Quick viewing(Text Mode)

Chrysiptera: Pomacentridae) from Coral Reefs of the Solomon Islands

Chrysiptera: Pomacentridae) from Coral Reefs of the Solomon Islands

A new of (: ) from reefs of the Solomon Islands

GERALD R. ALLEN Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Perth, Western 6986 E-mail: [email protected]

MARK V. ERDMANN Conservation International Marine Program, Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia California Academy of Sciences, Golden Gate Park, San Francisco, CA 94118, USA Email: [email protected]

N.K. DITA CAHYANI Indonesia Biodiversity Research Centre, Udayana University, Denpasar 80226, Indonesia E-mail: [email protected]

Abstract

A sixth member of the Chrysiptera oxycephala group of Pomacentridae, Chrysiptera burtjonesi n. sp., is described on the basis of 24 specimens, 20.5–48.2 mm SL, collected at the Solomon Islands in the western Pacific . It differs from other members of the group, including C. ellenae (Raja Ampat Islands, West Papua Province in Indonesia), C. maurineae (Cenderawasih Bay, West Papua Province), C. oxycephala (central Indonesia, Philippines, and Palau), C. papuensis (northeastern Papua New Guinea), and C. sinclairi (Bismarck Archipelago and islands off northeastern Papua New Guinea), on the basis of its distinctive color pattern and a 6.9% divergence in the sequence of the mitochondrial control region from its closest relative (C. maurineae). Adults are primarily grayish brown to greenish except bright yellow on the ventralmost head and body, including the adjacent pelvic and anal fins. Juveniles are mostly neon blue to dark blue with bright yellow pelvic and anal fins. In addition, it is the only species besides C. sinclairi that usually lacks embedded scales on the preorbital and suborbital bones.

Key words: fishes, , systematics, ichthyology, Indo-Pacific Ocean, mitochondrial DNA

Citation: Allen, G.R., Erdmann, M.V. & Cahyani, D.N.K. (2017) A new species of damselfish (Chrysiptera: Pomacentridae) from coral reefs of the Solomon Islands. Journal of the Ocean Science Foundation, 28, 10–21. doi: http://dx.doi.org/10.5281/zenodo.891041 urn:lsid:zoobank.org:pub:0A1F8ACC-89D6-4048-8852-B6650DAFD957 Date of publication of this version of record: 14 September 2017 10 Journal of the Ocean Science Foundation, 28, 10–21 (2017) Introduction

The phenomenon of cryptic speciation is well-documented among coral-reef-dwelling of the family Pomacentridae. Typically, a species that was formerly considered to be widely distributed, either across the Indo-Pacific region or in a more localized area such as the East Indian Archipelago, is found to consist of two or more closely related species. The discovery of divergent mtDNA lineages can instigate a closer examination of the markings, meristics, and morphology which indicate new species if sufficiently distinctive (Allenet al. 2008, Drew et al. 2008, Drew & Barber 2009, Allen & Drew 2012, Liu et al. 2012, Liu et al. 2014, Allen et al. 2015a, 2015b, Victor 2015). The development of cryptic speciation, especially geographic complexes of parapatric lineages, appears to be correlated with reduced dispersal, either by benthic eggs in conjunction with a short larval stage or extreme distances between populations (Victor 2015). Allen et al. (2015a) confirmed cryptic speciation in one complex of the pomacentrid Chrysiptera Swainson, 1839. They divided Chrysiptera oxycephala (Bleeker, 1877) of the western Pacific into five species, i.e. nominal C. oxycephala, the previously described C. sinclairi Allen, 1987, and three new species, C. ellenae, C. maurineae, and C. papuensis. The evolution of the C. oxycephala species complex appears to be associated with the zone of tectonic activity along the boundary of the Pacific and Australian plates: a highly active area of subduction with associated vulcanism and migrating island arcs (Hill & Hall 2003, Polhemus 2007). The species other than C. oxycephala are endemic to portions of the dispersal corridor that Allen et al. (2015a) referred to as the Solomons-North Sulawesi conduit (Fig. 1). The conduit area appears to have promoted a wide dispersal of ancestral lineages, but subsequent local isolation events have facilitated the speciation process, not only in the C. oxycephala group, but in numerous other fish lineages. Indeed, there are at least 94 species (G.R. Allen, unpub. data), which are endemic to portions of the Solomons-North Sulawesi conduit. The present paper describes a sixth member of the C. oxycephala group from the Solomon Islands. Allen et al. (2015a) included underwater photographs of both juvenile and adult stages, concluding it was likely an undescribed species based on its unusual color pattern. However, the lack of specimens and tissue samples for DNA analysis prevented a determination of its taxonomic status. Fortunately, the first two authors had a subsequent opportunity to obtain the necessary specimens during a visit to the Solomon Islands during October 2016. Morphological examination of the new material confirmed our initial suspicion that it represents the sixth member of the C. oxycephala grouping and a genetic analysis confirms its close relationship to other members of the complex.

Figure 1. Map of the eastern portion of the East Indian Archipelago with distributions of the C. oxycephala species complex. 11 Materials and Methods

Type specimens are deposited at the National Museum of Natural History, Washington, D.C. (USNM) and Western Australian Museum, Perth (WAM). Lengths of specimens are given as standard length (SL) measured from the anterior end of the upper lip to the base of the caudal fin (posterior edge of hypural plate); head length (HL) is measured from the same anterior point to the posterior edge of the opercle flap; body depth is the maximum depth taken vertically between the belly and base of the dorsal-fin spines; body width is the maximum width just posterior to the gill opening; snout length is measured from the anterior end of the upper lip to the anterior edge of the eye; orbit diameter is the horizontal fleshy diameter, and interorbital width the least fleshy width; depth of the preopercle-suborbital is the greatest depth measured at the “bulge” near the level of the posterior extent of the maxilla; upper-jaw length is taken from the front of the upper lip to the posterior end of the maxilla; caudal-peduncle depth is the least depth, and caudal- peduncle length is the horizontal distance between verticals at the rear base of the anal fin and the caudal-fin base; lengths of fin spines and rays are measured to their extreme bases (i.e. not from the point where the ray or spine emerges from the basal scaly sheath); caudal-fin length is the horizontal length from the posterior edge of the hypural plate to a vertical at the tip of the longest ray; caudal concavity is the horizontal distance between verticals at the tips of the shortest and longest rays; pectoral-fin length is the length of the longest ray; pelvic-fin length is measured from the base of the pelvic-fin spine to the filamentous tip of the longest soft ray; pectoral-fin ray counts include the small, splint-like, uppermost rudimentary ray; only the tube-bearing anterior lateral-line scales are counted, a separate count is given for the deeply pitted scales occurring in a continuous series midlaterally on the caudal peduncle; the decimal figure “.5” appearing in the scale row count above the lateral line refers to a small truncated scale at the base of the dorsal fin; preorbital+suborbital scales include all scales on the combined preorbital and suborbital bones, these are frequently embedded and difficult to discern without probing with a dissecting needle; circumpeduncular scales were counted in a vertical “zigzag” row around the caudal peduncle, immediately anterior to the caudal fin base; gill-raker counts include all rudiments and are presented as separate counts for the upper and lower limbs, as well as a combined count; the last fin-ray element of the dorsal and anal fins is usually branched near the base and is counted as a single ray. Counts and proportions appearing in parentheses apply to the paratypes when different from the holotype. Proportional measurements for the new species, expressed as percentage of the standard length, are provided in Table 1. A summary of fin-ray and lateral-line scale counts for members of the C. oxycephala species complex is presented in Table 2. Genetic sequence data for the 5 species in the C. oxycephala group, as well as for outgroup species C. giti, C. rollandi, and C. hemicyanea (details in Allen et al. [2015a]), were utilized in the present study for comparison with 6 specimens of the new species. The specimens were fixed in 95% EtOH and stored at room temperature until tissues were processed for DNA extraction. Mitochondrial DNA was extracted using a 10% Chelex solution (Walsh et al. 1991). A portion of the control region was amplified via PCR using the primers CRE and CRK (Lee et al. 1995). The PCR reaction was carried out in 25 µL volumes, using 1 µL of template. Each reaction included 4 µL 10x PCR buffer (Applied Biosystems), 2.5 µL 10 mM dNTPs, 1.25 µL of each primer at 10 mM, 2 µL 25

mM MgCl2 solution, 0.125 µL AmplyTaq Gold™ (Applied Biosystems), and 14.5 µL ddH2O. The thermocycling profile included an initial denaturation of 94°C for 3 min, 35 cycles of 94°C for 30s, 53°C for 30s, and 72°C for 60s, with a final extension of 72° C for 2 min. The PCR reactions were checked on 1% agarose gels stained with ethidium bromide. The PCR product was sequenced at the UC Berkeley sequencing facility. Forward and reverse sequences were proofread using MEGA7 then aligned using ClustalW (Kumar et al. 2016). Two methods were used to generate phylogenetic reconstructions: neighbor joining and maximum likelihood using MEGA7. The NJ analysis was conducted in MEGA7 with the Kimura 2-Parameter model using 1000 bootstrap replicates to assess clade support. Maximum likelihood analysis assessed the model of best fit for the nucleotide substitutions. The Bayesian Information Criterion (BIC) tool ranked the Tamura 3-parameter (T92) model with a discrete Gamma distribution (T92+G) as having the best fit to the data. Bootstrap support was determined using 1000 bootstrap replicates in MEGA7. Analysis of polymorphic sites was conducted by DNAsp (Librado & Rozas 2009).

12 Figure 2. Chrysiptera burtjonesi, Solomon Islands, underwater photographs: A) juvenile, approx. 12 mm SL, B) juvenile, approx. 20 mm SL, C) subadult, approx. 35 mm SL, D) adult, approx. 45 mm SL (G.R. Allen).

Chrysiptera burtjonesi, n. sp.

Burt’s Damselfish urn:lsid:zoobank.org:act:F3C3A451-0A98-4B73-BB38-B3A591246D6C

Figures 2–4, 5A & 6A; Tables 1–4.

Chrysiptera oxycephala [non Bleeker] Allen & Erdmann 2012: 593 (Solomon Islands, upper left photograph only); Allen et al. 2015a: 71, Fig. 9 (Solomon Islands).

Holotype. WAM P.34622-001, 47.7 mm SL, Solomon Islands, Florida Group, Nggela Island, Avi Avi, 09° 07.308’ S, 160° 12.832’ E, 2–8 m, spear, G.R. Allen, 11 October 2016. Paratypes. USNM 432549, 5 specimens, 36.0–47.6 mm SL, collected with holotype; WAM P.25136-001, 2 specimens, 23.7–28.8 mm SL, Solomon Islands, off Malaita Island, Alite Reef, 08° 52.131’ S, 160° 36.415’ E, 3–12 m, clove oil and spear, G.R. Allen, J.E. Randall, and B. Goldman, 25 July 1973; WAM P.34618-001, 12 specimens, 20.5–40.6 mm SL, Solomon Islands, Russell Group, Yandina Island, 09° 05.030’ S, 159° 12.348’ E, 2–5 m, clove oil, G. Allen & C. Erdmann, 5 October 2016; WAM P.34622-002, 4 specimens, 44.6–48.2 mm SL, collected with holotype. Diagnosis. A species of the pomacentrid genus Chrysiptera with the following combination of characters: dorsal-fin rays XIII,11 (rarely 10 or 12); anal-fin rays II,12 (rarely 13); pectoral-fin rays 15 (14–16); gill rakers on first branchial arch 9–11+20–22, total gill rakers 29–32; tubed lateral-line scales 13–16 (usually 14–15); 13 Figure 3. Chrysiptera burtjonesi, underwater photograph, approx. 40 mm SL, Russell Group, Solomon Islands (G.R. Allen). preorbital+suborbital scales usually absent, occasionally 1–3 embedded scales present; color of adult overall grayish brown to greenish (sometimes with neon blue/green transverse streak on each scale) with translucent to pale greenish fins, except bright yellow ventrally on head, body, and adjacent anal and pelvic fins, a broad yellow band from base of first few dorsal-fin spines to outer edge of last dorsal-fin spine; juvenile neon blue on head, most of body (above diagonal line from pelvic-fin base to base of uppermost caudal-fin ray), and dorsal fin, remainder of body and adjacent fins bright yellow. Description. Dorsal-fin rays XIII,11 (except one 10 and one 12); anal-fin rays II,12 (two with 13); pectoral- fin rays 15 (14–16, usually 15); branched caudal rays 13; principal caudal rays 15; upper procurrent caudal rays 6 (4–6); lower procurrent caudal rays 5 (4–5); gill rakers on first branchial arch 10+21 (9–11+20–22), total gill rakers 31 (30–32), pseudobranchs 14 (12–14); tubed lateral-line scales 15 (13–16); scales in lateral series from upper rear margin of opercle to base of caudal fin 27; scales above lateral line to base of middle dorsal-fin spines 1.5; scales below lateral line to anus 9; preorbital+suborbital scales usually absent, but 1–3 embedded scales present in 6 paratypes; total vertebrae 26 (25–26). Body depth 2.0 (1.9–2.0) in SL; maximum body width 2.7 (2.7–3.1) in depth; HL contained 3.2 (3.0–3.2) in SL; snout 3.5 (3.0–3.8), eye 3.3 (2.7–3.2), interorbital width 3.3 (3.1–3.5), least depth of caudal peduncle 1.9 (1.9–2.2), length of caudal peduncle 2.1 (2.1–2.7), all in HL. Mouth terminal, oblique, jaws forming an angle of about 35–40° to horizontal axis of head and body; maxillary reaching to vertical through anterior edge of eye; teeth of jaws biserial, those of outer row more or less incisiform with flattened tips, upper jaw with about 44 (44–52) teeth and lower jaw with about 46 (38–48) teeth in outer rows, largest about one-third diameter of pupil in height; secondary row of slender buttress teeth behind those of outer row in the spaces between them; single nasal opening on each side of snout; nostril with low fleshy rim; preorbital and suborbital relatively narrow, greatest depth of suborbital 34.5% (23.6%–37.5%) of eye diameter, ventral margin smooth; margin of preopercle smooth, without any denticulations; margin of opercular series smooth except blunt, flattened spine on upper portion near angle. Scales of head and body finely ctenoid; snout tip, lips, chin, and isthmus naked; pair of primary transverse scale rows on cheek with row of smaller scales along lower margin; preorbital and suborbital naked in holotype and most paratypes, occasionally with 1–3 embedded scales (usually on one side only); dorsal and anal fins with a basal scaly sheath; basal half of caudal fin covered by scales; pectoral fins covered by scales only at base; axillary scale cluster between base of pelvic fins 52.3% (46.2%–59.7%) length of pelvic-fin spine. 14 Tubed lateral-line scales ending below posterior spines of dorsal fin; 3 (2–4) pits or pores present on scales immediately posterior to last tubed scale; continuous series of 7 (7–8) pored or pitted scales mid-laterally on caudal peduncle to caudal-fin base. Origin of dorsal fin at level of third tubed scale of lateral line; spines of dorsal fin gradually increasing in length to seventh spine, remaining spines slightly decreasing in length; membrane between spines deeply incised; first dorsal-fin spine 4.1 (3.5–4.5), seventh dorsal-fin spine 1.9 (1.6–2.0), last dorsal-fin spine 1.8 (1.6–2.1), longest soft dorsal-fin ray 1.0 (1.0–1.3), all in HL; length of dorsal-fin base 1.7 (1.6–1.8) in SL; first anal-fin spine 3.9 (3.3–3.9), second anal-fin spine 1.6 (1.5–1.9), longest soft anal-fin ray 1.0 (0.9–1.2), all in HL; base of anal fin 2.1 (2.0–2.3) in base of dorsal fin; caudal fin emarginate with rounded lobes, its length 3.1 (2.5–3.3) in SL; pectoral-fin length 3.5 (3.0–3.3) in SL; filamentous tips of pelvic fins reaching well beyond origin of anal fin, longest ray 2.8 (2.5–3.3) in SL. Color of adult in life. (Figs. 2D, 3 & 5A) Overall grayish brown with translucent to pale greenish fins, except bright yellow ventrally on head, body, and adjacent anal and pelvic fins, and a broad yellow band from base of first few dorsal spines to outer edge of last dorsal-fin spine; narrow blue margin on soft dorsal fin, upper and lower edges of caudal fin, anal fin, and pelvic spine; usually a few neon-blue spots on anal fin; urogenital papilla blackish. Adults from Russell Group (Fig. 3) similar, but more ornate, showing bright neon blue/green streak along each scale margin on body and similar-colored streaks, spots, and lines on cheek, operculum, and breast. Color of juvenile in life. Smallest individuals of about 10–20 mm SL (Figs. 2A & 6A) neon blue to dark blue on head, most of body (above diagonal line from pelvic-fin base to base of uppermost caudal-fin ray), and dorsal fin; remainder of body and adjacent fins bright yellow; blackish stripe across middle of neon-blue iris, joining charcoal-gray stripe from front of eye to snout tip and narrower charcoal-gray stripe just below; lips neon blue except where interrupted by dark snout stripes. Larger juveniles and subadults to about 35 mm SL (Figs. 2B & C) generally blue to grayish green, frequently with narrow, neon-blue streak on each scale margin of body and cheek scales; dorsal and caudal fins translucent bluish to greenish; anal and pelvic fins bright yellow. Color in alcohol. (Fig. 4) Generally brown, paler and slightly yellowish on ventral regions of body including breast and abdomen; fins semi-translucent gray; urogenital papilla blackish. Etymology. This species is named in honor of photographer and underwater guide par excellence Burt Jones of Sequim, Washington, USA. Burt and his partner Maurine Shimlock were pioneers for the promotion of dive tourism at the Solomon Islands and, more recently, have been instrumental in the tremendous popularity of the West Papuan region by means of their excellent underwater guidebook to the area and creation of the highly informative Bird’s Head Seascape website (birdsheadseascape.com).

Figure 4. Chrysiptera burtjonesi, preserved holotype (WAM P.34622–001), 47.7 mm SL, Florida Group, Solomon Islands (G.R. Allen). 15 TABLE 1

Proportional measurements of selected type specimens of Chrysiptera burtjonesi, n. sp. as percentages of the standard length

holotype paratypes

WAM WAM USNM WAM WAM WAM USNM WAM P.34622 P.34622 432549 P.34622 P.34622 P.34618 432549 P.34618

Standard length (mm) 47.7 48.2 47.6 45.3 44.6 40.6 36.0 33.5 Body depth 50.1 53.8 52.5 51.9 54.0 51.0 50.4 53.2 Body width 18.3 17.7 16.8 17.7 19.8 18.1 16.3 18.6 Head length 31.4 32.0 32.3 31.2 33.8 31.5 32.6 33.2 Snout length 8.7 8.9 9.0 9.2 9.0 8.3 8.7 8.8 Orbit diameter 9.4 9.9 10.5 10.5 10.7 10.2 12.0 11.6 Interorbital width 9.4 10.1 10.2 9.9 10.1 9.6 10.6 9.6 Caudal-peduncle depth 16.1 16.3 15.8 15.7 16.4 15.9 16.1 16.1 Caudal-peduncle length 14.7 15.1 14.2 14.7 15.3 14.2 13.2 13.4 Upper jaw length 9.7 10.2 10.2 10.7 10.3 10.6 10.2 10.7 Predorsal length 36.8 38.8 39.7 40.3 40.9 38.8 39.9 40.8 Preanal length 63.8 62.2 64.3 63.3 64.2 64.0 63.9 64.2 Prepelvic length 37.8 39.2 38.6 39.3 40.6 38.4 40.3 40.7 Length dorsal-fin base 60.0 61.6 61.5 60.7 61.5 62.1 59.7 62.6 Length anal-fin base 28.1 27.9 26.9 27.1 27.7 27.8 28.2 27.9 Length pectoral fin 28.3 33.2 31.9 32.6 31.2 30.1 31.8 32.2 Length pelvic fin 35.5 34.8 33.3 35.9 35.3 39.6 35.8 35.3 Length pelvic-fin spine 16.0 18.9 19.0 19.0 18.7 18.0 19.2 18.5 Length first dorsal spine 7.5 7.9 7.2 8.4 8.5 7.7 9.2 7.6 Length second dorsal spine 16.2 17.6 17.3 18.3 17.9 18.1 18.4 18.5 Length seventh dorsal spine 16.6 19.9 16.2 18.2 17.3 17.4 17.5 16.9 Length longest dorsal ray 29.3 27.5 26.6 27.4 29.1 27.0 27.9 29.2 Length first anal spine 7.9 8.7 11.0* 8.7 9.1 8.2 9.9 8.7 Length second anal spine 18.8 18.3 20.2 20.9 18.0 18.5 20.7 20.0 Length longest anal ray 32.2 28.5 27.2 28.8 28.3 28.9 27.3 31.1 Length caudal fin 32.6 32.4 30.2 30.0 30.8 32.1 31.6 36.1 Caudal concavity 7.0 8.5 7.8 7.6 8.9 7.4 8.9 10.1 * damaged spine 16 Figure 5. Comparison of adult color patterns of the C. oxycephala species complex, approx. 45–50 mm SL: A) C. burtjonesi, Solomon Islands, B) C. ellenae, Raja Ampat Islands, Indonesia, C) C. maurineae, Cenderawasih Bay, Indonesia, D) C. oxycephala, North Sulawesi, Indonesia, E) C. papuensis, Milne Bay, Papua New Guinea, F) C. sinclairi, Hermit Islands, Papua New Guinea (G.R. Allen). Distribution. The new species is known only from the Solomon Islands. It was collected or observed by the authors at the following islands and reefs: Isabel, Choiseul, Makira, Malaita and nearby Alite Reef, Shortland Islands, New Georgia Group, Russell Group, and the Florida Group. Comparisons. Chrysiptera burtjonesi is most readily distinguished from other members of the C. oxycephala species complex on the basis of its distinctive color pattern, which is primarily grayish brown to greenish in adults and neon blue to dark blue in juveniles with the highly contrasted yellow coloration restricted to the ventralmost head and/or side of body, including the adjacent pelvic and anal fins. The adult and juvenile color patterns are compared with that of the other members of the complex in Figs. 5 and 6. The adult patterns of C. oxycephala (Fig. 5D) and C. papuensis (Fig. 5E) are most similar, but both these species feature 1–3 small, vertically aligned, bluish spots on most of the scales of the cheek, opercle, and body, as well as a much-reduced grayish-brown area in comparison with C. burtjonesi. The juvenile stages of C. burtjonesi are especially distinctive compared to

Figure 6. Comparison of juvenile color patterns of the C. oxycephala species complex, approx. 10–20 mm SL: A) C. burtjonesi, Solomon Islands, B) C. ellenae, Raja Ampat Islands, Indonesia, C) C. maurineae, Cenderawasih Bay, Indonesia, D) C. oxycephala, North Sulawesi, Indonesia, E) C. papuensis, Milne Bay, Papua New Guinea, F) C. sinclairi, Manus Island, Papua New Guinea (G.R. Allen). 17 TABLE 2 Color features of the Chrysiptera oxycephala species complex

Species Adult ground color Juvenile Special features C. burtjonesi gray-brown or greenish mostly blue mainly blue to brownish, yellow ventrally C. ellenae pale greenish-yellow entirely light blue juvenile entirely light blue C. maurineae bright yellow blue and yellow juvenile: blue streak on dorsal caudal peduncle C. oxycephala greenish yellow blue and yellow adult: bright yellow only thorax & abdomen adult: brown anterodorsally, bright yellow C. papuensis brown and bright yellow blue and yellow posteroventrally absence of yellow in all stages, C. sinclairi blue with brown forehead entirely blue vertical bars prominent on scales

other members of the group, which either have considerably more yellow on the body or lack yellow entirely. The salient color pattern features of the C. oxycephala species complex are further compared in Table 2. Counts for fin rays and tubed lateral-line scales (Table 3) indicate that C. burtjonesi is generally similar to other members of the complex except for the frequency found in C. sinclairi of 10 & 11 dorsal-fin rays, 11 & 12 anal-fin rays, and 14 & 15 pectoral-fin rays. However, C. burtjonesi shares the distinction of seldom having embedded scales on the preorbital and suborbital portion of the circumorbital series with C. sinclairi (Table 3). TABLE 3 Frequency distribution of soft dorsal-fin, anal-fin, and pectoral-fin-ray counts and selected scale counts for members of the Chrysiptera oxycephala species complex

Preorbital+suborbital Species Soft dorsal-fin rays Soft anal-fin rays scales 10 11 12 11 12 13 range mean n C. burtjonesi 1 22 1 22 2 0–3 0.4 24 C. ellenae 2 28 2 1 31 0–14 5.5 32 C. maurineae 2 8 1 10 1 0–6 2.7 11 C. oxycephala 1 26 3 1 28 1 0-8 2.5 30 C. oxycephala (L) 14 1 15 2-10 5.5 15 C. papuensis 5 28 32 1 0–10 4.1 33 C. sinclairi 11 9 13 7 0–1 0.2 24

Species Pectoral-fin rays Lateral-line scales 12 13 14 15 16 11 12 13 14 15 16 C. burtjonesi 5 40 1 6 14 10 2 C. ellenae 32 1 9 15 5 2 C. maurineae 1 10 1 1 9 C. oxycephala 2 4 24 1 4 20 5 C. oxycephala (Lembeh) 3 12 3 11 1 C. papuensis 6 27 5 21 6 1 C. sinclairi 1 1 9 9 1 4 6 5 4 18 KT794325 C.oxycephala C.oxycephala (Palawan) (Palawan) KT794329 C.oxycephala C.oxycephala (Palau)(Palau) KT794330 KT794325 C.oxycephala C.oxycephala C.oxycephala C.oxycephala (Palau) (Palau) (Palawan) (Palawan) KT794328 KT794329 C.oxycephala C.oxycephala C.oxycephala C.oxycephala (Palau)(Palau) (Palau)(Palau) KT794327 KT794325 KT794330 C.oxycephala C.oxycephala C.oxycephala C .oxycephalaC.oxycephala C.oxycephala (Palau)(Palau) (Palawan) (Palawan) (Palau) (Palau) KT794326KT794326 KT794329 KT794328 C.oxycephalaC .oxycephala C.oxycephala C.oxycephala C.oxycephala C.oxycephala (Palau) (Palau)(Palau) (Palau)(Palau) KT794330 KT794337KT794337 KT794327 C.oxycephala C C.oxycephala.oxycephalaC.oxycephala C.oxycephala C.oxycephala (Palau) (Palau) (Bali)(Bali) (Palau)(Palau) KT794328 KT794335 KT794326KT794326 KT794325 C.oxycephala C.oxycephala C.oxycephala C C.oxycephala.oxycephalaC.oxycephala C.oxycephala C.oxycephala (Palau)(Palau) (Bali)(Bali) (Palau) (Palawan) (Palawan) KT794327 KT794336 KT794329 KT794337KT794337 C.oxycephala C.oxycephala C.oxycephala C.oxycephala C.oxycephala C C.oxycephalaC.oxycephala.oxycephala (Palau)(Palau) (Bali)(Bali) (Palau)(Palau) (Bali)(Bali) KT794321 KT794326KT794326 KT794330 C.oxycephala KT794335 CC.oxycephalaC.oxycephala.oxycephala C.oxycephala C.oxycephala C.oxycephala C .oxycephala(Palawan) (Palawan)(Palau) (Palau) (Palau) (Bali)(Bali) KT794322 KT794337KT794337 KT794328 C.oxycephalaKT794336 C.oxycephala C.oxycephalaC .oxycephalaC.oxycephala C.oxycephala C.oxycephala C .oxycephala(Palawan) (Palawan) (Bali)(Bali) (Palau)(Palau) (Bali)(Bali) 100/- KT794323 KT794335 KT794321KT794327 C.oxycephala C.oxycephala C.oxycephala C C.oxycephala C.oxycephalaC.oxycephala.oxycephala.oxycephala (Palawan)(Palawan) (Bali) (Bali) (Palawan) (Palau)(Palawan)(Palau) KT794324 KT794336 KT794326KT794322KT794326 C.oxycephala C .oxycephalaC.oxycephala CC.oxycephala C.oxycephalaC.oxycephala.oxycephala (Palawan)(Palawan) (Bali) (Bali) (Palawan)(Palau)(Palawan) 100/- KT794338 KT794321 C.peristiwadyi C KT794323.peristiwadyi KT794337KT794337 C.oxycephala C.oxycephala C.oxycephala C (Lembeh .oxycephala (Lembeh C.oxycephalaC.oxycephala (Palawan) (Palawan) Strait) Strait) (Palawan)(Palawan) (Bali)(Bali) 52/50 KT794340 KT794322 C.peristiwadyiC KT794324.peristiwadyi KT794335 C.oxycephala C.oxycephala C.oxycephala C C.oxycephala (Lembeh.oxycephala C(Lembeh.oxycephala (Palawan) (Palawan) Strait) Strait) (Palawan)(Palawan) (Bali)(Bali) 100/- KT794339 KT794338KT794323 C.peristiwadyi KT794336 C.peristiwadyiCC.oxycephala CC.peristiwadyi.peristiwadyi.oxycephala C.oxycephala C .oxycephala (Lembeh (Lembeh(Palawan) (Lembeh(Palawan)(Lembeh Strait) Strait) Strait)Strait) (Bali)(Bali) 52/50 KT794341 KT794340KT794324 KT794321 C.peristiwadyi C.peristiwadyi C.peristiwadyiC.oxycephala CC.peristiwadyi .oxycephala C.oxycephala C.oxycephala (Lembeh (Lembeh (Palawan)(Lembeh (Palawan)(Lembeh (Palawan) (Palawan) Strait) Strait) Strait) Strait) KT794338 KT794346 C.peristiwadyi KT794339CKT794322.peristiwadyi C.papuensis C.papuensis C.peristiwadyi C.oxycephala CC .peristiwadyi(Lembeh.oxycephala (Lembeh (PNG)(Tufi, PNG) Strait) Strait) (Lembeh(Palawan) (Palawan)(Lembeh Strait) Strait) 100/- 52/50 KT794348 KT794348KT794340 KT794341 KT794323 C.papuensis C.peristiwadyiCC.papuensis.peristiwadyi C.peristiwadyiC.oxycephala CC.peristiwadyi.oxycephala (PNG)(Tufi, (Lembeh (Lembeh PNG) (Lembeh (Palawan) (Palawan)Strait)(Lembeh Strait) Strait) Strait) KT794342 KT794339 KT794346 KT794324 C.papuensis CC.peristiwadyi C.papuensis.peristiwadyi C.papuensis C.papuensis C.oxycephala C .oxycephala (PNG)(Tufi, (Lembeh (Lembeh (PNG)(Tufi, PNG) (Palawan)PNG)(Palawan)Strait) Strait) KT794341KT794338KT794347KT794347 KT794348KT794348 C.peristiwadyi C.papuensisCC.peristiwadyi .papuensis C.papuensisC.papuensis (PNG)(Tufi, (Lembeh (Lembeh (PNG)(Tufi, PNG) PNG) Strait) Strait) 52/50 KT794343 KT794346 KT794340 KT794342 C.papuensisC.papuensis CC.papuensis.papuensis C.peristiwadyiC .peristiwadyiC.papuensis C.papuensis (PNG) (Tufi,(PNG)(Tufi, PNG)(LembehPNG) (PNG)(Lembeh(Tufi, PNG) Strait) Strait) KT794348KT794344KT794348 KT794339 KT794347KT794347 C.papuensisC.papuensis.papuensis C.peristiwadyi C C.papuensisC.peristiwadyi.papuensis (PNG)(Tufi,(Tufi, PNG) (PNG)(Tufi,(Lembeh (Lembeh PNG) Strait) Strait) KT794349KT794349 KT794342 KT794343 KT794341 C.papuensisC .papuensisC.papuensis C.papuensis C.papuensisC C.peristiwadyi .papuensisC.peristiwadyi (Tufi,(PNG) (PNG)(Tufi, PNG)(PNG)(Tufi, PNG) (Lembeh (Lembeh PNG) Strait) Strait) KT794316KT794316 KT794347KT794347 KT794344KT794346 C.papuensisC.papuensis C.papuensisC .papuensis C.papuensis C.papuensis (Milne(PNG) (PNG)(Tufi, (PNG)(Tufi, Bay, PNG) PNG)PNG) KT794343 KT794348 C.papuensis C.papuensis (PNG) (PNG) 54/- KT794343 KT794345KT794348 KT794349KT794349 CC.papuensis C.papuensis.papuensis CC.papuensisC.papuensis.papuensis (Tufi, (PNG)(Tufi, (Tufi,(Tufi,(PNG) PNG) PNG) PNG)PNG) KT794344 KT794350 KT794316KT794316 KT794342 C.papuensis CC.papuensis C.papuensis.papuensis C.papuensisC C.papuensis .papuensisC.papuensis (PNG)(Tufi, (PNG)(Tufi, (Milne (PNG)PNG) PNG)(PNG)(Tufi, Bay, PNG) PNG) KT794347 C.papuensis (PNG) 54/- KT794307 KT794349C.maurinae KT794349C.maurinae KT794345KT794347 C.papuensis C(Cendrawasih (Cendrawasih.papuensis C.papuensis C C.papuensis.papuensis (Tufi,(PNG) Bay)Bay) PNG) (PNG)(Tufi, (Tufi, PNG) PNG) KT794313KT794313 C.maurinaeC.maurinae KT794316KT794316 KT794343 KT794350 (Cendrawasih C.papuensisC.papuensis C.papuensis C C.papuensis C.papuensis.papuensis Bay) (Milne(PNG) (PNG)(Tufi, (PNG)Bay,(Tufi, PNG) PNG) KT794344 C.papuensisC.papuensis (PNG)(Tufi, PNG) 54/- KT794311 KT794307 C.maurinae C.maurinae KT794345 C.maurinae C.C .maurinae(Cendrawasih maurineae(Cendrawasih C.papuensis C.papuensis (Cendrawasih (Cendrawasih Bay)Bay) (PNG)(Tufi, PNG) Bay)Bay) KT794310 KT794313KT794313 C.maurinae C.maurinae KT794350 C.C.maurinaeC.maurinae KT794349maurineaeKT794349 (Cendrawasih (Cendrawasih C.papuensis C .papuensis (Cendrawasih(Cendrawasih C.papuensisC.papuensis Bay)Bay) (PNG)(Tufi, Bay)(Tufi,(PNG) PNG) PNG) KT794312 KT794307 KT794311 C.maurinae C .maurinaeC.maurinae C .maurinaeC.C.maurinae C .maurinaeKT794316maurineaeKT794316 (Cendrawasih (Cendrawasih (Cendrawasih (Cendrawasih (Cendrawasih (Cendrawasih C.papuensisC.papuensis Bay)Bay) Bay)Bay) Bay)(Milne(PNG)Bay) Bay, PNG)

54/- KT794308 KT794313KT794313 KT794310 C.maurinae C C.maurinaeC.maurinae.maurinae C.maurinaeC. C .maurinaemaurineae KT794345(Cendrawasih (Cendrawasih (Cendrawasih (Cendrawasih (Cendrawasih C.papuensis C.papuensis Bay)Bay) Bay) Bay)Bay) (PNG)(Tufi, PNG) 85/- KT794309 KT794311 KT794312 C.maurinae C .maurinaeC.maurinae C.maurinae C.maurinae C.C (Cendrawasih .maurinaeKT794350maurineae(Cendrawasih (Cendrawasih (Cendrawasih (Cendrawasih (Cendrawasih C.papuensis C .papuensis Bay)Bay) Bay)Bay) Bay) (PNG)Bay)(Tufi, PNG) KT794310 KT794333 KT794308 KT794307 C.maurinae C.maurinae C.sinclairi CC.maurinaeC. C.sinclairi .maurinaemaurineae C.maurinae C.maurinae (Cendrawasih (Cendrawasih (PNG) (Manus (Cendrawasih (Cendrawasih (Cendrawasih (Cendrawasih Island, Bay)Bay) PNG) Bay)Bay) Bay)Bay) 85/- KT794312 KT794332 KT794309 KT794313KT794313 C.maurinae CC.sinclairi CC.maurinae.maurinae C.C.sinclairi .maurinaeC.maurinaemaurineaeC.maurinae (PNG)(Cendrawasih (Cendrawasih(Manus (Cendrawasih (Cendrawasih (Cendrawasih Island, Bay)Bay) PNG) Bay)Bay) Bay) KT794308 KT794334 KT794311 C.maurinae KT794333C.maurinae C.sinclairi C C.maurinae .sinclairiC.maurinae C.sinclairi C(Cendrawasih (Cendrawasih.sinclairi (PNG) (Manus (Cendrawasih (Cendrawasih (PNG) (Manus Island, Bay)Bay) Island,PNG) Bay)Bay) PNG) 51/- 85/- KT794309 KT794318 KT794310 C.maurinae KT794332C.maurinae C. C .ellenaeellenae C.maurinae C .maurinaeC.sinclairi C(Cendrawasih (Cendrawasih.sinclairi (Ayau,(Raja (Cendrawasih Ampat) (Cendrawasih (PNG)Raja (Manus Bay)Ampat)Bay) Island, Bay)Bay) PNG) 91/41 KT794333 KT794302 KT794312 KT794334 C.sinclairi C C.ellenae C.maurinae.sinclairiC C.ellenae.maurinae C.sinclairi C.sinclairi (PNG) (Manus(Raja(Wayag, (Cendrawasih (Cendrawasih(PNG) (ManusAmpat) Island, Raja Island, Ampat) PNG) Bay)Bay) PNG) 51/- KT794332 KT794303KT794308 KT794318 C.sinclairi C C.ellenaeC.maurinae .sinclairiC.ellenae .maurinae C. C .ellenaeellenae (PNG) (Manus(Raja(Wayag, (Cendrawasih (Cendrawasih (Ayau,(Raja Ampat) Island, RajaAmpat) Raja Ampat) PNG) Ampat) Bay)Bay) 91/41 85/- KT794309 KT794334KT794300 KT794302 C.maurinae C C.sinclairi C.ellenae CC.maurinae.sinclairi.ellenae C.ellenae C (PNG)(Raja .ellenae(Wayag, (Cendrawasih (Manus(Cendrawasih Ampat) (Raja(Wayag, Island,Raja Ampat) Ampat) Bay)Bay) PNG) Raja Ampat) 51/- KT794318 KT794299 KT794333 KT794303 C. C .ellenaeC.ellenae ellenaeC.ellenae C.sinclairi CC.ellenae C (Ayau,.sinclairi(Raja.ellenae (Raja (Wayag, Ampat) Raja (PNG)Ampat) (Raja (Wayag,(Manus Raja Ampat) Ampat) Ampat) Island,Raja Ampat) PNG) 91/41 KT794298 KT794302 KT794332 KT794300 C.ellenae C C.ellenae.ellenae C C.sinclairi .ellenaeC C.ellenae.sinclairi C.ellenae (Raja (Wayag, (Raja(Wayag, (PNG) (ManusAmpat)(Raja (Wayag, Ampat) Raja Raja Ampat) Island,Ampat) Raja Ampat) Ampat)PNG) KT794303KT794301 KT794334 KT794299 C.ellenae C.ellenae CC.ellenae.ellenae C.sinclairi CC.ellenae C.sinclairi.ellenae (Raja (Raja(Wayag,(Wayag, (PNG) (Raja Ampat)(Wayag,Ampat)(Manus RajaRaja Ampat) Island,Ampat) Ampat)Raja Ampat) PNG) 51/- KT794320 KT794300 KT794318 KT794298 C. CC.ellenae C .ellenaeellenae .ellenaeC. C .ellenae ellenaeC.ellenae C.ellenae (Ayau,(Raja(Raja (Wayag, (Ayau,(Raja Ampat)(Raja Ampat) (Wayag,Raja Ampat)Raja Raja Ampat) Ampat) RajaAmpat) Ampat) 91/41 KT794304 KT794299 KT794301 KT794302 C.ellenae C C.ellenae.ellenae C.ellenae C.ellenae C.ellenae C(RajaC(Wayag,.ellenae .ellenae(Raja (Wayag, Ampat) Ampat) (RajaRaja (Wayag,(Raja(Wayag, Raja Ampat) Ampat)Ampat) Ampat) RajaRaja Ampat)Ampat) KT794305 KT794298 KT794320 KT794303 C.ellenae C C.ellenae.ellenae C.ellenae C. C.ellenae CC (Raja .ellenaeellenae(Wayag,.ellenae (Raja (Wayag, Ampat) (Ayau,Ampat)(Raja (Wayag,Raja Raja Ampat) Raja Ampat) Raja Ampat) Ampat) KT794306 KT794301 KT794304 KT794300 C.ellenae C.ellenae C.ellenae C .ellenae C.ellenae C C.ellenae .ellenaeC (Raja(Wayag,.ellenae (Raja(Wayag, Ampat) (Raja(Wayag, (Raja (Wayag,RajaAmpat) Ampat)Raja Ampat) Raja RajaAmpat) Ampat) Ampat) KT794320KT794317 KT794305 KT794299 C. C. CC .ellenae ellenae.ellenaeellenae C.ellenae C C.ellenae .ellenaeC.ellenae (Ayau,(Raja(Ayau,(Raja (Raja (Wayag, (Raja Ampat)(Wayag,Ampat) RajaRaja Ampat) Ampat) Ampat) Ampat)Raja Raja Ampat) Ampat) KT794319 KT794304 KT794306 KT794298 C. CC.ellenae C .ellenaeellenae.ellenae C.ellenae C C.ellenae .ellenaeC (Ayau,(Raja.ellenae (Raja(Wayag, (RajaAmpat)Ampat)(Wayag, Raja(Raja (Wayag, Raja Ampat)Ampat) Ampat) Ampat)Raja Raja Ampat) Ampat) MF668997MB06216206 KT794305 C .burtjonesiC.burtjonesi KT794317KT794301 C.ellenae C.ellenae (Solomon (Solomon) C. C.ellenae C C(Raja (Wayag,.ellenae.ellenaeellenae Ampat)Island) (Raja (Ayau,(Raja(Wayag,Raja Ampat)Ampat) Raja Raja Ampat) Ampat) MF668992MB06216201 KT794306 C KT794319 .burtjonesi C.burtjonesiKT794320 C.ellenae C.ellenae C. C (Solomon C. .ellenaeC(Solomon)ellenae .ellenae (Rajaellenae(Wayag, Ampat) (Ayau,(RajaIsland) (Ayau,(Raja Raja Ampat) Raja Ampat)Ampat) Raja Ampat) Ampat) MF668995MB06216204 MF668997MB06216206 KT794317 CKT794304 .burtjonesiC.burtjonesi C .burtjonesiC.burtjonesi C. C .ellenae ellenaeC.ellenae C (Solomon.ellenae (Solomon) (Solomon (Ayau,(Raja (Solomon) (Raja(Wayag, Island) Ampat) Raja Ampat)Island) RajaAmpat) Ampat) MF668993MB06216202 MF668992 MB06216201KT794319 CKT794305 .burtjonesiC.burtjonesi C. CC .burtjonesi .ellenaeC.burtjonesiellenae C.ellenae C(Solomon.ellenae (Solomon) (Ayau,(Raja (Solomon (Solomon) (Raja Ampat)(Wayag, Island)Raja Ampat) Ampat)Island) Raja Ampat) MF668997MB06216206 MF668994MB06216203 MF668995MB06216204 C KT794306 .burtjonesiCC.burtjonesi .burtjonesiC.burtjonesi C .burtjonesiC.burtjonesi C.ellenae C(Solomon .ellenae (Solomon)(Solomon (Solomon) (Solomon (Solomon)(Raja (Wayag,Island) Island) Ampat) Island) Raja Ampat) MF668992MB06216201 MF668996MB06216205 MF668993MB06216202 C C.burtjonesiC.burtjonesi KT794317.burtjonesiC.burtjonesi C .burtjonesiC.burtjonesi (Solomon C. (Solomon(Solomon)C (Solomon) .ellenaeellenae (Solomon (Solomon) Island) Island)(Ayau,(Raja Island) Ampat) Raja Ampat) KT794319 C. C .ellenaeellenae (Ayau,(Raja Ampat) Raja Ampat) 100/99 MF668995MB06216204 MF668994MB06216203 C .burtjonesiC.burtjonesi CKT794351 .burtjonesiC.burtjonesi (Solomon (Solomon) C. C (Solomon .giti giti(Solomon) Island) (Fakfak) Island) MF668993MB06216202 MF668997MB06216206 MF668996MB06216205 C .burtjonesiC.burtjonesi C .burtjonesi C.burtjonesiC .burtjonesiC.burtjonesi (Solomon (Solomon)KT794331 (Solomon (Solomon) (Solomon (Solomon) Island) C. C Island) .hemicyaneahemicyanea Island) (Solor)(Solor) MB06216201 C.burtjonesi (Solomon) 100/99 MF668994MB06216203MF668992100/100 C .burtjonesiC.burtjonesi C.burtjonesi KT794351(Solomon KT794314 (Solomon) (Solomon Island)C. CC.rollandi C .giti gitiIsland).rollandi (Fakfak) (Raja (Raja Ampat) Ampat) MF668996MB06216205 MF668995MB06216204 C .burtjonesiC.burtjonesi C .burtjonesiC.burtjonesi KT794315 (Solomon (Solomon) (Solomon (Solomon) KT794331C.rollandi C .rollandiIsland) Island) (Bali) C. (Bali)C .hemicyaneahemicyanea (Solor)(Solor) MB06216202 C.burtjonesi (Solomon) 100/99 MF668993100/100 C.burtjonesi KT794351 (Solomon C. C KT794314.gitigiti (Fakfak) Island) C.rollandi C.rollandi (Raja (Raja Ampat) Ampat) 0.020 MF668994MB06216203 C .burtjonesiC.burtjonesi KT794331 KT794315 (Solomon (Solomon) C. CC.rollandi C .hemicyanea hemicyaneaIsland).rollandi (Bali) (Bali) (Solor)(Solor)

100/100MF668996MB06216205 C .burtjonesiC.burtjonesi KT794314 (Solomon (Solomon) C.rollandi C.rollandi Island) (Raja (Raja Ampat) Ampat) 0.020 100/99 KT794315 KT794351 C.rollandi C .rollandiC. C .gitigiti (Fakfak)(Bali) (Bali) Figure 7. Neighbor Joining (NJ) topology generated from 384-bp of mtDNA KT794331 control-region C. C .hemicyaneahemicyanea sequence (Solor)(Solor) data from Chrysiptera 0.020 species. Numbers above the major nodes indicate bootstrap100/100 support for 1000KT794314 replicates C.rollandi C.rollandi using (Raja (Rajaneighbor-joining, Ampat) Ampat) maximum likelihood, and Bayesian posterior probability, respectively. GenBank KT794315 accession C.rollandi C numbers.rollandi (Bali) and(Bali) collection location are listed for each individual. Papua0.020 New Guinea is abbreviated as PNG. 19 TABLE 4 Average interspecific pairwise genetic distance matrix for sequences of the mtDNA control region for the Chrysiptera oxycephala species complex and some congeners

Species Location 1 2 3 4 5 6 7 8 9 10 11 1 C. burtjonesi Solomon Is. 2 C. sinclairi Manus Island, PNG 0.082 3 C. ellenae Raja Ampat Is. 0.097 0.077 4 C. maurineae Cendrawasih Bay 0.069 0.032 0.067 5 C. oxycephala Bali, Palau & Philippines 0.126 0.106 0.119 0.105 6 C. oxycephala Lembeh Strait 0.118 0.101 0.107 0.101 0.033 7 C. papuensis Tufi, PNG 0.111 0.119 0.112 0.097 0.126 0.110 8 C. rollandi Raja Ampat 0.226 0.232 0.262 0.238 0.245 0.263 0.254 9 C. rollandi Bali 0.222 0.228 0.253 0.226 0.241 0.249 0.231 0.044 10 C. giti Fakfak 0.195 0.206 0.186 0.191 0.223 0.219 0.224 0.289 0.285 11 C. hemicyanea Solor 0.193 0.220 0.199 0.215 0.248 0.245 0.251 0.285 0.275 0.111

Genetic analysis. We resolved relationships within the C. oxycephala species complex using a 384-base-pair segment of the mtDNA control region, of which 104 bases were parsimony informative. The tree from the NJ topology (Fig. 7) shows the species in the complex form a set of related monophyletic lineages corresponding to the allopatric species. Pairwise genetic distances (Table 4) between C. burtjonesi and other species in the C. oxycephala complex were in the range of 0.07–0.13, with the minimum distances recorded between C. burtjonesi and C. maurineae (0.069), and the largest distance observed between C. burtjonesi and C. oxycephala (0.126).

Acknowledgements

We thank Brian Bailey for logistic support aboard MV Wyuna during our 2016 visit to the Solomon Islands. This trip was generously funded by the Paine Family Trust and supported by Conservation International. Museum registration numbers, x-rays, and curatorial assistance were provided by Mark Allen and Glenn Moore (WA) and Jeff Clayton (USNM). The staff of the Indonesian Biodiversity Research Center (IBRC) at Udayana University, Denpasar, Bali provided excellent support for the genetic analysis. Financial support for the genetic analysis was provided by the United States Agency for Development’s “Supporting Universities to Partner across the Pacific” program (Cooperative Agreement No. 497-A-00-10-00008-00). The manuscript was reviewed by two anonymous reviewers.

References

Allen, G.R. (1987) Chrysiptera sinclairi, a new species of damselfish from the tropical western Pacific Ocean. Revue française d’Aquariologie, 13 (4), 107–110. Allen, G.R. & Drew, J.A. (2012) A new species of damselfish (Pomacentridae) from and .Aqua, Journal of Ichthyology and Aquatic Biology, 18 (3), 171–180. Allen, G.R., Drew, J.A. & Kaufmann, L. (2008) barberi, a new species of anemonefish (Pomacentridae) from Fiji, Tonga and Samoa. Aqua, Journal of Ichthyology and Aquatic Biology,14 (3), 105–114. Allen, G.R. & Erdmann, M.V. (2012) Reef fishes of the East Indies. Volume II. Tropical Reef Research, Perth, Australia, pp. 425–856. 20 Allen, G.R., Erdmann, M.V. & Cahyani N.K.D. (2015a) Review of the Chrysiptera oxycephala complex of damselfishes (Pomacentridae) with descriptions of three new species from the East Indian Archipelago. Journal of the Ocean Science Foundation, 17, 56–84. http://dx.doi.org/10.5281/zenodo.891435 Allen, G.R., Erdmann, M.V. & Kurniasih, E.M. (2015b) Chrysiptera caesifrons, a new species of damselfish (Pomacentridae) from the south-western Pacific Ocean.Journal of the Ocean Science Foundation, 15, 16–32. http://dx.doi.org/10.5281/zenodo.891445 Bleeker, P. (1877) Description de quelques espèces inédites de Pomacentroïdes de l’Inde archipélagique. Verslagen en Mededeelingen der Koninklijke Akademie van Wetenschappen. Afdeeling Natuurkunde (Ser. 2), 10, 384– 391. Drew, J.A. & Barber, P.H. (2009) Sequential cladogenesis of moluccensis (Bleeker, 1853) supports the peripheral origin of marine biodiversity in the Indo-Australian Archipelago. Molecular Phylogenetics and Evolution, 53, 335–339. Drew, J.A., Allen, G.R., Kaufman, L. & Barber, P.H. (2008) Regional color and genetic differences demonstrate endemism in five putatively cosmopolitan reef fishes.Conservation Biology, 22, 965–975. Hill, K.C. & Hall, R. (2003) Mesozoic-Cenozoic evolution of Australia’s New Guinea margin in a west Pacific context. In: Hillis, R.R. & Müller, R.D. (Eds.) Evolution and Dynamics of the Australian Plate. Geological Society of Australia Special Publication 22 & Geological Society of America Special Paper 372, Boulder, CO, USA, pp. 265–290. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874. Lee, W.J., Howell, W.H. & Kocher, T.D. (1995) Structure and evolution of teleost mitochondrial control regions. Journal of Molecular Evolution, 41, 54–66. Librado, P. & Rozas, J. (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25 (11): 1451–1452. Liu, S.-Y.V., Dai, C.-F., Allen, G.R. & Erdmann, M.V. (2012) Phylogeography of the neon damselfishPomacentrus coelestis indicates a cryptic species and different species origins in the West Pacific Ocean. Marine Ecology Progress Series, 458, 155–167. Liu, S.-Y. , Ho, H.-C. & Dai, C.-F. (2014) A new species of Pomacentrus (: Pomacentridae) from Micronesia, with comments on its phylogenetic relationships. Zoological Studies, 52 (6), 1–8. Polhemus, D.A. (2007) Tectonic geology of Papua In: Marshall A.J. & Beehler, B.M. (Eds.) The Ecology of Papua. Part One. Periplus Editions (HK) Ltd., Singapore, pp. 137–164. Swainson, W. (1839) On the natural history and classification of fishes, amphibians, & reptiles, or monocardian . Spottiswoode & Co., London, 448 pp. Victor, B.C. (2015) How many coral reef fish species are there? Cryptic diversity and the new molecular taxonomy. In: Mora, C. (Ed.) Ecology of Fishes on Coral Reefs. Cambridge University Press, Cambridge, United Kingdom, pp. 76–87. Walsh, P.S., Metzger, D.A. & Higuchi, R. (1991) Chelex-100 as a medium for simple extraction of DNA for PCR- based typing from forensic material. BioTechniques, 10, 506–513.

21