Investigation of the Use of Laser Shock Peening for Enhancing Fatigue and Stress Corrosion Cracking Resistance of Nuclear Energy Materials

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of the Use of Laser Shock Peening for Enhancing Fatigue and Stress Corrosion Cracking Resistance of Nuclear Energy Materials Project No. 10-682 Investigation of the Use of Laser Shock Peening for Enhancing Fatigue and Stress Corrosion Cracking Resistance of Nuclear Energy Materials Fuel Cycle/Reactor Concepts Mission Relevant Investigator Initiated Research Vijay K. Vasudevan University of Cincinna Sue Lesica, Federal POC Sebasen Teysseyre, Technical POC Final Report Project Title: Investigation of the Use of Laser Shock Peening for Enhancing Fatigue and Stress Corrosion Cracking Resistance of Nuclear Energy Materials Technical Workscope: MR-IIR Covering Period: October 1, 2010 – June 30, 2016 Date of Report: March 7, 2017 Recipient: Name: University of Cincinnati Street: 2600 Clifton Ave. City: Cincinnati State: Ohio Zip: 45221 Contract Number: 102835 Project Number: 10-682 Principal Investigator: Vijay K. Vasudevan - (513) 556-3103 - [email protected] Abhishek Telang (PhD student); Chang Ye (Postdoctoral Fellow); S. R. Mannava and Dong Qian Collaborators: Sebastien Teysseyre, John Jackson (INL), B. Alexandreanu, Yiren Chen (ANL) Project Objective: The objective of this project, which includes close collaboration with scientists from INL and ANL, is to investigate and demonstrate the use of advanced mechanical surface treatments like laser shock peening (LSP) and ultrasonic nanocrystal surface modification (UNSM) and establish baseline parameters for enhancing the fatigue properties and SCC resistance of nuclear materials like nickel-based alloy 600 and 304 stainless steel. The research program includes the following key elements/tasks: 1) Procurement of Alloy 600 and 304 SS, heat treatment studies; 2) LSP and UNSM processing of base metal and welds/HAZ of alloys 600 and 304; (3) measurement and mapping of surface and sub-surface residual strains/stresses and microstructural changes as a function of process parameters using novel methods; (4) determination of thermal relaxation of residual stresses (macro and micro) and microstructure evolution with time at high temperatures typical of service conditions and modeling of the kinetics of relaxation; (5) evaluation of the effects of residual stress, near surface microstructure and temperature on SCC and fatigue resistance and associated microstructural mechanisms; and (6) studies of the effects of bulk and surface grain boundary engineering on improvements in the SCC resistance and associated microstructural and cracking mechanisms. TPOC: [email protected] Federal reviewers: [email protected] TABLE OF CONTENTS Section Page # Cover Page……………………………………………………………………………….. 1 1. Executive Summary ………………………………………………………………………. 4 2. Introduction ……………………………………………………………………………… 7 3. Effects of Laser Shock Peening on SCC Behavior of Alloy 600……………………………. 13 3.1 Introduction…………………………………………………………………………… 13 3.2 Experimental…………………………………………………………………………… 16 3.3 Results and Discussion…………………………………………………………………. 19 3.3 Conclusions…………………………………………………………………………….. 30 4. Effects of Laser Shock Peening on SCC Behavior of Alloy 600 in Tetrathionate Solution. 34 4.1 Introduction…………………..……………………………………………………….. 34 4.2 Experimental…………………………………………………………………………… 37 4.3 Results…………………………………………………………………………………. 43 4.4 Discussion………………………………………………………………………………. 56 4.5 Conclusions…………………………………………………………………. 60 5. Surface Grain Boundary Engineering of Alloy 600 for Improved Resistance to Stress Corrosion Cracking………………..……………………………………………………….. 63 5.1 Introduction…………………..……………………………………………………….. 64 5.2 Materials and Methods…………………………………………………………………. 65 5.3 Results…………………………………………………………………………………. 69 5.4 Discussion………………………………………………………………………………. 82 5.5 Conclusions…………………………………………………………………………….. 87 6. Iterative Thermomechanical Processing of Ally 600 for Improved Resistance to Corrosion and Stess Corrosion Cracking………………..…………………………………………….. 92 6.1 Introduction…………………..……………………………………………………….. 93 6.2 Materials and Methods…………………………………………………………………. 94 6.3 Results…………………………………………………………………………………. 99 6.4 Discussion……………………………………………………………………………. 113 6.5 Conclusions…………………………………………………………………………….. 118 7. Effect of Thermo-Mechanical Processing on Sensitization and Corrosion of Alloy 600 Stduied by SEM- and TEM-Based Diffraction and Orientation Imaging Techniques…….. 124 2 7.1 Introduction…………………..……………………………………………………….. 125 7.2 Materials and Methods………………………………………………………………. 126 7.3 Results and Discussion………………………………………………………………. 129 7.4 Conclusions……………………………………………………………………………. 146 8. Effect of Laser Shock Peening on Stress Corrion Cracking of Alloy 600 in Simulated Pressurized Water Rector Environment……………..………………………………….. 151 8.1 Introduction…………………..…………………………………………………….. 151 8.2 Experimental………………………………………………………………………… 152 8.3 Results and Discussion………………………………………………………………. 156 8.4 Conclusions……………………………………………………………………………. 162 9. Effect of Mechanical Loading and Temperature on Relaxation of Residual Stresses Induced by Surface Treatments in Alloy 600……………..……………………………….. 163 9.1 Introduction…………………..……………………………………………………….. 163 9.2 Experimental…………………………………………………………………………… 165 9.3 Results and Discussion………………………………………………………………. 166 9.4 Conclusions…………………………………………………………………………….. 170 10. Gradient Nanostructure and Residual Stress Induced by Ultrasonic Nanocrystal Surface Modification in 304 Austenitic Stainless Steel for High Strength and High Ductility…… 172 10.1 Introduction…………………………………………………………………………… 173 10.2 Experimental Details………………………………………………………………… 174 10.3 Results and Analysis……………………………………………………………….. 178 10.4 Discussion…………………………………………………………………………… 194 10.4 Conclusions…………………………………………………………………………. 202 11. Effects of Ultrasonic Nanocrystal Surface Modification on the Residual Stress, Microstructure and Corrosion Resistance of SS304 Welds………………………………… 208 11.1 Introduction…………………………………………………………………………. 208 11.2 Experimental Methods…………………..…………………………………………… 209 11.3 Results and Discussion………………………………………………………………. 212 11.4 Conclusions………………………………………………………………………….. 218 12. Directions for Future Work………………………………………………..………………. 221 13. Publications ……………………………………………………………………………….. 222 14. Presentations ………………………………………………………………………………. 223 3 1.0 Executive Summary Stress corrosion cracking (SCC) of Alloy 600 has been a major problem in commercial light water reactor (LWR) nuclear power plants. Localized corrosion and intergranular SCC (IGSCC) have been observed in Alloy 600 in the high temperature (288-340 ˚C) pure water environment of LWRs. Additionally, IGSCC of Alloy 600 has been reported even at room temperature under certain conditions in thiosulfate and tetrathionate solutions. In general, SCC can be attributed to the presence of tensile stress, an aggressive environment and a susceptible microstructure. Therefore, SCC mitigation techniques address these factors by modifying the environment, metallurgical processing treatments and alleviating the tensile stresses by mechanical surface treatments/stress relief. This study investigated the application of laser shock peening (LSP) as a technique to mitigate SCC in Alloy 600. LSP induced large compressive residual stresses (-550 MPa) that decreases gradually through depth. The pressure pulse generated during the LSP treatment causes plastic deformation, resulting in high dislocation density, twins and formation of misoriented sub-grains/crystallites that have sizes in the range of 50-300 nm in the near-surface region. Slow strain rate tests (SSRTs) and constant load tests performed in tetrathionate solution at room temperature were used to evaluate the effect of LSP on the SCC behavior. LSP treated samples had a significantly longer time to failure and reduced susceptibility to SCC as compared with untreated sensitized Alloy 600. These improvements were attributed to LSP induced compressive residual stresses, increased yield strength (YS) and hardening caused by near- surface microstructural changes. SSRTs in simulated PWR environment also show similar results with higher YS, tensile strength and strain to failure. Additionally, the gage section shows fewer cracks and smaller crack lengths in the LSP treated samples as compared with the untreated samples. 4 The other approach involved using mechanical surface treatments/cold work followed by annealing to engineer the Alloy 600 microstructure for increased resistance to corrosion and IGSCC. We demonstrated a novel method of surface grain boundary engineering (SGBE) in Alloy 600 using iterative cycles of ultrasonic nanocrystalline surface modification (UNSM) treatment and strain annealing. Three cycles of UNSM and strain annealing at 900-1000 ˚C were used to modify the microstructure to a depth of 250 µm from the surface. This surface treatment based method increased the fraction of low coincident site lattice (CSL) grain boundaries whilst decreasing the fraction and connectivity of random high angle boundaries (HABs) in the near surface region. Similar results were achieved using thermo-mechanical processing (TMP) with iterative cycles of 10% cold work and strain annealing in Alloy 600. A disrupted random HAB network and large fraction (70%) of CSL boundaries (Σ3-Σ27) reduced the propensity to sensitization. SSRTs in tetrathionate solutions at room temperature show that SGBE and TMP lowered the susceptibility to intergranular SCC. Detailed analysis using EBSD showed cracks arrested at J1 (1-CSL) and J2 (2-CSL) type of triple junctions. The probability of crack arrest, calculated using percolative models, was higher after SGBE and TMP in Alloy 600 and explains the improved IGSCC resistance. The effects of UNSM on residual
Recommended publications
  • High-Power Solid-State Lasers from a Laser Glass Perspective
    LLNL-JRNL-464385 High-Power Solid-State Lasers from a Laser Glass Perspective J. H. Campbell, J. S. Hayden, A. J. Marker December 22, 2010 Internationakl Journal of Applied Glass Science Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. High-Power Solid-State Lasers from a Laser Glass Perspective John H. Campbell, Lawrence Livermore National Laboratory, Livermore, CA Joseph S. Hayden and Alex Marker, Schott North America, Inc., Duryea, PA Abstract Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high- power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses.
    [Show full text]
  • MECA SENS 2017 Programme& Abstracts
    9th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation Hosted by the South African Nuclear Energy Corporation (Necsa) SOC Limited in cooperation with the International Atomic Energy Agency (IAEA) & ABSTRACTS PROGRAMME MECA SENS 2017 Programme & Abstracts MECA SENS 2017 Local Organising Committee Contents Committees 2 Foreword 2 Local Organising Committee 3 Programme Advisory Committee 3 International Scientific Committee 4 Sponsors 5 Event Information 6 Location 6 Registration 9 Internet 9 Catering 9 Presentations 10 Poster session 10 Certificate of attendance 10 Community outreach 10 Programme 11 Spring School - Monday 18 Sept 11 Day 1 – Tuesday 19 Sept 12 Day 2 – Wednesday 20 Sept 13 Day 3 – Thursday 21 Sept 14 List of Abstracts 15 Alain Lodini Plenary Lecture 23 Keynote Presentations 24 Invited Presentations 26 Oral Presentations 42 Poster Presentations 91 School lectures 114 List of Attendees 122 Author Index 126 1 | MECA SENS 2017, Skukuza, South Africa Committees Foreword Dear colleagues On behalf of the Organising Committee, it is a great privilege to welcome and receive you at the Nombolo Mdhluli Conference Centre in the Skukuza Rest Camp, capital of the UNESCO Biosphere Kruger National Park for the proceedings of MECA SENS 2017. This conference continues the tradition of providing a vibrant interactive forum for scientists, students and engineers interested in the most recent developments and capabilities of diffraction based techniques, complemented by mechanical and image-based methods towards rendering information on the prevailing stress conditions and material performance. We thank all participants for submitting excellent contributions. This has enabled the assembly of an exciting scientific program for the next three days.
    [Show full text]
  • Characterization of Laser Peening- Induced Effects on a Biomedical Ti6al4v Alloy by Thermoelectric Means
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC Characterization of laser peening- induced effects on a biomedical Ti6Al4V alloy by thermoelectric means Hector Carreón Sandra Barriuso Juan Antonio Porro Jose Luis González-Carrasco José Luis Ocaña Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 09/23/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx Optical Engineering 53(12), 122502 (December 2014) Characterization of laser peening-induced effects on a biomedical Ti6Al4V alloy by thermoelectric means Hector Carreón,a,* Sandra Barriuso,b Juan Antonio Porro,c Jose Luis González-Carrasco,b,d and José Luis Ocañac aInstituto de Investigaciones Metalúrgicas, UMSNH-IIM, Edif. “U” C.U., 58000-888 Morelia, Mexico bCentro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Avenida Gregorio del Amo 8, 28040 Madrid, Spain cUniversidad Politécnica de Madrid, Ctr. Láser UPM, 28040 Madrid, Spain dCentro Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain Abstract. Laser peening has recently emerged as a useful technique to overcome detrimental effects associ- ated with other well-known surface modification processes such as shot peening or grit blasting used in the biomedical field. It is worthwhile to notice that besides the primary residual stress effect, thermally induced effects might also cause subtle surface and subsurface microstructural changes that might influence corrosion resistance and fatigue strength of structural components. In this work, plates of Ti-6Al-4V alloy of 7 mm in thick- ness were modified by laser peening without using a sacrificial outer layer. Irradiation by a Q-switched Nd-YAG laser (9.4-ns pulse length) working at the fundamental 1064-nm wavelength at 2.8 J∕pulse and with water as a confining medium was used.
    [Show full text]
  • Laser Peening Without Coating: Process, Effects and Applications
    LASER PEENING WITHOUT COATING: PROCESS, EFFECTS AND APPLICATIONS Y. Sano 1, N. Mukai 1, M. Obata 1 1 Toshiba Corporation, 8 Shinsugita-cho Isogo-ku Yokohama 235-8523, Japan ABSTRACT This paper reviews the current status of research, development and application on laser peening without coating (LPwC). LPwC imparts compressive residual stress on material by irradiating laser pulses under aqueous environment without any surface preparation. LPwC can be operated without restriction on absorption by water, using water-penetrable green lasers. The effect penetrates 1mm or more, much deeper than that of conventional surface treatment such as shot peening. Accelerating stress corrosion cracking (SCC) tests showed that LPwC effectively prevented the initiation of SCC in sensitized austenitic stainless steels, nickel-based alloys and their weld metals. LPwC remarkably improved high-cycle fatigue properties of steels, aluminum alloys, titanium alloys. Retardation of crack propagation due to stress corrosion and fatigue was also confirmed. LPwC has been utilized to prevent SCC in Japanese nuclear power plants (NPPs) since 1999. KEY WORDS Laser peening, Residual stress, Stress corrosion cracking, Fatigue INTRODUCTION Recent advances in laser material processing have yielded a multitude of innovative processes and applications in various fields. Laser peening without coating (LPwC) is a typical example and blazed a trail in preventive maintenance for SCC in operating nuclear power plants (NPPs), taking full advantage of the inertia-less process over mechanical treatment (Sano, 2000a). LPwC was invented about a decade ago as a surface enhancement technology to introduce compressive residual stress on materials, while exploring new applications of copper vapor lasers (Konagai, 1995).
    [Show full text]
  • 2014 Year in Review
    NEWSLINE 2014 YEAR IN REVIEW LAWRENCE LIVERMORE NATIONAL LABORATORY NOTE NEWSLINE: LOOKING BACK AT 2014 CONTENTS Top 10 science and technology stories of 2014 Top 10 science stories . 2 n 2014, Lawrence Livermore National Laboratory (LLNL) built on a 62-year tradition January . 4 of translating basic science into technologies that ensure national security, address February . 7 I pressing real world problems and expand the boundaries of fundamental science. TOP March . 10 April . 13 The top stories of the year are a reflection of the Laboratory’s ability to apply its core May . 16 national security competencies to a broad set of rapidly evolving national and global 10 June . 19 challenges, including: energy, climate change, biodefense and detection, forensic July . 23 science, high performance computing and materials science. August . 26 September . 29 The capabilities developed and applied to this research, such as high performance computing (HPC) and additive October . 32 manufacturing, also serve to enhance the nation’s economic vitality and global competitiveness. November . 36 December . 41 Because evaluating the long-term impact of recent scientific developments on a field of study or science Recognition and Awards . 44 in general is difficult at best, the following advances are not listed in order of scientific importance. These This issue of Newsline was produced by the Public represent only a sampling of the science and technology produced at Lawrence Livermore during the 2014 Affairs Office. It represents a sample of the science and technology, people and operations highlights of calendar year. the year. It is available on the LLNL website. On the cover: Top stories of the year.
    [Show full text]
  • MATERIAL SCIENCE Module 3 Thermal Shock Thermal Shock DOE-HDBK-1017/2-93 TABLE of CONTENTS
    Department of Energy Fundamentals Handbook MATERIAL SCIENCE Module 3 Thermal Shock Thermal Shock DOE-HDBK-1017/2-93 TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. ii LIST OF TABLES ................................................... iii REFERENCES .................................................... iv OBJECTIVES ..................................................... v THERMAL STRESS ................................................ 1 Thermal Shock ............................................... 1 Summary ................................................... 5 PRESSURIZED THERMAL SHOCK .................................... 6 Definition ................................................... 6 Evaluating Effects of PTS ....................................... 6 Locations of Primary Concern ..................................... 8 Summary ................................................... 8 Rev. 0 Page i MS-03 LIST OF FIGURES DOE-HDBK-1017/2-93 Thermal Shock LIST OF FIGURES Figure 1 Stress on Reactor Vessel Wall .................................... 4 Figure 2 Heatup Stress Profile .......................................... 7 Figure 3 Cooldown Stress Profile ........................................ 7 MS-03 Page ii Rev. 0 Thermal Shock DOE-HDBK-1017/2-93 LIST OF TABLES LIST OF TABLES Table 1 Coefficients of Linear Thermal Expansion ............................ 2 Rev. 0 Page iii MS-03 REFERENCES DOE-HDBK-1017/2-93 Thermal Shock REFERENCES Academic Program for Nuclear Power Plant Personnel, Volume
    [Show full text]
  • Effective Simulation and Optimization of a Laser Peening Process BE ACCEPTED in PARTIAL FULFILLMENT of the REQUIREMENTS for the DEGREE of Doctor of Philosophy
    Effective Simulation and Optimization of a Laser Peening Process A dissertation submitted in partial fulfillment of the requirements for the degree of the Doctor of Philosophy By GULSHAN SINGH B.S., Jai Narain Vyas University, Jodhpur, India, 2001 M.Tech., Indian Institute of Technology, Kanpur, India, 2003 2009 Wright State University Wright State University SCHOOL OF GRADUATE STUDIES August 10, 2009 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UN- DER MY SUPERVISION BY GULSHAN SINGH ENTITLED Effective Simulation and Optimization of a Laser Peening Process BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy . Ramana V. Grandhi, Ph.D. Dissertation Director Ramana V. Grandhi, Ph.D. Director, Engineering Ph.D. Program Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies Committee on Final Examination Ramana V. Grandhi, Ph.D. Nathan Klingbeil, Ph.D. Ravi Penmetsa, Ph.D. Allan H. Clauer, Ph.D. Robert Brockman, Ph.D. ii Abstract Singh, Gulshan, Ph.D. in Engineering Program, Wright State University, 2009. Effective Simulation and Optimization of a Laser Peening Process. Laser peening (LP) is a surface enhancement technique that has been applied to improve fatigue and corrosion properties of metals. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbomachinery, airframe structures, and medical appliances. In the past, researchers have investigated the effects of LP parameters experimentally and performed a limited number of simulations on simple geometries. However, monitoring the dynamic, intricate relationships of peened materials experimentally is time consuming, expensive, and challenging.
    [Show full text]
  • Kinetics and Mechanism of Polythionate Oxidation to Sulfate at Low Ph by O2 and Fe3+
    Geochimica et Cosmochimica Acta, Vol. 67, No. 23, pp. 4457–4469, 2003 Copyright © 2003 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/03 $30.00 ϩ .00 doi:10.1016/S0016-7037(03)00388-0 3؉ Kinetics and mechanism of polythionate oxidation to sulfate at low pH by O2 and Fe 1, 2 1,2 GREGORY K. DRUSCHEL, *ROBERT J. HAMERS, and JILLIAN F. BANFIELD † 1Departments of Geology and Geophysics and 2Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA (Received October 16, 2002; accepted in revised form May 30, 2003) 2Ϫ Abstract—Polythionates (SxO6 ) are important in redox transformations involving many sulfur compounds. Here we investigate the oxidation kinetics and mechanisms of trithionate and tetrathionate oxidation between pH 0.4 and pH 2 in the presence of Fe3ϩ and/or oxygen. In these solutions, Fe3ϩ plus oxygen oxidizes tetrathionate and trithionate at least an order of magnitude faster than oxygen alone. Kinetic measurements, coupled with density functional calculations, suggest that the rate-limiting step for tetrathionate oxidation involves Fe3ϩ attachment, followed by electron density shifts that result in formation of a sulfite radical and 0 S3O3 derivatives. The overall reaction orders for trithionate and tetrathionate are fractional due to rearrange- ment reactions and side reactions between reactants and intermediate products. The pseudo-first order rate coefficients for tetrathionate range from 10Ϫ11 sϪ1 at 25°C to 10Ϫ8 sϪ1 at 70°C, compared to 2 ϫ 10Ϫ7 sϪ1 Ϯ at 35 °C for trithionate. The apparent activation energy (EA) for tetrathionate oxidation at pH 1.5 is 104.5 4.13 kJ/mol.
    [Show full text]
  • Thermal Shock-Resistant Cement
    BNL-101087-2012-IR Thermal Shock-resistant Cement T. Sugama, T. Pyatina, S. Gill February 2012 Sustainable Energy Technologies Department/Energy Conversion Group Brookhaven National Laboratory U.S. Department of Energy DOE office of Energy Efficiency and Renewable Energy Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. 1 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
    [Show full text]
  • Supply Chain Packaging Guide
    Secondary Packaging Supply Chain Standards July 7, 2021 Business Confidential | ©2021 Walmart Stores, Inc. 177 // 338 Secondary Packaging Supply Chain Standards - Update Summary These standards have included multiple clarifications of what is required and what is NOT ALLOWED. These changes have been updated throughout the published standards to provide clarity to suppliers. The pages have been reorganized to provide a better flow. PAGE 2021 UPDATES Changes to Supply Chain Standards 185 SQEP Phase 2 and Phase 3 Defect Description/Definitions Added 202 General Case Markings Updated for Dates, Unprocessed Meats, and Cylindrical Items 210-213 Updated Pallet Standards 218 Update "Palletized Shipments" to "Unitized Shipments" 227 Add Inbound Appointment Scheduling Standard 228 Update TV Test Standards 235-237 Add Direct Store Delivery (DSD) aka Direct To Store (DTS) Standards 239 Update SIOC Standards 240 Add eCommerce Product Specific Requirement Standards 241-244 Add Drop Ship Vendor (DSV) Standards 268 Add Jewelry Distribution Center Standards 269-271 Add Optical Distribution Center Standards 275 Add Goods Not For Resale (GNFR) Standards 277-278 Update Meat/Poultry/Seafood Case and Pallet Label Standards 284 Add HACCP Pallet Placard for GCC Shipments 311-312 Add Frozen Seafood Carton Marking Requirements Appendix D Update Receiving Pulp Temperature Range Business Confidential | © 2021 Walmart Stores, Inc. The examples shown are for reference only. Supply Chain Standards 178 // 338 Table of Contents Supply Chain Stretch Wrap . 219 Produce Shipments . 280 Contact Information . 179 Trailer Loading . 220 Automated Grocery Handling . 281 Walmart Retail Link Resources . 180 Trailer Measurements. 221 Grocery Import Distribution Center (GIDC) . 282 Walmart Distribution Center Overview .
    [Show full text]
  • Cryptic Role of Tetrathionate in the Sulfur Cycle: a Study from Arabian Sea Oxygen Minimum Zone Sediments
    bioRxiv preprint doi: https://doi.org/10.1101/686469; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cryptic role of tetrathionate in the sulfur cycle: A study from Arabian Sea oxygen minimum zone sediments Subhrangshu Mandal1, Sabyasachi Bhattacharya1, Chayan Roy1, Moidu Jameela Rameez1, 5 Jagannath Sarkar1, Svetlana Fernandes2, Tarunendu Mapder3, Aditya Peketi2, Aninda Mazumdar2,* and Wriddhiman Ghosh1,* 1 Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India. 2 CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India. 10 3 ARC CoE for Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia. * Correspondence emails: [email protected] / [email protected] 15 Running Title: Tetrathionate metabolism in marine sediments KEYWORDS: sulfur cycle, tetrathionate, marine oxygen minimum zone, sediment biogeochemistry 20 ABSTRACT To explore the potential role of tetrathionate in the sulfur cycle of marine sediments, the population ecology of tetrathionate-forming, oxidizing, and respiring microorganisms was revealed at 15- 30 cm resolution along two, ~3-m-long, cores collected from 530- and 580-mbsl water-depths of Arabian 25 Sea, off India’s west coast, within the oxygen minimum zone (OMZ). Metagenome analysis along the two sediment-cores revealed widespread occurrence of the structural genes that govern these metabolisms; high diversity and relative-abundance was also detected for the bacteria known to render these processes. Slurry-incubation of the sediment-samples, pure-culture isolation, and metatranscriptome analysis, corroborated the in situ functionality of all the three metabolic-types.
    [Show full text]
  • Stable Allotropes of Oxygen Are O2(G) and O3(G)
    Group 16 Elements - Oxygen ! Stable allotropes of oxygen are O 2(g) and O 3(g). ! Standard laboratory preparations for O 2(g) include the following: MnO 2 2KClO 3 ∆ 2KCl + 3O 2 2HgO ∆ 2Hg + O 2 electrolysis 2H 2O 2H 2 + O 2 ! O2(g) is paramagnetic due to two unpaired electrons in π σ 2 σ 2 σ 2 π 4 π 2 separate * MOs: ( 2s) ( *2s) ( 2p) ( 2p) ( *2p) • Bond order is 2, and the bond length is 120.75 pm. ! Ozone is produced by passing an electric discharge through O2(g). • It is produced naturally by u.v. (240-300 nm). hν O2 2O O + O 2 ÷ O 3 ! Ozone is a bent molecule ( pO–O–O = 116.8 o). • Bond order is 1½ for each O–O bond, and the bond length is 127.8 pm. ! Both O 2 and O 3 are powerful oxidizing agents. + – o O2 + 4H + 4 e ÷ 2H 2O E = +1.23 V + – o O3 + 2H + 2 e ÷ O 2 + H 2O E = +2.07 V Group 16 Elements - Sulfur ! Sulfur is found free in nature in vast underground deposits. • It is recovered by the Frasch process, which uses superheated steam to melt and expel the fluid. Sulfur Allotropes ! Three principal allotropes: o o rhombic, S 8 (<96 C, mp = 112.8 C) o o monoclinic, S 8 (>96 C, mp = 119. C) amorphous, S n (metastable "plastic" sulfur) • Rhombic and monoclinic forms contain crown-shaped S 8 rings ( D4d). • Amorphous sulfur, containing long S n chains, is formed when molten sulfur is rapidly quenched; conversion to rhombic S 8 can take years.
    [Show full text]