wednesday, February 6, 7 P.M. Monthly Meeting – HRPO, Monday, February 11, 7 P.M. VOLUNTEERS: While BRAS members are not required to volunteer, if we do grow our volunteer core in 2019 we can do more fun activities without wearing out our great volunteers. Volunteering is an excellent opportunity to share what you know while increasing your skills.
    [Show full text]