The Activation of TC10, a Rho Small Gtpase, Contributes to V-Rel-Mediated Transformation

Total Page:16

File Type:pdf, Size:1020Kb

The Activation of TC10, a Rho Small Gtpase, Contributes to V-Rel-Mediated Transformation Oncogene (2007) 26, 2318–2329 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ORIGINAL ARTICLE The activation of TC10, a Rho small GTPase, contributes to v-Rel-mediated transformation S Tong, AS Liss, M You1 and HR Bose Jr Section of Molecular Genetics and Microbiology and the Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA v-Rel is the oncogenic member of the Rel/NF-jB family of Introduction transcription factors andtransforms hematopoietic cells andfibroblasts. Differential display was employedto v-rel is an acutely transforming oncogene that belongs identify target genes that exhibit altered expression in to the Rel/NF-kB family of transcription factors v-Rel transformedcells. One of the cDNAs identified (Hrdlickova´ et al., 1999). Rel/NF-kB proteins are encodes the chicken ortholog of TC10, a member of the involved in multiple cellular processes including immune Rho small GTPase family. The expression of TC10 was and inflammatory responses, cell growth control, increasedin v-Rel-transformedchicken embryonic fibro- embryonic development, stress responses and apoptosis blasts (CEFs) 3 to 6-foldrelative to control cells at both (Pahl, 1999; Perkins, 2000).In most cell types, Rel/NF- the RNA andprotein levels. An elevatedlevel of active, kB dimers are sequestered in the cytoplasm by associa- GTP-boundTC10 was also detectedinv-Rel-transformed tion with IkB inhibitory molecules.Appropriate cells relative to control cells. Expression of a dominant- extracellular signaling leads to the proteolysis of IkB negative TC10 mutant (TC10T32N) decreased the colony resulting in the translocation of Rel/NF-kB complexes formation potential of v-Rel-transformedcells. Further- to the nucleus where they bind to decameric kB sites in more, overexpression of wild-type TC10 or a gain-of- the promoters of target genes to regulate their expres- function mutant (TC10Q76L) greatly enhancedthe ability sion.The v- rel oncogene was derived by a nonhomolo- of v-Rel transformedCEFs to form colonies in soft agar. gous recombination event between the turkey c-rel In addition to enhance the transformation potential of v- proto-oncogene and an avian retrovirus.Multiple Rel, the overexpression of wild-type TC10 or the gain-of- mutations in v-Rel contribute to its oncogenicity by function mutant alone enhancedthe saturation densityof altering its DNA binding specificity and transactivation CEFs and was sufficient for their anchorage-independent potential relative to c-Rel (Bose, 1992; Gilmore, 1999). growth in vitro. These results indicate that elevated TC10 These mutations also render v-Rel less sensitive to IkBa activity contributes to v-Rel-mediated transformation of inhibition allowing for its constitutive nuclear access in CEFs anddemonstrate for the first time that a Rho factor the absence of an appropriate exogenous signal alone is capable of inducing the in vitro transformation of (Hrdlickova´ et al., 1995; Schatzle et al., 1995; Nehyba primary cells. et al., 1997; Sachdev and Hannink, 1998). Oncogene (2007) 26, 2318–2329. doi:10.1038/sj.onc.1210023; v-Rel transforms cells of hematopoietic origin and published online 2 October 2006 embryonic fibroblasts in vitro (reviewed by Bose (1992); Gilmore, (1999)).The ability of v-Rel to transform these Keywords: v-Rel; NF-kB; TC10; Rho; GTPase; trans- cells is characterized by their abilities to form colonies in formation soft agar and induce tumors in vivo.In addition, fibroblasts transformed by v-Rel undergo distinct morphological changes and have a prolonged lifespan. Transformation by v-Rel is mediated by the inappropri- ate activation or suppression of genes, which are normally regulated by Rel/NF-kB proteins.Efforts to identify genes induced by v-Rel have led to the identification of more than two dozen genes (You and Correspondence: Dr HR Bose Jr, Section of Molecular Genetics and Bose, 1998; Gilmore, 1999; Hrdlickova´ et al., 1999, Microbiology and the Institute of Cellular and Molecular Biology, 2001; Nehyba et al., 2002). However, only a few of these University of Texas at Austin, 1 University Station A5000, Austin, TX 78712-1095, USA. genes have been shown to contribute to the transformed E-mail: [email protected] phenotype.These include a cell surface adhesion 1Current address: Department of Hematopathology, Division of molecule (DM-GRASP), the chemokine Mip-1b,an Pathology and Laboratory Medicine, UT M.D. Anderson Cancer inhibitor of apoptosis (chIAP-1), transcription factors Center, 1515 Holcombe Boulevard-Unit 72, Houston, TX 77030, USA. belonging to the AP-1 (c-Fos and c-Jun) and interferon Received 15 March 2006; revised 15 June 2006; accepted 11 July 2006; response factor (IRF-4) families, and the reverse published online 2 October 2006 transcriptase of telomerase (TERT) (Zhang et al., TC10 contributes to v-Rel-mediated transformation S Tong et al 2319 1995; Petrenko et al., 1997; You et al., 1997; Kralova Results et al., 1998; Hrdlickova´ et al., 2001, 2006). Here, we report that TC10, a Rho family member, is Isolation and cloning of chicken TC10 (TC10) upregulated in, and contributes to the transformation of Differential display was employed to identify genes with fibroblasts by v-Rel.The Rho family consists of 22 altered expression in cells transformed by the v-rel proteins that are involved in signal transduction path- oncogene.Differentially expressed cDNA fragments ways which control a variety of biological functions were identified by comparing the mRNA expression including actin cytoskeleton remodeling, vesicle traffick- profiles from v-Rel-expressing cells with those of control ing, cell polarity, cell adhesion, cell migration, prolifera- cells.A 467 bp cDNA fragment was identified with tion, differentiation, apoptosis and transformation significantly elevated expression in v-Rel-transformed (reviewed by Symons (1996); Ridley (1997); Tapon and CEFs relative to control cells.Sequencing of this gene Hall (1997); Hall (1998); Mackay and Hall (1998); Zohn fragment revealed that it contained 408 bp of 30UTR et al.(1998); Nobes and Hall (1999); Ellis and Mellor and 59 bp of coding sequence that is highly homologous (2000); Evers et al.(2000); Aznar and Lacal (2001); with the Rho small GTPase, TC10.Previous studies had Ridley (2001a, b); Frame and Brunton (2002)).Rho indicated that certain Rho small GTPases are important GTPases are active when bound to GTP and inactive in the regulation of cell proliferation and transformation when bound to GDP.The exchange of GDP to GTP is (Zohn et al., 1998). Therefore, we isolated the full-length catalysed by guanine nucleotide exchange factors open reading frame (ORF) of chicken TC10 (TC10) for (GEFs) and the hydrolysis of GTP is catlysed by further studies.The 5 0 end of the TC10 ORF was GTPase-activating proteins (GAPs) (reviewed by Ber- isolated by 50RACE from an adapter-ligated cDNA nards and Settleman (2005); Rossman et al.(2005)).The library generated from v-Rel-expressing CEF cultures. GTPase activity of Rho proteins is further regulated by The complete TC10 ORF is 642 nucleotides in length guanine nucleotide dissociation inhibitors (GDIs) (Figure 1a).There are two potential translation start (reviewed by Dransart et al.(2005)).These proteins codons.The predicted protein translated from the first inhibit the activation of RhoGTPases by preventing both start codon has 214 amino acids with a molecular weight the release of GDP as well as their localization to the of 23.5 kDa. The second start codon is located 9 amino plasma membrane where they are activated by GEFs. acids downstream of the first start codon and has a TC10 has been cloned from vertebrates (human, perfect Kozak sequence for translation initiation mouse and rat), but is not present in budding yeast, (Kozak, 1987).The predicted protein translated from suggesting that TC10 only functions in differentiated this codon is 205 amino acids in length with an cells (Drivas et al., 1990; Neudauer et al., 1998; Tanabe estimated molecular weight of 22.8 kDa. Finally, the et al., 2000; Chiang et al., 2002). TC10 is predominantly 408 bp 30UTR contains several potential polyadenyla- localized on the plasma and endosomal membranes tion signals upstream of the poly (A) tract. (Michaelson et al., 2001) and has been implicated in The predicted protein sequence of TC10 (from the various biological functions.TC10 has been reported to first start codon) shares 93% identity with human TC10 function in actin cytoskeleton organization (Neudauer (Figure 1b).TC10 contains four highly conserved GTP et al., 1998; Murphy et al., 1999), nerve regeneration binding domains, a Rho insert domain, effector domain (Tanabe et al., 2000), and the activation of various and the C-terminal CAAX box.It also contains a kinases and transcription factors (Murphy et al., 1999; plasma membrane targeting motif (CXXC) and a Murphy et al., 2001). In addition, the involvement of polybasic region in the hypervariable C-terminus, which TC10 in the translocation of glucose transporter 4 are believed to be important for membrane targeting (GLUT4) upon insulin stimulation in muscle cells and and regulation (Michaelson et al., 2001). The closest adipocytes has been extensively characterized (Chiang related Rho factor to TC10 is TCL, which shares 79% et al., 2001; Jiang et al., 2001; Kanzaki and Pessin, 2001; identity.Compared with other chicken Rho GTPases, Watson et al., 2001). Furthermore, TC10 cooperates TC10 shares 67% identity with Cdc42, 65% with Rac1, with activated
Recommended publications
  • The Nurd Complex Cooperates with Dnmts to Maintain Silencing of Key Colorectal Tumor Suppressor Genes
    Oncogene (2014) 33, 2157–2168 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc ORIGINAL ARTICLE The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes Y Cai1,6, E-J Geutjes2,6, K de Lint2, P Roepman3, L Bruurs2, L-R Yu4, W Wang1, J van Blijswijk2, H Mohammad1, I de Rink5, R Bernards2 and SB Baylin1 Many tumor suppressor genes (TSGs) are silenced through synergistic layers of epigenetic regulation including abnormal DNA hypermethylation of promoter CpG islands, repressive chromatin modifications and enhanced nucleosome deposition over transcription start sites. The protein complexes responsible for silencing of many of such TSGs remain to be identified. Our previous work demonstrated that multiple silenced TSGs in colorectal cancer cells can be partially reactivated by DNA demethylation in cells disrupted for the DNA methyltransferases 1 and 3B (DNMT1 and 3B) or by DNMT inhibitors (DNMTi). Herein, we used proteomic and functional genetic approaches to identify additional proteins that cooperate with DNMTs in silencing these key silenced TSGs in colon cancer cells. We discovered that DNMTs and the core components of the NuRD (Mi-2/nucleosome remodeling and deacetylase) nucleosome remodeling complex, chromo domain helicase DNA-binding protein 4 (CHD4) and histone deacetylase 1 (HDAC1) occupy the promoters of several of these hypermethylated TSGs and physically and functionally interact to maintain their silencing. Consistent with this, we find an inverse relationship between expression of HDAC1 and 2 and these TSGs in a large panel of primary colorectal tumors. We demonstrate that DNMTs and NuRD cooperate to maintain the silencing of several negative regulators of the WNT and other signaling pathways.
    [Show full text]
  • Human Prion-Like Proteins and Their Relevance in Disease
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Autònoma de Barcelona Departament de Bioquímica i Biologia Molecular Institut de Biotecnologia i Biomedicina HUMAN PRION-LIKE PROTEINS AND THEIR RELEVANCE IN DISEASE Doctoral thesis presented by Cristina Batlle Carreras for the degree of PhD in Biochemistry, Molecular Biology and Biomedicine from the Universitat Autònoma de Barcelona. The work described herein has been performed in the Department of Biochemistry and Molecular Biology and in the Institute of Biotechnology and Biomedicine, supervised by Prof. Salvador Ventura i Zamora. Cristina Batlle Carreras Prof. Salvador Ventura i Zamora Bellaterra, 2020 Protein Folding and Conformational Diseases Lab. This work was financed with the fellowship “Formación de Profesorado Universitario” by “Ministerio de Ciencia, Innovación y Universidades”. This work is licensed under a Creative Commons Attributions-NonCommercial-ShareAlike 4.0 (CC BY-NC- SA 4.0) International License. The extent of this license does not apply to the copyrighted publications and images reproduced with permission. (CC BY-NC-SA 4.0) Batlle, Cristina: Human prion-like proteins and their relevance in disease. Doctoral Thesis, Universitat Autònoma de Barcelona (2020) English summary ENGLISH SUMMARY Prion-like proteins have attracted significant attention in the last years.
    [Show full text]
  • Termin Translat Trna Utr Mutat Protein Signal
    Drugs & Chemicals 1: Tumor Suppressor Protein p53 2: Heterogeneous-Nuclear Ribonucleo- (1029) proteins (14) activ apoptosi arf cell express function inactiv induc altern assai associ bind mdm2 mutat p53 p73 pathwai protein regul complex detect exon famili genom respons suppress suppressor tumor wild-typ interact intron isoform nuclear protein sensit site specif splice suggest variant 3: RNA, Transfer (110) 4: DNA Primers (1987) codon contain differ eukaryot gene initi amplifi analysi chain clone detect dna express mrna protein region ribosom rna fragment gene genotyp mutat pcr sequenc site speci suggest synthesi polymorph popul primer reaction region restrict sequenc speci termin translat trna utr 5: Saccharomyces cerevisiae Proteins 6: Apoptosis Regulatory Proteins (291) (733) activ apoptosi apoptosis-induc albican bud candida cerevisia complex encod apoptot bcl-2 caspas caspase-8 cell eukaryot fission function growth interact involv death fasl induc induct ligand methyl necrosi pathwai program sensit surviv trail mutant pomb protein requir saccharomyc strain suggest yeast 7: Plant Proteins (414) 8: Membrane Proteins (1608) access arabidopsi cultivar flower hybrid leaf leav apoptosi cell conserv domain express function gene human identifi inhibitor line maiz plant pollen rice root seed mammalian membran mice mous mutant seedl speci thaliana tomato transgen wheat mutat protein signal suggest transport 1 9: Tumor Suppressor Proteins (815) 10: 1-Phosphatidylinositol 3-Kinase activ arrest cell cycl cyclin damag delet dna (441) 3-kinas activ
    [Show full text]
  • Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the Tna Operon of Escherichia Coli
    JOURNAL OF BACTERIOLOGY, Aug. 1995, p. 4451–4456 Vol. 177, No. 15 0021-9193/95/$04.0010 Copyright 1995, American Society for Microbiology Bicyclomycin Sensitivity and Resistance Affect Rho Factor-Mediated Transcription Termination in the tna Operon of Escherichia coli CHARLES YANOFSKY* AND VIRGINIA HORN Department of Biological Sciences, Stanford University, Stanford, California 94305-5020 Received 13 March 1995/Accepted 27 May 1995 The growth-inhibiting drug bicyclomycin, known to be an inhibitor of Rho factor activity in Escherichia coli, was shown to increase basal level expression of the tryptophanase (tna) operon and to allow growth of a tryptophan auxotroph on indole. The drug also relieved polarity in the trp operon and permitted growth of a trp double nonsense mutant on indole. Nine bicyclomycin-resistant mutants were isolated and partially characterized. Recombination data and genetic and biochemical complementation analyses suggest that five have mutations that affect rho, three have mutations that affect rpoB, and one has a mutation that affects a third locus, near rpoB. Individual mutants showed decreased, normal, or increased basal-level expression of the tna operon. All but one of the resistant mutants displayed greatly increased tna operon expression when grown in the presence of bicyclomycin. The tna operon of the wild-type drug-sensitive parent was also shown to be highly expressed during growth with noninhibitory concentrations of bicyclomycin. These findings demonstrate that resistance to this drug may be acquired by mutations at any one of three loci, two of which appear to be rho and rpoB. Zwiefka et al. (24) found that the antibiotic bicyclomycin segment and interacts with the transcribing RNA polymerase (bicozamycin), an inhibitor of the growth of several gram- molecule, causing it to terminate transcription (7, 9).
    [Show full text]
  • Downregulation of the Let‑7 Family of Micrornas May Promote Insulin Receptor/Insulin‑Like Growth Factor Signalling Pathways in Pancreatic Ductal Adenocarcinoma
    ONCOLOGY LETTERS 20: 2613-2620, 2020 Downregulation of the let‑7 family of microRNAs may promote insulin receptor/insulin‑like growth factor signalling pathways in pancreatic ductal adenocarcinoma EKENE EMMANUEL NWEKE1 and MARTIN BRAND2,3 1Department of Surgery, 2School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg 2193; 3Department of Surgery, Steve Biko Academic Hospital and The University of Pretoria, Pretoria 0002, South Africa Received October 18, 2019; Accepted May 27, 2020 DOI: 10.3892/ol.2020.11854 Abstract. Pancreatic ductal adenocarcinoma (PDAC) is may thus be an effective target for the development of INSR/ an aggressive cancer type characterized by dysregulated IGF pathway‑specific treatment strategies. cell signalling pathways and resistance to treatment. The insulin-like growth factor (IGF) signalling pathway has Introduction been identified to have a role in tumour progression and therapy resistance. However, its regulatory roles in PDAC According to 2018 GLOBOCAN statistics, pancreatic cancer have remained to be fully elucidated. In the present study, had 458,918 new cases and 432,242 mortalities, which dysregulated microRNAs (miRNAs) in PDAC were explored accounted for 4.5% of cancer-associated deaths world- with a focus on those that may be involved in regulating the wide (1,2). Pancreatic ductal adenocarcinoma (PDAC), the insulin/IGF signalling pathway. A total of 208 patients were most common type of pancreatic cancer, has a poor prog- recruited, comprising 112 patients with PDAC, 50 patients nosis with a five‑year overall survival rate of 5%, which has with chronic pancreatitis (CP) and 46 subjects as a control not significantly improved over the last two decades despite group (CG).
    [Show full text]
  • Structure of the Rho Transcription Terminator: Mechanism of Mrna Recognition and Helicase Loading
    Cell, Vol. 114, 135–146, July 11, 2003, Copyright 2003 by Cell Press Structure of the Rho Transcription Terminator: Mechanism of mRNA Recognition and Helicase Loading Emmanuel Skordalakes and James M. Berger* this process by a number of factors, such as NusG, Department of Molecular and Cell Biology which serve as antiterminators to ameliorate the termi- University of California, Berkeley nation properties of the enzyme (Sullivan and Gottes- 239 Hildebrand Hall, #3206 man, 1992). Berkeley, California 94720 Tethering of Rho to a rut site is independent of ATP binding and/or hydrolysis (Galluppi and Richardson, 1980; McSwiggen et al., 1988) and is mediated by an Summary N-terminal domain in each protomer of the Rho hexamer (Martinez et al., 1996a, 1996b; Allison et al., 1998; Bri- In bacteria, one of the major transcriptional termina- ercheck et al., 1998). Previous high-resolution NMR and tion mechanisms requires a RNA/DNA helicase known X-ray crystal structures of the N-terminal mRNA binding as the Rho factor. We have determined two structures domain of Rho have provided a structural view of this of Rho complexed with nucleic acid recognition site fold and its interactions with target substrates (Allison mimics in both free and nucleotide bound states to et al., 1998; Briercheck et al., 1998; Bogden et al., 1999). 3.0 A˚ resolution. Both structures show that Rho forms The domain consists of a three-helix bundle that rests a hexameric ring in which two RNA binding sites—a on top of a five-stranded ␤ barrel. The barrel belongs primary one responsible for target mRNA recognition to the oligonucleotide/oligossacharide binding (OB) pro- and a secondary one required for mRNA translocation tein superfamily and is primarily responsible for Rho’s and unwinding—point toward the center of the ring.
    [Show full text]
  • Identification of Transcriptional Mechanisms Downstream of Nf1 Gene Defeciency in Malignant Peripheral Nerve Sheath Tumors Daochun Sun Wayne State University
    Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors Daochun Sun Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Sun, Daochun, "Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors" (2012). Wayne State University Dissertations. Paper 558. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFECIENCY IN MALIGNANT PERIPHERAL NERVE SHEATH TUMORS by DAOCHUN SUN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: _______________________________________ Advisor Date _______________________________________ _______________________________________ _______________________________________ © COPYRIGHT BY DAOCHUN SUN 2012 All Rights Reserved DEDICATION This work is dedicated to my parents and my wife Ze Zheng for their continuous support and understanding during the years of my education. I could not achieve my goal without them. ii ACKNOWLEDGMENTS I would like to express tremendous appreciation to my mentor, Dr. Michael Tainsky. His guidance and encouragement throughout this project made this dissertation come true. I would also like to thank my committee members, Dr. Raymond Mattingly and Dr. John Reiners Jr. for their sustained attention to this project during the monthly NF1 group meetings and committee meetings, Dr.
    [Show full text]
  • For Personal Use. Only Reproduce with Permission from the Lancet
    Correlation to non-HGNT Accesion group 2 Description AA897204 1.479917 ESTs T85111 1.286576 null T60168 | AI821353 1.274487 thyroid transcription factor 1 AA600173 1.183065 ubiquitin-conjugating enzyme E2A (RAD6 homolog) R55745 1.169339 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 4 (Hu antigen D) AA400492 1.114935 ESTs AA864791 1.088826 hypothetical protein FLJ21313 N53758 1.070402 EST AI216628 1.067763 ESTs AI167637 1.058561 ESTs AA478265 1.056331 similar to transmembrane receptor Unc5H1 AA969924 1.039315 EST AI074650 1.039043 hypothetical protein FLJ13842 R20763 1.035807 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 3 (Hu antigen C) AI347081 1.034518 Ca2+-dependent activator protein for secretion R44386 1.028005 ESTs AA976699 1.027227 chromogranin A (parathyroid secretory protein 1) AA634475 1.026766 KIAA1796 protein AA496809 1.02432 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1 H16572 1.013059 null H29013 1.002117 seizure related 6 homolog (mouse)-like AI299731 1.001053 Homo sapiens nanos mRNA, partial cds AA400194 0.9950039 EST AI216537 | AI820870 0.9737153 Homo sapiens cDNA FLJ39674 fis, clone SMINT2009505 AA426408 0.9728649 type I transmembrane receptor (seizure-related protein) AA971742 | AI733380 0.9707561 achaete-scute complex-like 1 (Drosophila) R41450 0.9655133 ESTs AA487505 0.9636143 immunoglobulin superfamily, member 4 AA404337 0.957686 thymus high mobility group box protein TOX N68578 0.9552571 ESTs R45008 0.9422938 ELAV (embryonic lethal, abnormal
    [Show full text]
  • Theoretical Principles of in Vitro Selection Using Combinatorial
    Theoretical Principles of In Vitro Selection UNIT 9.1 Using Combinatorial Nucleic Acid Libraries Over the past decade, a new paradigm for binding proteins, peptides, and small organic drug discovery (Gold, 1995) and biological molecules (reviewed in Klug and Famulok, research (Gold et al., 1995) has been developed 1994; Gold, 1995; Gold et al., 1995). This unit from technologies that integrate combinatorial presents a theoretical overview of in vitro af- chemistry with rounds of selection and ampli- finity selection using SELEX technology. fication, a technique that is called in vitro se- A schematic representation of the SELEX lection. Systematic Evolution of Ligands by process is shown in Figure 9.1.1 and may be EXponential enrichment, or SELEX (Ellington used to describe SELEX performed with librar- and Szostak, 1990; Tuerk and Gold, 1990) is a ies of RNA, RNA derivatives, or DNA. For the flexible and extremely successful form of this purposes of developing a mathematical model, technology that uses combinatorial libraries of the SELEX process for affinity binding may be oligonucleotides containing regions of ran- summarized in four steps: (1) generation of a domized sequence as potential ligands. Oli- library of potential ligands, (2) binding of the gonucleotide libraries (containing randomized library to the target molecule, (3) partitioning regions) provide, after selection, compounds of the bound ligands from the unbound ligands, that bind tightly to the intended target. The and (4) amplification of the partitioned ligands process of in vitro selection was called SELEX to generate a new, enriched library, leading by Tuerk and Gold (1990), while the selected again to step 1.
    [Show full text]
  • Abdullahi, Akilu Nuclear 80S Ribosomes Increase Upon Serum Starvation 51
    Posters A-Z Abdullahi, Akilu Nuclear 80S ribosomes increase upon serum starvation 51 Abernathy, Emma Virus-induced global cytoplasmic mRNA degradation impacts 52 transcription rates in mammalian cells Acosta-Alvear, Diego Blueprint of the mammalian IRE1 interactome revealed by unbiased 53 systems-level analyses Afroz, Tariq A fly-trap mechanism provides sequence-specific RNA recognition by 54 CPEB proteins Agarwala, Prachi 5' UTR localized G-quadruplexes synergistically modulate TGFß2 55 expression Ali Khan, Abrar Functional genetic variations in proximal promoter alter the expression 56 of 3-hydroxy-3-methyl glutaryl-coenzyme A reductase gene in spontaneously hypertensive rat ALqosaibi, Amany I. The role of some genes in Telomere Position Effect appears to involve 57 post-transcriptional regulation of a sub-telomeric reporter gene Alshiekh, Alak Targeting BRCA1 mRNA by tunable miR mimics 58 Alves, Lysangela The mRNAs associated to a zinc finger protein shift during stress 59 conditions: The zinc finger protein TcZC3H39 and the stress response in Trypanosoma cruzi Andries, Vanessa Role of NANOS3 in tumor progression 60 Antic, Sanja mRNA degradation on the ribosome in Drosophila cells 61 EMBO | EMBL Symposia: The Complex Life of mRNA Archambaud, Cristel The intestinal microbiota interferes with the microRNA response upon 62 oral Listeria infection Arnese, Renato Generation of a knock-in mouse model for the in vivo study of local 63 protein synthesis: a preliminary screening Babour, Anna Licensing mRNP for nuclear export: a role for chromatin
    [Show full text]
  • Regulatory Interplay Between Small Rnas and Transcription Termination Factor Rho Lionello Bossi, Nara Figueroa-Bossi, Philippe Bouloc, Marc Boudvillain
    Regulatory interplay between small RNAs and transcription termination factor Rho Lionello Bossi, Nara Figueroa-Bossi, Philippe Bouloc, Marc Boudvillain To cite this version: Lionello Bossi, Nara Figueroa-Bossi, Philippe Bouloc, Marc Boudvillain. Regulatory interplay be- tween small RNAs and transcription termination factor Rho. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms , Elsevier, 2020, pp.194546. 10.1016/j.bbagrm.2020.194546. hal-02533337 HAL Id: hal-02533337 https://hal.archives-ouvertes.fr/hal-02533337 Submitted on 6 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Regulatory interplay between small RNAs and transcription termination factor Rho Lionello Bossia*, Nara Figueroa-Bossia, Philippe Bouloca and Marc Boudvillainb a Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France b Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France * Corresponding author: [email protected] Highlights Repression
    [Show full text]
  • Struktur-Funktionsbeziehungen Der Rho- Und Der Plexin-Proteinfamilien
    Struktur-Funktionsbeziehungen der Rho- und der Plexin-Proteinfamilien Inauguraldissertation zur Erlangung des Doktorgrades der Fakultät für Chemie der Ruhr-Universität Bochum vorgelegt von Dennis Franz-Josef Fiegen aus Kleve April 2005 INHALTSVERZEICHNIS _______________________________________________________________________________________________________________________________________________________________________________________________________________ Inhaltsverzeichnis Inhaltsverzeichnis .................................................................................................................... III Abbildungsverzeichnis ............................................................................................................ IX Tabellenverzeichnis ................................................................................................................. XI Abkürzungsverzeichnis ..........................................................................................................XII 1. Einleitung ........................................................................................................................ 1 1.1 GTP-bindende Proteine als Elemente der Signaltransduktion ..................................... 2 1.2 Die Ras-Superfamilie ..................................................................................................... 3 1.3 Die GTPasen der Rho-Familie ....................................................................................... 7 1.4 Regulatoren und Effektoren der RhoGTPasen
    [Show full text]