7.2 Plate Tectonics and Passive Margin Evolution

Total Page:16

File Type:pdf, Size:1020Kb

7.2 Plate Tectonics and Passive Margin Evolution Campanile, Daniel J. (2007) The post-breakup evolution of the western Indian high-elevation passive margin. PhD thesis. http://theses.gla.ac.uk/38/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The post break-up evolution of the Western Indian high-elevation passive margin Daniel Campanile B.Sc. (Hons.), Glasgow Thesis presented for the degree of Doctor of Philosophy (Ph.D.) University of Glasgow Department of Geographical and Earth Sciences September 2007 Abstract Abstract The tectonic development of the Western Indian high-elevation passive margin is complex. At least two major rifting events (India/Madagascar and India/Seychelles) and a major hotspot (The Reunion plume) are believed to have been instrumental in the formation and development of the margin. However, the temporal and spatial extent of these major tectonic events remains poorly constrained. The Western Ghats of India has also been cited as a type example of a downwarped, elevated passive continental margin. However, published low temperature thermochronometry suggests downwearing or parallel escarpment retreat as alternative models of margin evolution. Here are present the results of a sediment mass balance study utilising new data for the offshore portion of the Western Indian margin, new onshore apatite fission track and (U-Th)/He thermochronometry for the onshore portion of the Western Indian margin, and flexural isostatic modelling. The combined methodologies used within this study are used to resolve some of the fundamental questions regarding the tectonic development and subsequent long term landscape evolution of the Western Indian margin. The Konkan-Kerala basin is a major depocentre for sediment from the onshore hinterland of Western India and as such provides a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This study presents an analysis of sedimentation in the Konkan-Kerala basin, coupled with a mass balance study, in order to test competing conceptual models for the development of the Western Indian margin. An estimated 109,000 km3 of Cenozoic clastic sediment are present within the Konkan-Kerala basin, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. There is evidence for two major pulses in sedimentation; an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and The Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic. Mass balance analysis only provides spatially and temporally averaged estimates for denudation; consequently, this study presents new low temperature thermochronology Daniel Campanile i Abstract from onshore regions to constrain the onshore pattern of denudation. Apatite fission track ages increase from c.55 Ma at the coast to <350 Ma at the escarpment with mean confined track length between 11.3 µm and 14.3 µm. Apatite (U-Th)/He ages range from 37 Ma to 123 Ma and zircon (U-Th)/He ages range from 324 Ma to 426 Ma. These data, when modelled, are consistent with accelerated denudation contemporaneous with rifting between India and The Seychelles. Inverse-modelling of the thermochronmetric data suggest denudation of at least 4.5 km at the coast decreasing to more modest amounts of denudation of between 1.5km and 2.5km further inland towards the escarpment. The pattern of denudation inferred from low temperature thermochronometry is consistent with escarpment evolution into an elevated rift flank. The flexural response of the Western Indian margin to sediment loading and denudational unloading can be modelled as a thin elastic beam overlying a fluid substratum. Modelling the isostatic response of the Western Indian lithosphere to sediment loading offshore and denudation onshore infer that flexural isostasy is an important component in the development of the Margin. However, flexural isostasy alone cannot account for the pattern of subsidence offshore or the pattern of uplift onshore and additional mechanisms must be invoked. Daniel Campanile ii Table of contents Table of contents Abstract ................................................................................................................. i Table of contents ................................................................................................ iii List of figures ...................................................................................................... vi List of tables...................................................................................................... viii Acknowledgements ............................................................................................ ix Declaration .......................................................................................................... xi 1 Introduction ................................................................................................. 1 1.1 Introduction ........................................................................................... 1 1.2 Passive margins.................................................................................... 2 1.2.1 Surface uplift mechanisms .........................................................2 1.2.2 Conceptual models of passive margin evolution ........................4 1.3 The Western Indian margin................................................................... 7 1.3.1 Geological background...............................................................7 1.3.2 Margin physiography ................................................................10 1.3.3 Rifting and tectonic history .......................................................12 1.3.4 Margin geomorphology.............................................................15 1.4 The current study ................................................................................ 20 1.5 Predictive forward modelling ............................................................... 21 1.5.1 Introduction...............................................................................21 1.5.2 Methods and model parameters...............................................21 1.5.3 Forward modelling results for the Northern field area...............24 1.5.4 Forward modelling results for the Southern field area ..............26 2 Mass balance analysis.............................................................................. 30 2.1 Introduction ......................................................................................... 30 2.2 The principles of mass balance analysis............................................. 33 2.2.1 The coupled erosional-depositional system .............................33 2.2.2 Mass balance analysis – methods and assumptions................36 2.3 Mass balance analysis of Western India............................................. 37 2.3.1 The offshore area .....................................................................37 2.3.2 The onshore area.....................................................................42 2.4 Methods .............................................................................................. 43 2.4.1 Quantifying sediment in the Konkan-Kerala basin....................43 2.4.1.1 Obtaining compacted sediment volumes ......................43 2.4.1.2 Decompacting sediment volumes .................................46 2.4.2 Calculating the onshore denuded crustal prism........................48 2.5 Results................................................................................................ 50 Daniel Campanile iii Table of contents 2.6 Discussion and implications ................................................................ 52 3 Low temperature thermochronometry..................................................... 55 3.1 Introduction ......................................................................................... 55 3.2 Apatite fission track thermochronometry............................................. 57 3.2.1 Introduction...............................................................................57 3.2.2 AFTT annealing kinetics...........................................................58 3.2.3 Calculating AFTT ages.............................................................61 3.2.4 Fission track confined track length distributions (TLD’s) ..........62 3.2.5 Interpreting AFTT data .............................................................62 3.2.5.1 AFTT age profiles and TLDs .........................................63 3.2.5.2 Forward and inverse-modelling of AFTT data ...............67 3.3 (U-Th)/He thermochronometry ............................................................ 68 3.3.1 Introduction...............................................................................68 3.3.2 (U-Th)/He
Recommended publications
  • Karnataka Tourism Vision Group 2014 Report
    Karnataka Tourism Vision group 2014 report KARNATAKA TOURISM VISION GROUP (KTVG) Recommendations to the GoK: Jan 2014 Task force KTVG Karnataka Tourism Vision Group 2014 Report 1 FOREWORD Tourism matters. As highlighted in the UN WTO 2013 report, Tourism can account for 9% of GDP (direct, indirect and induced), 1 in 11 jobs and 6% of world exports. We are all aware of amazing tourist experiences globally and the impact of the sector on the economy of countries. Karnataka needs to think big, think like a Nation-State if it is to forge ahead to realise its immense tourism potential. The State is blessed with natural and historical advantage, which coupled with a strong arts and culture ethos, can be leveraged to great advantage. If Karnataka can get its Tourism strategy (and brand promise) right and focus on promotion and excellence in providing a wholesome tourist experience, we believe that it can be among the best destinations in the world. The impact on job creation (we estimate 4.3 million over the next decade) and economic gain (Rs. 85,000 crores) is reason enough for us to pay serious attention to focus on the Tourism sector. The Government of Karnataka had set up a Tourism Vision group in Oct 2013 consisting of eminent citizens and domain specialists to advise the government on the way ahead for the Tourism sector. In this exercise, we had active cooperation from the Hon. Minister of Tourism, Mr. R.V. Deshpande; Tourism Secretary, Mr. Arvind Jadhav; Tourism Director, Ms. Satyavathi and their team. The Vision group of over 50 individuals met jointly in over 7 sessions during Oct-Dec 2013.
    [Show full text]
  • Shimoga District at a Glance
    FOREWORD Groundwater is an essential component of the environment and economy. It sustains the flow in our rivers and plays an important role in maintaining the fragile ecosystems. The groundwater dependence of agrarian states like Karnataka is high. Recent studies indicate that 26 percent of the area of Karnataka State is under over exploited category and number of blocks is under critical category. In view of the growing concerns of sustainability of ground water sources, immediate attention is required to augment groundwater resources in stressed areas. Irrigated agriculture in the state is putting additional stress on the groundwater system and needs proper management of the resources. Central Ground Water Board is providing all technical input for effective management of ground water resources in the state. The groundwater scenario compiled on administrative divisions gives a better perspective for planning various ground water management measures by local administrative bodies. With this objective, Central Ground Water Board is publishing the revised groundwater information booklet for all the districts of the state. I do appreciate the efforts of Dr. K.Md.Najeeb, Regional Director and his fleet of dedicated Scientists of South Western Region, Bangalore for bringing out this booklet. I am sure these brochures will provide a portrait of the groundwater resources in each district for planning effective management measures by the administrators, planners and the stake holders. Dr. S. C. Dhiman PREFACE Ground water contributes to about eighty percent of the drinking water requirements in the rural areas, fifty percent of the urban water requirements and more than fifty percent of the irrigation requirements of the nation.
    [Show full text]
  • Hampi, Badami & Around
    SCRIPT YOUR ADVENTURE in KARNATAKA WILDLIFE • WATERSPORTS • TREKS • ACTIVITIES This guide is researched and written by Supriya Sehgal 2 PLAN YOUR TRIP CONTENTS 3 Contents PLAN YOUR TRIP .................................................................. 4 Adventures in Karnataka ...........................................................6 Need to Know ........................................................................... 10 10 Top Experiences ...................................................................14 7 Days of Action .......................................................................20 BEST TRIPS ......................................................................... 22 Bengaluru, Ramanagara & Nandi Hills ...................................24 Detour: Bheemeshwari & Galibore Nature Camps ...............44 Chikkamagaluru .......................................................................46 Detour: River Tern Lodge .........................................................53 Kodagu (Coorg) .......................................................................54 Hampi, Badami & Around........................................................68 Coastal Karnataka .................................................................. 78 Detour: Agumbe .......................................................................86 Dandeli & Jog Falls ...................................................................90 Detour: Castle Rock .................................................................94 Bandipur & Nagarhole ...........................................................100
    [Show full text]
  • 11.13 Karnataka
    11.13 KARNATAKA 11.13.1 Introduction Karnataka, the seventh largest State of the country, with a geographical area of 1,91,791 sq km accounts for 5.83% of the geographical area of the country. The State is located in the south western region of India and lies between 11°30' N to 18°30' N latitudes and 74°00' E to 78°30' E longitudes and is bordered by Maharashtra and Goa in the North, Telangana and Andhra Pradesh in the east, Kerala & Tamil Nadu on the South and the Arabian Sea on the West. The State can be divided into two distinct physiographic regions viz the 'Malnad' or hilly region comprising Western Ghats and 'Maidan' or plain region comprising the inland plateau of varying heights. The average annual rainfall varies from 2,000 mm to 3,200 mm and the average annual temperature between 25°C and 35°C. The Western Ghats, which has an exceptionally high level of biological diversity and endemism, covers about 60% of forest area of the State. East flowing rivers in Karnataka mainly Cauvery & Krishna along with its tributaries drain into Bay of Bengal and west flowing rivers mainly Sharavathi & Kali drain into Arabian Sea. The State has 30 districts, amongst which 5 are tribal and 6 are hill districts. As per the 2011 census, Karnataka has a population of 61.13 million, which is 5.05% of India's population. The rural and urban populations constitute 61.43% and 38.57% respectively. Tribal population is 6.96% of the State's population.
    [Show full text]
  • World Heritage Sites in India
    World Heritage Sites in India drishtiias.com/printpdf/world-heritage-sites-in-india A World Heritage Site is a place that is listed by UNESCO for its special cultural or physical significance. The list of World Heritage Sites is maintained by the international 'World Heritage Programme', administered by the UNESCO World Heritage Committee. The United Nations Educational, Scientific and Cultural Organization (UNESCO) seeks to encourage the identification, protection and preservation of cultural and natural heritage around the world considered to be of outstanding value to humanity. This is embodied in an international treaty called the Convention concerning the Protection of the World Cultural and Natural Heritage, adopted by UNESCO in 1972. India has 38 world heritage sites that include 30 Cultural properties, 7 Natural properties and 1 mixed site. Watch Video At: https://youtu.be/lOzxUVCCSug 1/11 United Nations Educational, Scientific and Cultural Organization It was founded in 1945 to develop the “intellectual and moral solidarity of mankind” as a means of building lasting peace. It is located in Paris, France. Cultural Sites in India (30) Agra Fort (1983) 16th-century Mughal monument Fortress of red sandstone It comprises the Jahangir Palace and the Khas Mahal, built by Shah Jahan; audience halls, such as the Diwan-i-Khas Ajanta Caves (1983) Archaeological Site of Nalanda Mahavihara at Nalanda, Bihar (2016) Remains of a monastic and scholastic institution dating from the 3 rd century BCE to the 13th century CE. Includes stupas, shrines, viharas (residential and educational buildings) and important artworks in stucco, stone and metal. Considered to be the most ancient university of the Indian Subcontinent.
    [Show full text]
  • Planning Region: Characteristics, Economic Regionalization and Identification of Indian Planning Regions (V
    UG, 4th Semester (H) CC-09-TH- Regional Planning and Development 3. Planning region: Characteristics, economic regionalization and identification of Indian Planning Regions (V. Nath, P. Sengupta & TCPO) Planning region: A planning region is a segment of territory (space) over which economic decisions apply. The term 'planning' in the present context means taking decisions to implement them in order to attain economic development. Planning regions may be administrative or political regions such as state, district or the block because such regions are better in management and collecting statistical data. For proper implementation and realization of plan objectives, a planning region should have fairly homogeneous economic, to zoographical and socio-cultural structure. It should be large enough to contain a range of resources provide it economic viability. It should also internally cohesive. Its resource endowment should be that a satisfactory level of product combination consumption and exchange is feasible. It should have some nodal points to regulate the flows. According to Keeble-“Planning Region is an area that is large enough to enable substantial changes in the distribution of population and employment to take place within this boundaries, yet which is small enough for its planning problem to be viewed as a whole”. According to Klaassen- “A planning region must be large enough to take investment decisions of an economic size, must be able to supply its own industry with the necessary labour, should have a homogeneous economic structure, contain at least one growth point and have a common approach to and awareness of its problems”. As a whole- A planning region is self created living organism having a life line.
    [Show full text]
  • Buceros 2.Pdf
    Editorial In Vol.3, No.3 of Buceros, we indexed the papers on wetlands of Volumes 1 to 40 from the Journal of the Bombay Natural History Society, now in its ninety-seventh volume. This issue is a continuation of the exercise, and covers Volumes 41 to 70. We are in the process of completing the indexing of the rest of the volumes (till Volume 95) in a forthcoming issue. For information on the history of the Journal, kindly refer to Vol.3, No.3 of Buceros. Vol. 5, No. 1, (2000) BIBLIOGRAPHY OF PAPERS ON WETLANDS FROM THE JOURNAL OF THE BOMBAY NATURAL HISTORY SOCIETY (VOLUMES 41-70) BIBLIOGRAPHY OF PAPERS ON WETLANDS FROM THE JOURNAL OF THE BOMBAY NATURAL HISTORY SOCIETY: VOLUMES 41-70 The references on wetland (inland, estuarine or marine) related ∗ publications in volumes 41-70 of the Journal of the Bombay Natural History Society are listed below under various subject heads. References on waterbird related papers are not included in this bibliography, as they will be brought out as a separate publication. At the end of each reference, there is an additional entry of the site or sites (if any) on which the paper is based. The references under each head are arranged alphabetically and numbered in descending order. After the references under each head, there is a list of names of places (in alphabetical order), with numbers following them. These are the serial numbers of the reference in the bibliography mentioned earlier. From these numbers, one can refer to the papers that pertain to a region, state or site.
    [Show full text]
  • LIST of INDIAN CITIES on RIVERS (India)
    List of important cities on river (India) The following is a list of the cities in India through which major rivers flow. S.No. City River State 1 Gangakhed Godavari Maharashtra 2 Agra Yamuna Uttar Pradesh 3 Ahmedabad Sabarmati Gujarat 4 At the confluence of Ganga, Yamuna and Allahabad Uttar Pradesh Saraswati 5 Ayodhya Sarayu Uttar Pradesh 6 Badrinath Alaknanda Uttarakhand 7 Banki Mahanadi Odisha 8 Cuttack Mahanadi Odisha 9 Baranagar Ganges West Bengal 10 Brahmapur Rushikulya Odisha 11 Chhatrapur Rushikulya Odisha 12 Bhagalpur Ganges Bihar 13 Kolkata Hooghly West Bengal 14 Cuttack Mahanadi Odisha 15 New Delhi Yamuna Delhi 16 Dibrugarh Brahmaputra Assam 17 Deesa Banas Gujarat 18 Ferozpur Sutlej Punjab 19 Guwahati Brahmaputra Assam 20 Haridwar Ganges Uttarakhand 21 Hyderabad Musi Telangana 22 Jabalpur Narmada Madhya Pradesh 23 Kanpur Ganges Uttar Pradesh 24 Kota Chambal Rajasthan 25 Jammu Tawi Jammu & Kashmir 26 Jaunpur Gomti Uttar Pradesh 27 Patna Ganges Bihar 28 Rajahmundry Godavari Andhra Pradesh 29 Srinagar Jhelum Jammu & Kashmir 30 Surat Tapi Gujarat 31 Varanasi Ganges Uttar Pradesh 32 Vijayawada Krishna Andhra Pradesh 33 Vadodara Vishwamitri Gujarat 1 Source – Wikipedia S.No. City River State 34 Mathura Yamuna Uttar Pradesh 35 Modasa Mazum Gujarat 36 Mirzapur Ganga Uttar Pradesh 37 Morbi Machchu Gujarat 38 Auraiya Yamuna Uttar Pradesh 39 Etawah Yamuna Uttar Pradesh 40 Bangalore Vrishabhavathi Karnataka 41 Farrukhabad Ganges Uttar Pradesh 42 Rangpo Teesta Sikkim 43 Rajkot Aji Gujarat 44 Gaya Falgu (Neeranjana) Bihar 45 Fatehgarh Ganges
    [Show full text]
  • Western Ghats & Sri Lanka Biodiversity Hotspot
    Ecosystem Profile WESTERN GHATS & SRI LANKA BIODIVERSITY HOTSPOT WESTERN GHATS REGION FINAL VERSION MAY 2007 Prepared by: Kamal S. Bawa, Arundhati Das and Jagdish Krishnaswamy (Ashoka Trust for Research in Ecology & the Environment - ATREE) K. Ullas Karanth, N. Samba Kumar and Madhu Rao (Wildlife Conservation Society) in collaboration with: Praveen Bhargav, Wildlife First K.N. Ganeshaiah, University of Agricultural Sciences Srinivas V., Foundation for Ecological Research, Advocacy and Learning incorporating contributions from: Narayani Barve, ATREE Sham Davande, ATREE Balanchandra Hegde, Sahyadri Wildlife and Forest Conservation Trust N.M. Ishwar, Wildlife Institute of India Zafar-ul Islam, Indian Bird Conservation Network Niren Jain, Kudremukh Wildlife Foundation Jayant Kulkarni, Envirosearch S. Lele, Centre for Interdisciplinary Studies in Environment & Development M.D. Madhusudan, Nature Conservation Foundation Nandita Mahadev, University of Agricultural Sciences Kiran M.C., ATREE Prachi Mehta, Envirosearch Divya Mudappa, Nature Conservation Foundation Seema Purshothaman, ATREE Roopali Raghavan, ATREE T. R. Shankar Raman, Nature Conservation Foundation Sharmishta Sarkar, ATREE Mohammed Irfan Ullah, ATREE and with the technical support of: Conservation International-Center for Applied Biodiversity Science Assisted by the following experts and contributors: Rauf Ali Gladwin Joseph Uma Shaanker Rene Borges R. Kannan B. Siddharthan Jake Brunner Ajith Kumar C.S. Silori ii Milind Bunyan M.S.R. Murthy Mewa Singh Ravi Chellam Venkat Narayana H. Sudarshan B.A. Daniel T.S. Nayar R. Sukumar Ranjit Daniels Rohan Pethiyagoda R. Vasudeva Soubadra Devy Narendra Prasad K. Vasudevan P. Dharma Rajan M.K. Prasad Muthu Velautham P.S. Easa Asad Rahmani Arun Venkatraman Madhav Gadgil S.N. Rai Siddharth Yadav T. Ganesh Pratim Roy Santosh George P.S.
    [Show full text]
  • B. Pre-Feasibility Report (Extracts of DPR) 1
    Water Re-circulation and Environmental Sustainability Pre-feasibility Report Project for Jog Falls, Shivamogga District Karnataka B. Pre-feasibility report (extracts of DPR) 1. Executive Summary x The proposed project is a water recirculation project by pumping 400 cusecs of water in the summer months (8 months, November - June) from the storage pond near MGHE to the weir proposed to be constructed in the upstream of Sita Katte bridge and use the reversible flow in the same pipeline for generating power for 4 months (July-October). x The water from the weir will be released to the falls in the summer months (for about 8 months from November to June). This pumped water, drops over the falls for a maximum of about 8 hours each day for 8 months. The discharged water at the upstream will have a natural distribution through cascades before the drop in the falls. x In rainy season (June to October), the same pipeline would be used to generate power. The pump house/power house will be located in the area opposite side of Mahatma Gandhi Hydro Electric (MGHE) power house adjacent to Ambuthirtha reservoir/MGHE powerhouse tail water pond. The reservoir has sufficient storage capacity. x The water is pumped directly from the downstream storage pond through two pipes of 1600 mm diameter, which passes through a tunnel near Bombay guest house. The total distance to be covered from the pump house to the foot of the anicut near the Sita Katte bridge shall be approximately 3210 m. x The power house with two generators will be with an installed capacity for generation of power of 16.61 MW each in monsoon months (totalling to 47.84 million units) and the power consumed in non-monsoon months (pump mode) would be 24.74 MW each amounting to 47.80 Million units.
    [Show full text]
  • Sporadic Prevalence of DF/DHF in the Nilgiri and Cardamom
    Sporadic Prevalence of DF/DHF in the Nilgiri and Cardamom Hills of Western Ghats in South India: Is it a Seeding from Sylvatic Dengue Cycle – A Hypothesis Nand Lal Kalra* and Chusak Prasittisuk**# *A-38, Swasthaya Vihar, Vikas Marg, Delhi – 110 092 **Regional Office for South-East Asia, World Health Organization, New Delhi, India Abstract The Western Ghats of south India, encompassing the Nilgiri and Cardamom hills, are the wettest region of the country. Hills rising upto 3,000 metres receive over 200 cm of rainfall from both the south-west monsoon (June to September) and north-eastern monsoon (October to January). The eastern slopes of the Nilgiri Hills (200-500 metres) are bounded by Coimbatore and Erode districts of Tamil Nadu; whereas the western slopes of the Nilgiri and Cardamom hills are in the state of Kerala. The countryside has rich forests of teak and sandalwood, interspersed by groves of coconut, rubber, pepper, cardamom and banana plantations. Apart from the rich flora, monkeys Macaca( radiata) maintain a strong association in orchards with humans competing for food. The emergence of DF/DHF in this hilly region is a recent occurrence. An epidemiological team from the National Institute of Communicable Diseases (NICD) investigated the first-ever reported outbreak in Coimbatore in 1998. In all, 20 serological positive (IgM) cases were recorded by the city corporation. Five cases came from urban towns and 15 cases from rural areas of the two districts of Coimbatore and Erode. Rural cases were scattered in distantly located villages. Pyramid characterization and clustering of cases was conspicuously absent.
    [Show full text]
  • The High Deccan Duricrusts of India and Their Significance for the 'Laterite
    The High Deccan duricrusts of India and their significance for the ‘laterite’ issue Cliff D Ollier1 and Hetu C Sheth2,∗ 1School of Earth and Geographical Sciences, The University of Western Australia, Nedlands, W.A. 6009, Australia. 2Department of Earth Sciences, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400 076, India. ∗e-mail: [email protected] In the Deccan region of western India ferricrete duricrusts, usually described as laterites, cap some basalt summits east of the Western Ghats escarpment, basalts of the low-lying Konkan Plain to its west, as well as some sizeable isolated basalt plateaus rising from the Plain. The duricrusts are iron-cemented saprolite with vermiform hollows, but apart from that have little in common with the common descriptions of laterite. The classical laterite profile is not present. In particular there are no pisolitic concretions, no or minimal development of con- cretionary crust, and the pallid zone, commonly assumed to be typical of laterites, is absent. A relatively thin, non-indurated saprolite usually lies between the duricrust and fresh basalt. The duricrust resembles the classical laterite of Angadippuram in Kerala (southwestern India), but is much harder. The High Deccan duricrusts capping the basalt summits in the Western Ghats have been interpreted as residuals from a continuous (but now largely destroyed) laterite blan- ket that represents in situ transformation of the uppermost lavas, and thereby as marking the original top of the lava pile. But the unusual pattern of the duricrusts on the map and other evidence suggest instead that the duricrusts formed along a palaeoriver system, and are now in inverted relief.
    [Show full text]