Metallicity of Solar-Type Stars with Debris Discs and Planets⋆⋆⋆
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Luminous Blue Variables
Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Redalyc. Mass Loss from Luminous Blue Variables and Quasi-Periodic
Revista Mexicana de Astronomía y Astrofísica ISSN: 0185-1101 [email protected] Instituto de Astronomía México Vink, Jorick S.; Kotak, Rubina Mass loss from Luminous Blue Variables and Quasi-periodic Modulations of Radio Supernovae Revista Mexicana de Astronomía y Astrofísica, vol. 30, agosto, 2007, pp. 17-22 Instituto de Astronomía Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57130005 Abstract Massive stars, supernovae (SNe), and long-duration gamma-ray bursts (GRBs) have a huge impact on their environment. Despite their importance, a comprehensive knowledge of which massive stars produce which SN/GRB is hitherto lacking. We present a brief overview about our knowledge of mass loss in the Hertzsprung- Russell Diagram (HRD) covering evolutionary phases of the OB main sequence, the unstable Luminous Blue Variable (LBV) stage, and the Wolf-Rayet (WR) phase. Despite the fact that metals produced by \selfenrichment" in WR atmospheres exceed the initial { host galaxy { metallicity, by orders of magnitude, a particularly strong dependence of the mass-loss rate on the initial metallicity is found for WR stars at subsolar metallicities (1/10 { 1/100 solar). This provides a signicant boost to the collapsar model for GRBs, as it may present a viable mechanism to prevent the loss of angular momentum by stellar winds at low metallicity, whilst strong Galactic WR winds may inhibit GRBs occurring at solar metallicities. Furthermore, we discuss recently reported quasi-sinusoidal modulations in the radio lightcurves -
The Impact of the Astro2010 Recommendations on Variable Star Science
The Impact of the Astro2010 Recommendations on Variable Star Science Corresponding Authors Lucianne M. Walkowicz Department of Astronomy, University of California Berkeley [email protected] phone: (510) 642–6931 Andrew C. Becker Department of Astronomy, University of Washington [email protected] phone: (206) 685–0542 Authors Scott F. Anderson, Department of Astronomy, University of Washington Joshua S. Bloom, Department of Astronomy, University of California Berkeley Leonid Georgiev, Universidad Autonoma de Mexico Josh Grindlay, Harvard–Smithsonian Center for Astrophysics Steve Howell, National Optical Astronomy Observatory Knox Long, Space Telescope Science Institute Anjum Mukadam, Department of Astronomy, University of Washington Andrej Prsa,ˇ Villanova University Joshua Pepper, Villanova University Arne Rau, California Institute of Technology Branimir Sesar, Department of Astronomy, University of Washington Nicole Silvestri, Department of Astronomy, University of Washington Nathan Smith, Department of Astronomy, University of California Berkeley Keivan Stassun, Vanderbilt University Paula Szkody, Department of Astronomy, University of Washington Science Frontier Panels: Stars and Stellar Evolution (SSE) February 16, 2009 Abstract The next decade of survey astronomy has the potential to transform our knowledge of variable stars. Stellar variability underpins our knowledge of the cosmological distance ladder, and provides direct tests of stellar formation and evolution theory. Variable stars can also be used to probe the fundamental physics of gravity and degenerate material in ways that are otherwise impossible in the laboratory. The computational and engineering advances of the past decade have made large–scale, time–domain surveys an immediate reality. Some surveys proposed for the next decade promise to gather more data than in the prior cumulative history of astronomy. -
Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i, -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
A Search for Variability and Transit Signatures In
A SEARCH FOR VARIABILITY AND TRANSIT SIGNATURES IN HIPPARCOS PHOTOMETRIC DATA A thesis presented to the faculty of 3 ^ San Francisco State University Zo\% In partial fulfilment of W* The Requirements for The Degree Master of Science In Physics: Astronomy by Badrinath Thirumalachari San JVancisco, California December 2018 Copyright by Badrinath Thirumalachari 2018 CERTIFICATION OF APPROVAL I certify that I have read A SEARCH FOR VARIABILITY AND TRANSIT SIGNATURES IN HIPPARCOS PHOTOMETRIC DATA by Badrinath Thirumalachari and that in my opinion this work meets the criteria for approving a thesis submitted in partial fulfillment of the requirements for the degree: Master of Science in Physics: Astronomy at San Francisco State University. fov- Dr. Stephen Kane, Ph.D. Astrophysics Associate Professor of Planetary Astrophysics Dr. Uo&eph Barranco, Ph.D. .%trtJphysics Chairfe Associate Professor of Physics K + A Q , L a . Dr. Ron Marzke, Ph.D. Astronomy Assoc. Dean of College of Science & Engineering A SEARCH FOR VARIABILITY AND TRANSIT SIGNATURES IN HIPPARCOS PHOTOMETRIC DATA Badrinath Thirumalachari San Francisco State University 2018 The study and characterization of exoplanets has picked up pace rapidly over the past few decades with the invention of newer techniques and instruments. Detecting transits in stellar photometric data around stars already known to harbor exoplanets is crucial for exoplanet characterization. Due to these advancements we now have oceans of data and coming up with an automated way of performing exoplanet characterization is a challenge. In this thesis I describe one such method to search for transits in Hipparcos dataset containing photometric data for over 118000 stars. The radial velocity method has discovered a lot of planets around bright host stars and a follow up transit detection will give us the density of the exoplanet. -
LSC-Virgo-KAGRA Observational Science White Paper (Summer 2020 Edition)
LIGO SCIENTIFIC COLLABORATION VIRGO COLLABORATION KAGRA COLLABORATION Technical Document LIGO-T2000424-v2 VIR-0666B-20 JGW-T2011802-v2 The LSC-Virgo-KAGRA Observational Science White Paper (Summer 2020 edition) The LSC-Virgo-KAGRA Observational Science Working Groups http://www.ligo.org http://www.virgo-gw.eu https://gwcenter.icrr.u-tokyo.ac.jp Processed with LATEX on 2020/08/07 LSC-Virgo-KAGRA Observational Science White Paper Contents 1 Overview and Executive Summary 5 1.1 Searches for Generic Transients, or Bursts . .9 1.2 Searches for Signals from Compact Binary Coalescences . 11 1.3 Searches for Continuous-Wave Signals . 16 1.4 Searches for Stochastic Backgrounds . 19 1.5 Working Group Leadership Roles . 22 2 Burst Group Activity Plans 23 Op-2.1 Search for short-duration GW bursts . 23 LT-2.1 Search for short-duration GW bursts R&D (Long Term) . 25 Op-2.2 Search for long-duration GW bursts . 25 LT-2.2 Search for long-duration GW bursts R&D (Long Term) . 27 Op-2.3 Search without templates for GWs from binary stellar mass black holes . 27 LT-2.3 Search without templates for GWs from binary stellar mass black holes R&D (Long Term) . 29 Op-2.4 GW burst signal characterization . 29 LT-2.4 GW burst signal characterization R&D (Long Term) . 31 Op-2.5 Search for GWs from core-collapse supernova . 31 LT-2.5 Search for GWs from core-collapse supernova R&D (long term) . 33 3 CBC Group Activity Plans 34 Op-3.1 CBC Parameter Estimation R&D (Short Term) . -
Jsolated Stars of Low Metallicity
galaxies Article Jsolated Stars of Low Metallicity Efrat Sabach Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel; [email protected] Received: 15 July 2018; Accepted: 9 August 2018; Published: 15 August 2018 Abstract: We study the effects of a reduced mass-loss rate on the evolution of low metallicity Jsolated stars, following our earlier classification for angular momentum (J) isolated stars. By using the stellar evolution code MESA we study the evolution with different mass-loss rate efficiencies for stars with low metallicities of Z = 0.001 and Z = 0.004, and compare with the evolution with solar metallicity, Z = 0.02. We further study the possibility for late asymptomatic giant branch (AGB)—planet interaction and its possible effects on the properties of the planetary nebula (PN). We find for all metallicities that only with a reduced mass-loss rate an interaction with a low mass companion might take place during the AGB phase of the star. The interaction will most likely shape an elliptical PN. The maximum post-AGB luminosities obtained, both for solar metallicity and low metallicities, reach high values corresponding to the enigmatic finding of the PN luminosity function. Keywords: late stage stellar evolution; planetary nebulae; binarity; stellar evolution 1. Introduction Jsolated stars are stars that do not gain much angular momentum along their post main sequence evolution from a companion, either stellar or substellar, thus resulting with a lower mass-loss rate compared to non-Jsolated stars [1]. As previously stated in Sabach and Soker [1,2], the fitting formulae of the mass-loss rates for red giant branch (RGB) and asymptotic giant branch (AGB) single stars are set empirically by contaminated samples of stars that are classified as “single stars” but underwent an interaction with a companion early on, increasing the mass-loss rate to the observed rates. -
Asymptotic-Giant-Branch Models at Very Low Metallicity
CSIRO PUBLISHING www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2009, 26, 139–144 Asymptotic-Giant-Branch Models at Very Low Metallicity S. CristalloA,E, L. PiersantiA, O. StranieroA, R. GallinoB, I. DomínguezC, and F. KäppelerD A Osservatorio Astronomico di Teramo (INAF), via Maggini 64100 Teramo, Italy B Dipartimento di Fisica Generale, Universitá di Torino, via P. Giuria 1, 10125 Torino, Italy C Departamento de Física Teórica y del Cosmos, Universidad de Granada, 18071 Granada, Spain D Forschungszentrum Karlsruhe, Institut für Kernphysik Postfach 3460, D-76021 Karlsruhe, Germany E Corresponding author. Email: [email protected] Received 2009 January 9, accepted 2009 April 28 Abstract: In this paper we present the evolution of a low-mass model (initial mass M = 1.5 M) with a very low metal content (Z = 5 × 10−5, equivalent to [Fe/H] =−2.44). We find that, at the beginning of the Asymptotic Giant Branch (AGB) phase, protons are ingested from the envelope in the underlying convective shell generated by the first fully developed thermal pulse. This peculiar phase is followed by a deep third dredge-up episode, which carries to the surface the freshly synthesized 13C, 14N and 7Li. A standard thermally pulsingAGB (TP-AGB) evolution then follows. During the proton-ingestion phase, a very high neutron density is attained and the s process is efficiently activated. We therefore adopt a nuclear network of about 700 isotopes, linked by more than 1200 reactions, and we couple it with the physical evolution of the model. We discuss in detail the evolution of the surface chemical composition, starting from the proton ingestion up to the end of the TP-AGB phase. -
The Solar Neighbourhood Age-Metallicity Relation – Does It Exist??,?? S
A&A 377, 911–924 (2001) Astronomy DOI: 10.1051/0004-6361:20011119 & c ESO 2001 Astrophysics The solar neighbourhood age-metallicity relation – Does it exist??,?? S. Feltzing1,J.Holmberg1, and J. R. Hurley2 1 Lund Observatory, Box 43, 221 00 Lund, Sweden e-mail: sofia, [email protected] 2 AMNH Department of Astrophysics, 79th Street at Central Park West New York, NY, 10024-5192, USA e-mail: [email protected] Received 15 August 2000 / Accepted 6 August 2001 Abstract. We derive stellar ages, from evolutionary tracks, and metallicities, from Str¨omgren photometry, for a sample of 5828 dwarf and sub-dwarf stars from the Hipparcos Catalogue. This stellar disk sample is used to investigate the age-metallicity diagram in the solar neighbourhood. Such diagrams are often used to derive a so called age-metallicity relation. Because of the size of our sample, we are able to quantify the impact on such diagrams, and derived relations, due to different selection effects. Some of these effects are of a more subtle sort, giving rise to erroneous conclusions. In particular we show that [1] the age-metallicity diagram is well populated at all ages and especially that old, metal-rich stars do exist, [2] the scatter in metallicity at any given age is larger than the observational errors, [3] the exclusion of cooler dwarf stars from an age-metallicity sample preferentially excludes old, metal-rich stars, depleting the upper right-hand corner of the age-metallicity diagram, [4] the distance dependence found in the Edvardsson et al. sample by Garnett & Kobulnicky is an expected artifact due to the construction of the original sample.