Fouling in Heat Exchangers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10-1 CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams And
EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams and Material Behavior 10.2 Material Characteristics 10.3 Elastic-Plastic Response of Metals 10.4 True stress and strain measures 10.5 Yielding of a Ductile Metal under a General Stress State - Mises Yield Condition. 10.6 Maximum shear stress condition 10.7 Creep Consider the bar in figure 1 subjected to a simple tension loading F. Figure 1: Bar in Tension Engineering Stress () is the quotient of load (F) and area (A). The units of stress are normally pounds per square inch (psi). = F A where: is the stress (psi) F is the force that is loading the object (lb) A is the cross sectional area of the object (in2) When stress is applied to a material, the material will deform. Elongation is defined as the difference between loaded and unloaded length ∆푙 = L - Lo where: ∆푙 is the elongation (ft) L is the loaded length of the cable (ft) Lo is the unloaded (original) length of the cable (ft) 10-1 EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy Strain is the concept used to compare the elongation of a material to its original, undeformed length. Strain () is the quotient of elongation (e) and original length (L0). Engineering Strain has no units but is often given the units of in/in or ft/ft. ∆푙 휀 = 퐿 where: is the strain in the cable (ft/ft) ∆푙 is the elongation (ft) Lo is the unloaded (original) length of the cable (ft) Example Find the strain in a 75 foot cable experiencing an elongation of one inch. -
Thermal Shock
TEACHER INSTRUCTIONS Thermal Shock Objective: To illustrate thermal expansion and thermal shock. Background Information: In physics, thermal expansion is the tendency of matter to increase in volume or pressure when heated. For liquids and solids, the amount of expansion will normally vary depending on the material’s coefficient of thermal expansion. When materials contract, tensile forces are created. When things expand, compressive forces are created. Thermal shock is the name given to cracking as a result of rapid temperature change. From the laboratory standpoint, there are three main types of glass used today: borosilicate, quartz, and soda lime or flint glass. Borosilicate glass is made to withstand thermal shock better than most other glass through a combination of reduced expansion coefficient and greater strength, though fused quartz outperforms it in both respects. Some glass-ceramic materials include a controlled proportion of material with a negative expansion coefficient, so that the overall coefficient can be reduced to almost exactly zero over a reasonably wide range of temperatures. Improving the shock resistance of glass and ceramics can be achieved by improving the strength of the materials or by reducing its tendency to uneven expansion. One example of success in this area is Pyrex, the brand name that is well known to most consumers as cookware, but which is also used to manufacture laboratory glassware. Pyrex traditionally is made with a borosilicate glass with the addition of boron, which prevents shock by reducing the tendency of glass to expand. Demo description: Three different types of glass rods will be heated so that students can observe the amount of thermal shock that occurs. -
Wastewater Technology Fact Sheet: Ammonia Stripping
United States Office of Water EPA 832-F-00-019 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Ammonia Stripping DESCRIPTION Ammonia stripping is a simple desorption process used to lower the ammonia content of a wastewater stream. Some wastewaters contain large amounts of ammonia and/or nitrogen-containing compounds that may readily form ammonia. It is often easier and less expensive to remove nitrogen from wastewater in the form of ammonia than to convert it to nitrate-nitrogen before removing it (Culp et al., 1978). Ammonia (a weak base) reacts with water (a weak acid) to form ammonium hydroxide. In ammonia stripping, lime or caustic is added to the wastewater until the pH reaches 10.8 to 11.5 standard units which converts ammonium hydroxide ions to ammonia gas according to the following reaction(s): + - NH4 + OH 6 H2O + NH38 Source: Culp, et. al, 1978. Figure 1 illustrates two variations of ammonia FIGURE 1 TWO TYPES OF STRIPPING stripping towers, cross-flow and countercurrent. In TOWERS a cross-flow tower, the solvent gas (air) enters along the entire depth of fill and flows through the packing, as the alkaline wastewater flows it may be more economical to use alternate downward. A countercurrent tower draws air ammonia removal techniques, such as steam through openings at the bottom, as wastewater is stripping or biological methods. Air stripping may pumped to the top of a packed tower. Free also be used to remove many hydrophobic organic ammonia (NH3) is stripped from falling water molecules (Nutrient Control, 1983). droplets into the air stream, then discharged to the atmosphere. -
Area Array Packages with Known Reliably and Mitigation Risks, Allowing Greater Processing Power in a Smaller Board Footprint and Lower System Weight
National Aeronautics and Space Administration Reliability of CGA/LGA/HDI Package Board/Assembly (Revision A) Reza Ghaffarian, Ph.D. Jet Propulsion Laboratory Pasadena, California Jet Propulsion Laboratory California Institute of Technology Pasadena, California JPL Publication 12-3 2/12 National Aeronautics and Space Administration Reliability of CGA/LGA/HDI Package Board/Assembly (Revision A) NASA Electronic Parts and Packaging (NEPP) Program Office of Safety and Mission Assurance Reza Ghaffarian, Ph.D. Jet Propulsion Laboratory Pasadena, California NASA WBS: 724297.40.43 JPL Project Number: 104593 Task Number: 40.49.02.02 Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109 http://nepp.nasa.gov This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration Electronic Parts and Packaging (NEPP) Program. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2013. California Institute of Technology. Government sponsorship acknowledged. Acknowledgments The author would like to acknowledge many people from industry and the Jet Propulsion Laboratory (JPL) who were critical to the progress of this activity. The author extends his appreciation to program managers of the National Aeronautics and Space Administration Electronics Parts and Packaging (NEPP) Program, including Michael Sampson, Ken LaBel, Drs. Charles Barnes and Douglas Sheldon for their continuous support and encouragement. ii OBJECTIVES AND PRODUCTS Commercial-off-the-shelf column grid array (COTS CGA) packaging technologies in high-reliability versions are now being considered for use in a number of National Aeronautics and Space Administration (NASA) electronic systems. -
Impact of Flow Velocity on Surface Particulate Fouling - Theoretical Approach
Journal of American Science 2012;8(9) http://www.jofamericanscience.org Impact of Flow velocity on Surface Particulate Fouling - Theoretical Approach Mostafa M. Awad Mech. Power Eng. Dept., Faculty of Engineering, Mansoura University, Egypt [email protected] Abstract: The objective of this research is to study the effect of flow velocity on surface fouling. A new theoretical approach showing the effect of flow velocity on the particulate fouling has been developed. This approach is based on the basic fouling deposition and removal processes. The present results show that, the flow velocity has a strong effect on both the fouling rate and the asymptotic fouling factor; where the flow velocity affects both the deposition and removal processes. Increasing flow velocity results in decreasing both of the fouling rate and asymptotic values. Comparing the obtained theoretical results with available experimental ones showed good agreement between them. The developed model can be used as a very useful tool in the design and operation of the heat transfer equipment by controlling the parameters affecting fouling processes. [Mostafa M. Awad. Impact of Flow velocity on Surface Particulate Fouling - Theoretical Approach. J Am Sci 2012;8(9):442-449]. (ISSN: 1545-1003). http://www.jofamericanscience.org. 62 Keywords: Surface fouling, flow velocity, particle sticking, mass transfer. 1. Introduction increasing the flow velocity. They also found that the Fouling of heat transfer surface is defined as the asymptotic fouling factor is very sensitive to the flow accumulation of unwanted material on the heat transfer velocity especially at low flow velocities where this surface. This accumulation deteriorates the ability of sensitivity decreases with increasing flow velocity. -
Factors Impacting EGR Cooler Fouling – Main Effects and Interactions
Emissions Controls Technologies, Part 2 Factors Impacting EGR Cooler Fouling – Main Effects and Interactions 16th Directions in Engine-Efficiency and Emissions Research Conference Detroit, MI – September, 2010 Dan Styles, Eric Curtis, Nitia Ramesh Ford Motor Company – Powertrain Research and Advanced Engineering John Hoard, Dennis Assanis, Mehdi Abarham University of Michigan Scott Sluder, John Storey, Michael Lance Oakridge National Laboratory Page 1 DEER 2010 Benefits and Challenges of Cooled EGR • Benefits • Challenges Enables more EGR flow More HC’s/SOF Cooler intake charge temp More PM Reduces engine out NOx More heat rejection by reduced peak in-cylinder More condensation temps HC/PM deposition in cooler (fouling) degraded heat transfer and higher flow resistance Increasing EGR Rate PM Increasing EGR Cooling NOx After 200 hr. Fouling Test Page 2 DEER 2010 What is EGR Cooler Fouling? • Deposition of Exhaust Constituents on EGR Cooler Walls Decreases heat transfer effectiveness and increases flow restrictiveness Page 3 DEER 2010 Previous DEER Conferences • DEER 2007 Benefits of an EGR catalyst for EGR Cooler Fouling Reduction • DEER 2008 Overview of EGR Cooler Fouling Literature Search Results of initial controlled fouling experiment High gas flow velocities reduce exhaust constituent trapping efficiency Low coolant temperatures increase Hydrocarbon condensation An oxidation catalyst is only marginally helpful at eliminating the heavier Hydrocarbons that are likely to condense in an EGR cooler • DEER 2009 Further -
Investigation of Fouling Mechanisms on Ion Exchange Membranes During Electrolytic Separations
INVESTIGATION OF FOULING MECHANISMS ON ION EXCHANGE MEMBRANES DURING ELECTROLYTIC SEPARATIONS By Matthew James Edwards A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford, MS 2019 Approved by: __________________________________ Advisor: Dr. Alexander M. Lopez _________________________________ Reader: Dr. Adam Smith __________________________________ Reader: Dr. John H. O’Haver i Ó 2019 Matthew James Edwards ALL RIGHTS RESERVED ii DEDICATION I would like to dedicate this Capstone Project to my parents, Michael and Nidia Edwards. Their support and commitment to my education has been unfailing for as long as I can remember. I am thankful for everything they have done. It is with their help that I am privileged to attend The University of Mississippi, and I will forever be grateful. iii ACKNOWLEDGEMENTS I would first like thank Dr. Alexander M. Lopez and The University of Mississippi Chemical Engineering Department for the opportunity to work on this research project. The guidance, patience, and willingness to work with and teach an undergraduate student has been beneficial and inspiring to me during my time here at Ole Miss. Second, I would like to thank Dr. Paul Scovazzo for providing guidance on how to write this thesis and for allowing me to use his lab and equipment as well. I would also like to thank all the graduate students of the Chemical Engineering Department, primarily Saloumeh Kolahchyan. The willingness to take the time to answer my questions, to guide me in how use all the equipment in the lab, and to show me how to follow lab protocols required for the completion of my thesis research. -
An Analysis of Water for Water-Side Fouling Potential Inside Smooth
AN ANALYIS OF WATER FOR WATER-SIDE FOULING POTENTIAL INSIDE SMOOTH AND AUGMENTED COPPER ALLOY CONDENSER TUBES IN COOLING TOWER WATER APPLICATIONS by Ian Tubman A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering in the Department of Mechanical Engineering Mississippi State, Mississippi December 2002 AN ANALYIS OF WATER FOR WATER-SIDE FOULING POTENTIAL INSIDE SMOOTH AND AUGMENTED COPPER ALLOY CONDENSER TUBES IN COOLING TOWER WATER APPLICATIONS by Ian Tubman Approved: _________________________ ________________________ Louay Chamra Rogelio Luck Associate Professor of Associate Professor and Mechanical Engineering Graduate Coordinator of the (Director of Thesis) Department of Mechanical Engineering _________________________ ________________________ B.Keith Hodge Carl A. James Professor of Assistant Research Professor Mechanical Engineering of Mechanical Engineering (Committee Member) (Committee Member) _________________________ A. Wayne Bennett Dean of the James Worth Bagley College of Engineering Name: Ian Tubman Date of Degree: May 10, 2003 Institution: Mississippi State University Major Field: Mechanical Engineering Major Professor: Dr. Louay Chamra Title of Study: AN ANALYIS OF WATER FOR WATER-SIDE FOULING POTENTIAL INSIDE SMOOTH AND AUGMENTED COPPER ALLOY CONDENSER TUBES IN COOLING TOWER WATER APPLICATIONS Pages in Study: 100 Candidate for Degree of Master of Science This thesis investigates the potential for fouling in plain and augmented tubes in cooling tower applications. Three primary factors that affect fouling potential are examined: inside tube geometry, water velocity, and water quality. This paper presents a literature survey for in general precipitation fouling, particulate fouling, cooling water fouling, and fouling in enhanced tubes. -
Ductile Brittle Transition
XIX. EVALUATION OF DUCTILE/BRITTLE FAILURE THEORY, DERIVATION OF THE DUCTILE/BRITTLE TRANSITION TEMPERATURE Introduction The ductile/brittle transition for failure with all of its implications and ramifications is one of the most widely observed and universally acknowledged physical effects in existence. Paradoxically though it also is one of the least understood of all the physical properties and physical effects that are encountered in the world of materials applications. Critical judgments are made on the basis of experience only, purely heuristic and intuitive. The resolution of the ductile/brittle transition into a physically meaningful and useful mathematical form has always been problematic and elusive. It often has been suggested that such a development is highly unlikely. The rigorous answer to this question remains and continues as one of the great scientific uncertainties, challenges. The long time operational status of ductile/brittle behavior has reduced to a statement of the strain at failure in uniaxial tension. If the strain at failure is large, the material is said to be ductile. If the strain at failure is small, it is brittle. Loose and uncertain though this is, it could be general, even complete, if the world were one-dimensional. But the physical world is three-dimensional and in stress space it is six or nine dimensional. Even more complicating, some of the stress components are algebraic. So the problem is large and difficult, perhaps immensely large and immensely difficult. To even begin to grapple with the ductile/brittle transition one must first have a firm grasp on a general and basic theory of failure. -
Performance of a Novel Green Scale Inhibitor
E3S Web of Conferences 266, 01019 (2021) https://doi.org/10.1051/e3sconf/202126601019 TOPICAL ISSUES 2021 Performance of a novel green scale inhibitor Leila Mahmoodi1, M. Reza Malayeri2, Farshad Farshchi Tabrizi3 1Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz Uni- versity, Iran 2Technische Universität Dresden, Dresden, Germany 3Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz Uni- versity, Iran Abstract:Many aspects of oilfield scale inhibition with green scale inhibi- tors (SIs) have remained untouched. For instance, the discharge of large amounts of produced water containing various types of hazardous chemi- cals, such as SIs into the environment has become a major concern. In- stead, environmental regulators encourage operators to look for greener SIs. In this study, the performance of a green SI was investigated using PHREEQC simulation. For a specific case study, two brines are considered to mix incompatibly to estimate the critical mixing ratio that has the high- est tendency to scaling. Subsequently, for 50/50 mixing ratio as the critical value, theoptimal dosage of SI and its performance in the presence of two different rocks were investigated such that 450 mg/L SI would be consi- dered as optimal value. Moreover, the simulated results show that more SI adsorption on calcite would be predicted, compared to dolomite. 1 Introduction In the oil and gas industry, one of the primary production problems is mineral deposition resulting from the water-flooding, incompatible water mixing, and/or hydro-fracturing processes that are applied to maintain sustainable hydrocarbon production in oil, gas, or gas-condensate fields [1]. -
Little Book of Dynamic Buckling
. Little Book of Dynamic Buckling Herbert E. Lindberg September 2003 LCE Science/Software 1 Preface A graduate program in mechanics (often part of aero/astronautical, civil or mechanical engineering) generally includes a short series on elastic stability of structures. Within the confines of available time, focus is on stability under static loading, with dynamic loading from earthquakes, aerodynamics, impact and so on touched on only briefly except for students with thesis topics in these areas. This short book is intended as a brief introduction to dynamic buckling that can be covered in the limited time available in a broad graduate program. It is small and inexpensive enough that the student can own his or her own copy, rather than simply taking notes during lectures extracted by the teacher from the several full-size texts available on this topic, including one by the present author. The book introduces concepts of dynamic buckling in the simplest possible context for each phenomenon. The phenomena treated all fall under the definition of dynamic stability of structures under time-varying parametric loading. The goal is met by treating simple bars under axial loads, rings under lateral pulse loads, and cylindrical shells under radial and axial loads. The present document includes only a general introduction and then comprehensive presentation of theory and experimental data for bars under static and impact loads. Sections on rings and shells will be made available as orders are received. In all cases motion is precipitated by inevitable imperfections in structural shape. Sometimes these appear as a simple parameter, as in the eccentricity of impact. -
MATERIAL SCIENCE Module 3 Thermal Shock Thermal Shock DOE-HDBK-1017/2-93 TABLE of CONTENTS
Department of Energy Fundamentals Handbook MATERIAL SCIENCE Module 3 Thermal Shock Thermal Shock DOE-HDBK-1017/2-93 TABLE OF CONTENTS TABLE OF CONTENTS LIST OF FIGURES .................................................. ii LIST OF TABLES ................................................... iii REFERENCES .................................................... iv OBJECTIVES ..................................................... v THERMAL STRESS ................................................ 1 Thermal Shock ............................................... 1 Summary ................................................... 5 PRESSURIZED THERMAL SHOCK .................................... 6 Definition ................................................... 6 Evaluating Effects of PTS ....................................... 6 Locations of Primary Concern ..................................... 8 Summary ................................................... 8 Rev. 0 Page i MS-03 LIST OF FIGURES DOE-HDBK-1017/2-93 Thermal Shock LIST OF FIGURES Figure 1 Stress on Reactor Vessel Wall .................................... 4 Figure 2 Heatup Stress Profile .......................................... 7 Figure 3 Cooldown Stress Profile ........................................ 7 MS-03 Page ii Rev. 0 Thermal Shock DOE-HDBK-1017/2-93 LIST OF TABLES LIST OF TABLES Table 1 Coefficients of Linear Thermal Expansion ............................ 2 Rev. 0 Page iii MS-03 REFERENCES DOE-HDBK-1017/2-93 Thermal Shock REFERENCES Academic Program for Nuclear Power Plant Personnel, Volume