E Ects of Stellar Activity on the Measurement of Precise Radial

Total Page:16

File Type:pdf, Size:1020Kb

E Ects of Stellar Activity on the Measurement of Precise Radial Joao˜ Gomes da Silva E↵ects of stellar activity on the measurement of precise radial velocity Departamento de F´ısica e Astronomia Faculdade de Cienciasˆ da Universidade do Porto Maio de 2014 Joao˜ Gomes da Silva E↵ects of stellar activity on the measurement of precise radial velocity Tese submetida `aFaculdade de Ciˆenciasda Universidade do Porto para obten¸c˜aodo grau de Doutor em Astronomia Departamento de F´ısica e Astronomia Faculdade de Cienciasˆ da Universidade do Porto Maio de 2014 Acknowledgments I would like to thank my supervisor, Nuno, the motivation, patience, guidance, and scientific expertise he shared with me, and for all the work he had to make this thesis a reality. I would also like to thank all my co-workers and staff at CAUP for helping me with the scientific and bureaucratic aspects of the PhD, but also for the fun we had in innumerable occasions during these last four years. And of course to all my friends and family. This research was funded by Fundac¸ao˜ para a Cienciaˆ e Tecnologia, Portugal (grant ref- erence SFRH/BD/64722/2009) as well as by the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953. 3 Abstract The radial velocity (RV) method is one of the most prolific techniques in detecting and confirming extrasolar planets. However, due to its indirect nature, it is also sensitive to other sources of RV signals. One of the most important limiting factors of using the RV method to discover low-mass or long-period extrasolar planets is stellar activity. The phenomena that comprises activity is capable of inducing ”artificial” RV variations that will interfere with planetary detections, by adding noise to the data or producing periodic modulations that might be confused with the ones originating from the pull of planetary companions. These phenomena have a large range of timescales, from stellar oscillations and flares that can last for minutes, to magnetic cycles that last for decades. When searching for planets with various orbital periods, all these timescales need to be taken into account. Therefore, it is very important to understand the activity diagnostic tools and how activity interferes with the measured RV. In this thesis my focus is on the long-term interference of activity on the measured RV signals and how to diagnose them. A large part of the work involved studying activity cycles of M dwarfs, due to their increasing importance in planetary searches, mainly because of their low-mass, which maximises the detection of planets by using methods such as RV or transits. I compared various activity indicators measured over timescales of years to try to understand how they relate to each other and select the most appropriate for these kind of stars. The flux in the Na i D lines was found to follow very well the activity measured by the Ca ii H & K lines. Furthermore their use is most appropriate for M dwarfs due to the higher signal-to-noise at the Na i D wavelengths. I also found that the flux in the Ca ii and H↵ lines is correlated for the highest activity stars but uncorrelated or anti-correlated for he most quiet M dwarfs. Indications that activity cycles are present in early-M dwarfs were also detected. In a following study with one more year of extended data, the flux on the Na i lines was used to detect activity cycles and compare those variations with the simultaneous RV signals. This was done with the aim of finding correlations between activity and RV and 4 to understand to which order those cycles could be One of the results of this work was that around 2/3 of early-M dwarfs present long-term variability. This fraction of stars with long-term variability is comparable to that of FGK stars. However, only 19% of early-M dwarfs show the presence of activity cycles (cf. 60% for FGKs). This might be a signal ⇠ of departure from an ↵⌦-dynamo to an ↵2-dynamo were no activity cycles are expected. I also found that long term activity variations are capable of producing RV signals with 1 amplitudes that can reach the 5ms− level. This is enough to hide the signal of a ⇠ low-mass planet or to simulate that of a long-period planet. In the last part of this thesis I studied the long-term correlation between two of the most widely used optical activity indicators, the Ca ii H & K and the H↵ lines, for a sample of FGK stars. These two indices are known to have a wide range of correlations but this behaviour is not well studied. The correlations between these indices was found to be depend on the activity level of the stars (as was found also for M dwarfs) and the stellar metal content might be also having an effect on the correlations between these two activity indices. 5 Contents Acknowledgments 3 Abstract 4 List of Tables 8 List of Figures 9 1 Introduction 10 1.1 Detecting exoplanets using radial velocity . 12 1.1.1 General properties of exoplanets . 13 1.1.2 The radial velocity method . 16 1.1.3 Limitations of the radial velocity method . 18 1.2 Stellar activity . 19 1.2.1 Stellar chromospheric activity . 20 1.2.2 Activity proxies . 25 1.2.3 Mean activity level of stars . 30 1.3 Stellar activity at different time scales and its influence on RV . 32 1.3.1 Oscillations and Granulation . 32 1.3.2 Rotationally modulated active regions . 36 1.3.3 Long-term activity: magnetic cycles . 38 6 1.4 Motivation . 43 2 Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program I. Comparison of activity indices 45 3 Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program II. Activity and radial velocity 63 4 On the long-term correlation between the flux in the Ca ii H & K and Halpha lines of FGK stars 89 5 Conclusions 108 5.1 Activity indices for M dwarfs . 108 5.2 Long-term activity variability and cycles of M dwarfs . 110 5.3 Influence of long-term activity on the RV of M dwarfs . 111 5.4 The long-term correlation between Ca II and Halpha for FGK stars . 112 5.5 Future prospects and things to be done . 113 5.5.1 Activity cycles in M dwarfs . 114 5.5.2 Activity indices . 115 References 116 7 List of Tables 1.1 Stellar activity at different timescales and correction of RV. 33 8 List of Figures 1.1 Mass distribution of close-in, low-mass planets . 14 1.2 Radius distribution of low-mass planets . 15 1.3 Solar flare . 21 1.4 Temperature structure of the solar chromosphere . 23 1.5 RV induced by stellar oscillations . 34 1.6 Effect of granulation on line bisector . 35 1.7 Effect of spots on line profile and RV . 37 1.8 The Sun’s butterfly diagram and average sunspot area . 39 1.9 MWO long-term activity classification . 40 1.10 Long-term correlations between RV and activity proxies . 42 9 Chapter 1 Introduction During the last 15 years, astronomers have been discovering dozens of planets orbiting other stars. This quest is, however, not an easy task. The difficulty of detecting extra- solar planets arises from the fact that most of the optical radiation coming from a planet is simply reflected starlight. Because of this, exoplanets will be billions of times fainter than their host stars. And since they generally orbit at extremely small angular separations, their direct detection is incredibly hard. One way to circumvent this problem is to use indirect methods such as detecting the dynamical perturbations provoked in the host star by a planetary companion. Several indirect methods exists now that are able to detect these small bodies in other stellar systems. The most successful to date are the radial velocity (RV) method, one of the focus of this thesis, which measures the line-of-sight velocity of star as it moves around of the star-planet centre of mass (e.g. Mayor & Queloz 1995), and transit pho- tometry which detects the shallow brightness decrease of a star as a planet passes in front of its disk (e.g. Henry et al. 1999; Charbonneau et al. 2000). Other indirect methods currently in use include astrometry, which measures the apparent movements of the parent star by measuring it’s position with time (e.g. Benedict et al. 2006), gravitational microlensing events, which detects the huge jump in the brightness of a planet as a lens star passes in front of its host star (this method is however not easily repeatable) (e.g. Bond et al. 2004). Transit timing variations, which measure the variations in the transit time of a planet produced by another perturbing body (e.g. Ballard et al. 2011), is recent new method for confirming or detecting exoplanets. Another example of an indirect planet search technique is pulsar timing, which measures the tiny anomalies in the timing of its observed radio pulses and can be used to track the pulsar’s motion, and therefore to detect a perturbing companion (e.g. Wolszczan & Frail 1992). This last 10 CHAPTER 1. INTRODUCTION 11 one was the technique that first detected planet mass objects outside the solar system Wolszczan & Frail (1992). Due to the indirect nature of these methods, they will become sensitive to other sources of signals, similar to the ones they are supposed to detect, which can be produced by the parent star.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Apus Constellation Visible at Latitudes Between +5° and -90°
    Apus Constellation Visible at latitudes between +5° and -90°. Best visible at 21:00 (9 p.m.) during the month of July. Apus is a small constellation in the southern sky. It represents a bird-of-paradise, and its name means "without feet" in Greek because the bird-of-paradise was once wrongly believed to lack feet. First depicted on a celestial globe by Petrus Plancius in 1598, it was charted on a star atlas by Johann Bayer in his 1603 Uranometria. The French explorer and astronomer Nicolas Louis de Lacaille charted and gave the brighter stars their Bayer designations in 1756. The five brightest stars are all reddish in hue. Shading the others at apparent magnitude 3.8 is Alpha Apodis, an orange giant that has around 48 times the diameter and 928 times the luminosity of the Sun. Marginally fainter is Gamma Apodis, another ageing giant star. Delta Apodis is a double star, the two components of which are 103 arcseconds apart and visible with the naked eye. Two star systems have been found to have planets. Apus was one of twelve constellations published by Petrus Plancius from the observations of Pieter Dirkszoon Keyser and Frederick de Houtman who had sailed on the first Dutch trading expedition, known as the Eerste Schipvaart, to the East Indies. It first appeared on a 35-cm diameter celestial globe published in 1598 in Amsterdam by Plancius with Jodocus Hondius. De Houtman included it in his southern star catalogue in 1603 under the Dutch name De Paradijs Voghel, "The Bird of Paradise", and Plancius called the constellation Paradysvogel Apis Indica; the first word is Dutch for "bird of paradise".
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • An Upper Boundary in the Mass-Metallicity Plane of Exo-Neptunes
    MNRAS 000, 1{8 (2016) Preprint 8 November 2018 Compiled using MNRAS LATEX style file v3.0 An upper boundary in the mass-metallicity plane of exo-Neptunes Bastien Courcol,1? Fran¸cois Bouchy,1 and Magali Deleuil1 1Aix Marseille University, CNRS, Laboratoire d'Astrophysique de Marseille UMR 7326, 13388 Marseille cedex 13, France Accepted XXX. Received YYY; in original form ZZZ ABSTRACT With the progress of detection techniques, the number of low-mass and small-size exo- planets is increasing rapidly. However their characteristics and formation mechanisms are not yet fully understood. The metallicity of the host star is a critical parameter in such processes and can impact the occurence rate or physical properties of these plan- ets. While a frequency-metallicity correlation has been found for giant planets, this is still an ongoing debate for their smaller counterparts. Using the published parameters of a sample of 157 exoplanets lighter than 40 M⊕, we explore the mass-metallicity space of Neptunes and Super-Earths. We show the existence of a maximal mass that increases with metallicity, that also depends on the period of these planets. This seems to favor in situ formation or alternatively a metallicity-driven migration mechanism. It also suggests that the frequency of Neptunes (between 10 and 40 M⊕) is, like giant planets, correlated with the host star metallicity, whereas no correlation is found for Super-Earths (<10 M⊕). Key words: Planetary Systems, planets and satellites: terrestrial planets { Plan- etary Systems, methods: statistical { Astronomical instrumentation, methods, and techniques 1 INTRODUCTION lation was not observed (.e.g.
    [Show full text]
  • Sunqm-1S2: Comparing to Other Star-Planet Systems, Our Solar System Has a Nearly Perfect {N,N} QM Structure 1
    Yi Cao, SunQM-1s2: Comparing to other star-planet systems, our Solar system has a nearly perfect {N,n} QM structure 1 SunQM-1s2: Comparing to other star-planet systems, our Solar system has a nearly perfect {N,n//6} QM structure Yi Cao Ph.D. of biophysics, a citizen scientist of QM. E-mail: [email protected] © All rights reserved The major part of this work started from 2016. Abstract The Solar QM {N,n//6} structure has been successful not only for modeling the Solar system from Sun core to Oort cloud, but also in matching the size of white dwarf, neutron star and even black hole. In this paper, I have used this model to further scan down (and up) in our world. It is interesting to find that on the small end, the r(s) of hydrogen atom, proton and quark match {-12,1}, {-15,1} and {-17,1} respectively. On the large end, our Milky way galaxy, the Virgo super cluster have their r(s) match {8,1}, and {10,1} respectively. In a second estimation, some elementary particles like electron, up quark, down quark, … may have their {N,n} QM structures match {-17,1}, {-17,2}, {-17,3} … respectively. In a third estimation, the r(s) of super-massive black hole of Andromeda galaxy and Milky way galaxy match {2,1} and {1,1} respectively. However, so far the Solar QM {N,n} structure has not been re-produced in other exoplanetary systems (like TRAPPIST-1, HD 10180, Kepler-90, Kelper-11, 55-Cacri).
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • A Super-Earth Transiting a Naked-Eye Star
    A Super-Earth Transiting a Naked-Eye Star The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Winn, Joshua N. et al. “A SUPER-EARTH TRANSITING A NAKED-EYE STAR.” The Astrophysical Journal 737.1 (2011): L18. As Published http://dx.doi.org/10.1088/2041-8205/737/1/l18 Publisher IOP Publishing Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/71127 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ ACCEPTED VERSION,JULY 6, 2011 Preprint typeset using LATEX style emulateapj v. 11/10/09 A SUPER-EARTH TRANSITING A NAKED-EYE STAR⋆ JOSHUA N. WINN1, JAYMIE M. MATTHEWS2,REBEKAH I. DAWSON3 ,DANIEL FABRYCKY4,5 , MATTHEW J. HOLMAN3, THOMAS KALLINGER2,6,RAINER KUSCHNIG6,DIMITAR SASSELOV3,DIANA DRAGOMIR5,DAVID B. GUENTHER7, ANTHONY F. J. MOFFAT8 , JASON F. ROWE9 ,SLAVEK RUCINSKI10,WERNER W. WEISS6 ApJ Letters, in press ABSTRACT We have detected transits of the innermost planet “e” orbiting55Cnc(V =6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 d) and phase that had been predicted by Dawson & Fabrycky, and with the expected duration and depth for the +0.051 crossing of a Sun-like star by a hot super-Earth. Assuming the star’s mass and radius to be 0.963−0.029 M⊙ and 0.943 ± 0.010 R⊙, the planet’s mass, radius, and mean density are 8.63 ± 0.35 M⊕,2.00 ± 0.14 R⊕, and +1.5 −3 5.9−1.1 g cm .
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Does the Presence of Planets Affect the Frequency and Properties of Extrasolar Kuiper Belts? Results from the Herschel Debris and Dunes Surveys A
    Draft version January 19, 2015 Preprint typeset using LATEX style emulateapj v. 05/12/14 DOES THE PRESENCE OF PLANETS AFFECT THE FREQUENCY AND PROPERTIES OF EXTRASOLAR KUIPER BELTS? RESULTS FROM THE HERSCHEL DEBRIS AND DUNES SURVEYS A. Moro-Mart´ın1,2, J. P. Marshall3,4,5, G. Kennedy6, B. Sibthorpe7, B.C. Matthews8,9, C. Eiroa5, M.C. Wyatt6, J.-F. Lestrade10, J. Maldonado11, D. Rodriguez12, J.S. Greaves13, B. Montesinos14, A. Mora15, M. Booth16, G. Duchene^ 17,18,19, D. Wilner20, J. Horner21,4, Draft version January 19, 2015 ABSTRACT The study of the planet-debris disk connection can shed light on the formation and evolution of planetary systems, and may help \predict" the presence of planets around stars with certain disk characteristics. In preliminary analyses of subsamples of the Herschel DEBRIS and DUNES surveys, Wyatt et al. (2012) and Marshall et al. (2014) identified a tentative correlation between debris and the presence of low-mass planets. Here we use the cleanest possible sample out these Herschel surveys to assess the presence of such a correlation, discarding stars without known ages, with ages < 1 Gyr and with binary companions <100 AU, to rule out possible correlations due to effects other than planet presence. In our resulting subsample of 204 FGK stars, we do not find evidence that debris disks are more common or more dusty around stars harboring high-mass or low-mass planets compared to a control sample without identified planets. There is no evidence either that the characteristic dust temperature of the debris disks around planet-bearing stars is any different from that in debris disks without identified planets, nor that debris disks are more or less common (or more or less dusty) around stars harboring multiple planets compared to single-planet systems.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • The Spitzer Search for the Transits of HARPS Low-Mass Planets II
    A&A 601, A117 (2017) Astronomy DOI: 10.1051/0004-6361/201629270 & c ESO 2017 Astrophysics The Spitzer search for the transits of HARPS low-mass planets II. Null results for 19 planets? M. Gillon1, B.-O. Demory2; 3, C. Lovis4, D. Deming5, D. Ehrenreich4, G. Lo Curto6, M. Mayor4, F. Pepe4, D. Queloz3; 4, S. Seager7, D. Ségransan4, and S. Udry4 1 Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août 17, Bat. B5C, 4000 Liège, Belgium e-mail: [email protected] 2 University of Bern, Center for Space and Habitability, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE, UK 4 Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland 5 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA 6 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85478 Garching bei München, Germany 7 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA Received 8 July 2016 / Accepted 15 December 2016 ABSTRACT Short-period super-Earths and Neptunes are now known to be very frequent around solar-type stars. Improving our understanding of these mysterious planets requires the detection of a significant sample of objects suitable for detailed characterization. Searching for the transits of the low-mass planets detected by Doppler surveys is a straightforward way to achieve this goal. Indeed, Doppler surveys target the most nearby main-sequence stars, they regularly detect close-in low-mass planets with significant transit probability, and their radial velocity data constrain strongly the ephemeris of possible transits.
    [Show full text]