Interactions Between Wood Polymers in Wood Cell Walls and Cellulose/Hemicellulose Biocomposites

Total Page:16

File Type:pdf, Size:1020Kb

Interactions Between Wood Polymers in Wood Cell Walls and Cellulose/Hemicellulose Biocomposites THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Interactions between Wood Polymers in Wood Cell Walls and Cellulose/Hemicellulose Biocomposites JASNA STEVANIC SRNDOVIC The work has been carried out at INNVENTIA AB Biopolymer Technology Department of Chemical and Biological Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2011 Interactions between Wood Polymers in Wood Cell Walls and Cellulose/Hemicellulose Biocomposites JASNA STEVANIC SRNDOVIC ISBN 978-91-7385-517-4 © JASNA STEVANIC SRNDOVIC, 2011 Doktorsavhandlingar vid Chalmers Tekniska Högskola Ny serie nr 3198 ISSN 0346-718X Biopolymer Technology Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone + 46 (0) 31-772 1000 INNVENTIA AB Fibre and Material Science Business area Biorefining SE-114 86 Stockholm Sweden Telephone + 46 (0) 8-676 7000 Cover: Ultrastructure of the primary cell wall of a softwood tracheid. Chalmers Reproservice Göteborg, Sweden 2011 ii To my beautiful children, Aleksandra and Filip iii iv Interactions between Wood Polymers in Wood Cell Walls and Cellulose/Hemicellulose Biocomposites JASNA STEVANIC SRNDOVIC Department of Chemical and Biological Engineering Chalmers University of Technology Göteborg, Sweden INNVENTIA AB Fibre and Material Science Business area Biorefining Stockholm, Sweden ABSTRACT A wood fibre is a complex multi component biocomposite that is hierarchically organised. The arrangement of a wood fibre on the ultrastructural level is highly controlled by the interactions between the main structural polymers, i.e. cellulose, various hemicelluloses and lignin, as well as in some parts also pectin and protein. This further determines the mechanical and physical properties of the wood material, and consequently its targeted applications. Despite considerable research in this field during a number of years, the current knowledge on the interactions between the wood polymers is still incomplete and needs improvement. Also, mimicking of natural structures is an inspiration when preparing new materials from renewable resources, hence a comprehensive understanding of the polymer interactions is required. The first part of this study was to improve the understanding on the molecular interactions within the primary cell wall of spruce wood fibres, and its importance for the energy demand for the refining process during the thermomechanical pulp (TMP) manufacturing. Dynamic FTIR (Fourier transform infrared) spectroscopy in combination with dynamic 2D (two-dimensional) FTIR spectroscopy was used to examine how the lignin, protein, pectin, xyloglucan and cellulose interact in an enriched primary cell wall material. Measurements indicated that strong interactions exist between lignin, protein and pectin, as well as between cellulose, xyloglucan and pectin in this particular layer. Further, by applying a low degree of sulphonation pre-treatment to spruce wood chips, it was shown that the desired ultrastructural changes in the sulphonated primary cell wall material were reached. This selective reaction caused a weakening of the interactions between lignin;pectin, lignin;protein and pectin;protein, v as well as an increased softening and swelling of the material, which were the reasons for the noted energy savings when refining such low sulphonated spruce wood chips. The second part of this study was to improve the current knowledge on the molecular interaction within the secondary cell wall of a spruce wood fibre, as well as its ultrastructure by studying the orientation of the cellulose, glucomannan, xylan and lignin. Imaging FTIR microscopy was a technique used for studying, which indicated a parallel orientation of polysaccharides with respect to each other and the fibre axis and a partial parallel orientation of lignin. It was suggested that the interactions between the cellulose and glucomannan and the xylan and lignin are dominant but also that interactions between the two hemicelluloses, i.e. glucomannan and xylan, exist. The third part of this study was to prepare biomimetic biocomposite films, based on cellulose reinforced hemicelluloses. The interactions between these polysaccharides were studied through the prior examined mechanical properties of the biocomposite films using dynamic mechanical analysis (DMA). Here, the understanding of the ultrastructural organisation of the primary and secondary cell walls has been taken as a basis. Intramolecular hydrogen bonding might be created between the cellulose molecules and the unsubstituted areas of the backbone of the hemicellulose molecules, where the lower degree of substitution of xylan results in a more frequent occurrence of intermolecular hydrogen bonding. This study contributes to an increased understanding between interactions of wood polymers in the primary and secondary cell walls of a softwood tracheid and may serve as a guide for the new generation of biomimetic biocomposites. Keywords: polymer interactions, viscoelasticity, orientation, primary cell wall, secondary cell wall, nanocomposite films, dynamic FTIR spectroscopy, dynamic 2D FTIR spectroscopy, imaging FTIR microscopy, DMA, Norway spruce, wood fibre, cellulose, xyloglucan, xylan, glucomannan, pectin, protein, lignin. vi List of publications This thesis is based on the work contained in the following papers: Paper I Characterizing wood polymers in the primary cell wall of Norway spruce (Picea abies (L.) Karst.) using dynamic FT-IR spectroscopy Jasna S. Stevanic* and Lennart Salmén 2008 Cellulose 15(2):285-295 Paper II The primary cell wall studied by dynamic 2D FT-IR: Interaction among components in Norway spruce (Picea abies) Jasna S. Stevanic* and Lennart Salmén 2006 Cellulose Chemistry and Technology 40(9-10), 761-767 Paper III Interactions among components in the primary cell wall of Norway spruce; How they are affected by different chemimechanical treatments? Jasna S. Stevanic* and Lennart Salmén 2008 Journal of Pulp and Paper Science 34(2):107-112 Paper IV Orientation of the wood polymers in the cell wall of spruce wood fibres Jasna S. Stevanic* and Lennart Salmén 2009 Holzforschung 63:497-503 Paper V Bacterial nanocellulose reinforced arabinoxylan films Jasna S. Stevanic, Catherine Joly, Kirsi S. Mikkonen, Kari Pirkkalainen, Ritva Serimaa, Caroline Rémond, Guillermo Toriz, Paul Gatenholm, Maija Tenkanen, Lennart Salmén* 2011 Journal of Applied Polymer Science xxx:xxx-xxx, in press On-line publication: DOI 10.1002/app.34217 Paper VI Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose Kirsi S. Mikkonen*, Jasna S. Stevanic, Catherine Joly, Patrice Dole, Kari Pirkkalainen, Ritva Serimaa, Lennart Salmén, Maija Tenkanen 2011 Cellulose xx:xxx-xxx, in press On-line publication: DOI 10.1007/s10570-011-9524-0 vii Contribution report Paper I Main author. Took an active part in planning the experiments and performed most of the experimental work. Paper II Main author. Took an active part in planning the experiments and performed most of the experimental work. Paper III Main author. Took an active part in planning the experiments and performed most of the experimental work. Paper IV Main author. Took an active part in planning the experiments and performed most of the experimental work. Paper V Co author. Took an active part in planning the experiments and performed most of the experimental work regarding the preparation of films, tensile and mechanical testing using DMA. Paper VI Co author. Took an active part in planning the experiments and performed most of the experimental work regarding the preparation of films, tensile and mechanical testing using DMA. viii Other relevant publications Analysis of thermally treated wood samples using dynamic FT-IR-spectroscopy Lennart Salmén*, Hans Possler, Jasna S. Stevanic and Stefanie E. Stanzl-Tschegg 2008 Holzforschung 62:676–678 Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy Karin Fackler*, Jasna S. Stevanic, Thomas Ters, Barbara Hinterstoisser, Manfred Schwanninger, Lennart Salmén 2010 Enzyme and Microbial Technology 47:257-267 FT-IR imaging microscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells Karin Fackler*, Jasna S. Stevanic, Thomas Ters, Barbara Hinterstoisser, Manfred Schwanninger, Lennart Salmén 2011 Holzforschung 65:xxx-xxx, in press On-line publication: DOI 10.1515/HF.2011.048 Cell wall polymers orientation in fibres from branches of hardwood and softwood – a polarized FTIR study Jasna Simonovi, Jasna S. Stevanic, Daniela Djikanovi, Lennart Salmén*, Ksenija Radoti* Submitted to Macromolecular bioscience Structural organisation of the wood polymers in the wood fibre structure Lennart Salmén*, Anne-Mari Olsson, Jasna S. Stevanic, Jasna Simonovi, Ksenija Radoti 2011 Proceedings of the 16th ISWFPC, Tianjin pp.xxx-xxx, in press ix Abbreviations AGX arabinoglucuronoxylan AX arabinoxylan BC bacterial cellulose CTMP chemithermomechanical pulp DMA dynamical mechanical analysis DP degree of polymerisation 2D FTIR two dimensional Fourier transform infrared σ B stress at break E Young’s modulus E' storage modulus ε B strain at break FTIR Fourier transform infrared GGM galactoglucomannan gly glycerol H holocellulose fibre with exposed S2 cell wall LCC lignin-carbohydrate complex MFC microfibrillated cellulose NMR nuclear magnetic resonance P primary cell wall rAX rye arabinoxylan rDAX rye debranched arabinoxylan RH relative humidity S secondary
Recommended publications
  • Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2006, p. 157–176 Vol. 70, No. 1 1092-2172/06/$08.00ϩ0 doi:10.1128/MMBR.70.1.157–176.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria Sacha A. F. T. van Hijum,1,2†* Slavko Kralj,1,2† Lukasz K. Ozimek,1,2 Lubbert Dijkhuizen,1,2 and Ineke G. H. van Geel-Schutten1,3 Centre for Carbohydrate Bioprocessing, TNO-University of Groningen,1 and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen,2 9750 AA Haren, The Netherlands, and Innovative Ingredients and Products Department, TNO Quality of Life, Utrechtseweg 48 3704 HE Zeist, The Netherlands3 INTRODUCTION .......................................................................................................................................................157 NOMENCLATURE AND CLASSIFICATION OF SUCRASE ENZYMES ........................................................158 GLUCANSUCRASES .................................................................................................................................................158 Reactions Catalyzed and Glucan Product Synthesis .........................................................................................161 Glucan synthesis .................................................................................................................................................161 Acceptor reaction ................................................................................................................................................161
    [Show full text]
  • Polysaccharides
    Polysaccharides: Homopolysaccharide Heteropolysaccharide Glucose is the most common monomer Mostly homo, however, if hetero, it will be two monosaccharides in a repeating sequence Complete characterization of a polysaccharide: monomers, sequence & type of glycosidic linkage Cellulose & chitin: β-glycosidic linkages, and both are structural materials Starch and glycogen: α-glycosidic linkages, and they serve as carbohydrate storage polymers in plants and animals, respectively The major structural component of plants, especially wood and plant fibers A linear polymer of approximately 2800 D-glucose units per molecule joined by β-1,4-glycosidic bonds Extensive intra- and intermolecular hydrogen bonding between chains Cellulases, animals? Energy storage in plants A polymers of α-D-glucose units A mylose (10-20 %): continuous, unbranched chains of up to 4000 α-D-glucose units joined by α-1,4-glycosidic bonds Amylopectin (80-90 %): a highly branched polymer consisting of 24-30 units of D-glucose joined by α-1,4- glycosidic bonds and branches created by α- 1,6-glycosidic bonds Amylases catalyze hydrolysis of α-1,4-glycosidic bonds β-amylase is an exoglycosidase and cleaves from the non- reducing end of the polymer α-amylase is an endoglycosidase and hydrolyzes glycosidic linkages anywhere along the chain to produce glucose and maltose Can amylose & amylopectin be completely degraded to glucose and maltose by the two amylases? Debranching enzymes catalyze the hydrolysis of α-1,6-glycosidic bonds A branched-chain polymer of
    [Show full text]
  • Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight Into the Ionic Conductivity Performance
    materials Review Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight into the Ionic Conductivity Performance Marwah Rayung 1, Min Min Aung 1,2,* , Shah Christirani Azhar 2, Luqman Chuah Abdullah 3 , Mohd Sukor Su’ait 4, Azizan Ahmad 4,5 and Siti Nurul Ain Md Jamil 2 1 Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 2 Unit Chemistry, Center of Foundation Studies and Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] (S.C.A.); [email protected] (S.N.A.M.J.) 3 Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] 4 Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (M.S.S.); [email protected] (A.A.) 5 School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia * Correspondence: [email protected] Received: 10 October 2019; Accepted: 4 December 2019; Published: 12 February 2020 Abstract: With the continuing efforts to explore alternatives to petrochemical-based polymers and the escalating demand to minimize environmental impact, bio-based polymers have gained a massive amount of attention over the last few decades. The potential uses of these bio-based polymers are varied, from household goods to high end and advanced applications. To some extent, they can solve the depletion and sustainability issues of conventional polymers. As such, this article reviews the trends and developments of bio-based polymers for the preparation of polymer electrolytes that are intended for use in electrochemical device applications.
    [Show full text]
  • Carbohydrate Naturally Occurring Polysaccharide in Food Sea Weed Polysaccharide Sources And
    Carbohydrate Naturally occurring polysaccharide in food sea weed polysaccharide sources and use Carbohydrate- • Carbohydrates are commonly called as sugars - composed of C, H and O • Term saccharide is derived from the Latin word “sacchararum" from the sweet taste of sugars. • Compounds like glucose, fructose, starch and cellulose are called as carbohydrates. • types - Monosaccharides, Disaccharides and Polysaccharides • Monosaccharides are the simplest form of carbohydrate and contain different classes such as Trioses, Tetroses, etc. CARBOHYDRATE: • “The organic compounds which yield polyhydric aldehyde or ketone on hydrolysis are called as carbohydrates.” • empirical formula as (CH2O)n. • The name "carbohydrate" means a "hydrate of carbon.“ • For example glucose is written,C6H12O6. CLASSIFICATION OF CARBOHYDRATE A) Monosaccharides B) Oligosaccharides C) Polysaccharides - Homopolysaccharides and Heteropolysaccharides MONOSACCHARIDES: • They are simplest group of carbohydrate which cannot be hydrolyzed into simplest sugar. • They are divided into different classes on the basis of number of carbon atoms present in it like TRIOSES, TETROSES, PENTOSES etc. OLIGOSACCHARIDES: • They are formed by the condensation of a few monosaccharide units (2-10) • During the union of monosaccharide units water molecule is eliminated and the remaining units are linked through an oxygen bridge called as glycosides bond • They are being divided into Disaccharide and Trisaccharides. • DISACCHARIDE – SUCROSE, MALTOSE, LACTOSE Polysaccharides • Polysaccharides
    [Show full text]
  • 7 | Carbohydrates and Glycobiology
    7 | Carbohydrates and Glycobiology Aldoses and Ketoses; Representative monosaccharides. (a)Two trioses, an aldose and a ketose. The carbonyl group in each is shaded. • An aldose contains an aldehyde functionality • A ketose contains a ketone functionality The Glycosidic Bond • Two sugar molecules can be joined via a glycosidic bond between an anomeric carbon and a hydroxyl carbon • The glycosidic bond (an acetal) between monomers is less reactive than the hemiacetal at the second monomer – Second monomer, with the hemiacetal, is reducing – Anomeric carbon involved in the glycosidic linkage is nonreducing • The disaccharide formed upon condensation of two glucose molecules via 1 4 bond is called maltose • Formation of maltose. A disaccharide is formed from two monosaccharides (here, two molecules of D-glucose) when an —OH (alcohol) of one glucose molecule (right) condenses with the intramolecular hemiacetal of the other glucose molecule (left), with elimination of H2O and formation of a glycosidic bond. The reversal of this reaction is hydrolysis—attack by H2O on the glycosidic bond. The maltose molecule, shown here as an illustration, retains a reducing hemiacetal at the C-1 not involved in the glycosidic bond. Because mutarotation interconverts the α and β forms of the hemiacetal, the bonds at this position are sometimes depicted with wavy lines, as shown here, to indicate that the structure may be either α or β. Nonreducing Disaccharides • Two sugar molecules can be also joined via a glycosidic bond between two anomeric carbons • The product has two acetal groups and no hemiacetals • There are no reducing ends, this is a nonreducing sugar • Trehalose is a constituent of hemolymph of insects • Two common disaccharides.
    [Show full text]
  • Chem331 Lect 12 Carbos
    Carbohydrates • Of the macromolecules that we will cover in this class, those involving carbohydrates are the most abundant in nature. • Via photosynthesis, over 100 billion metric tons of CO2 and H2O are converted into cellulose and other plant products. • The term carbohydrate is a generic one that refers primarily to carbon-containing compounds that contain hydroxyl, keto, or aldehydic functionalities. • Carbohydrates can range in sizes, from simple monosaccharides (sugars) to oligosaccharides, to polysaccharides. What Roles Do Carbohydrates Play In Vivo? Energy—Photosynthesis, (CO2+ lightàSugar + O2) Structure—cell walls and extracellular structures in plants, animals and bacteria Conjugation onto lipids, proteins—glycosylation – Molecular Recognition – Protein Folding – Solubility DNA – DNA backbone – DNA capping Carbohydrate Naming Monosaccharides—simple sugars, can’t be broken down, molecular formula (CH2O)n Oligosaccharides—a few (2-10) monosaccharides linked together (conventional names: disaccharide, etc.) Polysaccharides—polymers of simple sugars. Can have molecular weights >1x106 g/mol Monosaccharide Structure and Naming The simplest aldose and ketose are both trioses—containing 3 carbon atoms HEXOSES are the most abundant sugar in nature (think: glucose) Stereochemistry Aldoses >3 carbons and Ketoses > 4 carbons all have chiral centers. Nomenclature for sugars specifies chirality—compared to glyceraldehyde: Aldose and Ketose Tree – see your book for figure Enantiomers and Diastereomers Diastereomers have opposite conformations
    [Show full text]
  • Metabolism of Lactic Acid Bacteria in Wheat Sourdough and Bread Quality
    University of Alberta Metabolism of Lactic Acid Bacteria in Wheat Sourdough and Bread Quality by Chonggang Zhang A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Food Science and Technology Agricultural, Food and Nutritional Science ©Chonggang Zhang Fall 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Dedication I would like to dedicate this thesis to my mother and my wife. Thanks for always supporting me during the hard time. Without you I couldn’t have gone so far. Abstract Study on metabolism of lactic acid bacteria in wheat sourdough can improve bread quality such as bread flavour, texture and shelf life. This dissertation focused on several metabolic pathways in Lactobacillus strains on both biochemical and genetic level to fulfill three objectives. The first objective was to produce bread preservative propionate from lactate by cometabolism of Lactobacillus buchneri and Lactobacillus diolivorans to extend bread shelf life.
    [Show full text]
  • Tarteel Sabrah Dr.Ma'moun Ahram
    7 Faculty of medicine – JU2018 Tarteel Sabrah Tarteel Sabrah Tarteel Sabrah Dr.Ma'moun Ahram Raffinose We talked about monosaccharide, we talked about disaccharide let's get big now . we will talk about oligosaccharide which is basically carbohydrates made of 3 to 10 monosaccharides or sugar residues Raffinose is an example . Raffinose is a trisaccharide that is made of three monosaccharides ( sugar residues) . If you look at structure first one is galactose then glucose and then fructose . from left to right It is Found in beans and vegetables like cabbage, Brussels, sprouts, broccoli, asparagus . And we can't digest raffinose because of Humans lack the Alpha-galactosidase enzyme that is needed to break down raffinose, but intestinal bacteria can ferment it into hydrogen, methane, and other gases but It is not as bad as lactose intolerance. Look at these monosaccharides and how are connected to each other as a practice whenever you see something like this look at each residue and try to identify it is it glucose, galactose and so on identify the anomeric configuration identify the glycosidic linkage between these different subunits Type of glycosidic bond between galactose and glucose [α: 16 ] Type of glycosidic bond between glucose and fructose [β: 12] 1 | P a g e We have oligosaccharide that can be larger and oligosaccharide that can be modified in certain ways so we can use them as antibiotics Oligosaccharides as drugs Streptomycin and erythromycin anticancer agents Doxorubicin Digoxin cardiovascular drug. STRUCTURES NOT
    [Show full text]
  • Resolution of Galactose, Glucose, Xylose and Mannose in Sugarcane
    *Manuscript Resolution of galactose, glucose, xylose and mannose in sugarcane bagasse employing a voltammetric electronic tongue formed by metals oxy- hydroxide/MWCNT modified electrodes Acelino Cardoso de Sá*1,2, Andrea Cipri2, Andreu González-Calabuig2, Nelson Ramos Stradiotto1 and Manel del Valle*,2 1Department of Analytical Chemistry, Institute of Chemistry, Universidade Estadual Paulista (UNESP), 55 Rua Francisco Degni, Araraquara 14800-060, SP, Brazil. 2Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Barcelona, Spain *e-mail: [email protected] ABSTRACT Second generation ethanol is produced from the carbohydrates released from the cell wall of bagasse and straw of sugarcane. The objective of this work is the characterization and application of a voltammetric electronic tongue using an array of glassy carbon electrodes modified with multi-walled carbon nanotubes containing metal (Paladium, Gold, Copper, Nickel and Cobalt,) oxy-hydroxide nanoparticles (GCE/MWCNT/MetalsOOH) towards a simpler analysis of carbohydrates (glucose, xylose, galactose and mannose). The Artificial Neural Network (ANN) based prediction model has resulted satisfactory for all carbohydrates and the obtained response had shown an adequate accuracy. In this manner 192 architectures were evaluated. The final architecture of the back-propagation ANN model had 36 input neurons, a hidden layer with 5 neurons and the tansig transfer function, an output layer with 4 neurons and the purelin transfer function. All species a comparison correlation coefficient of r ≥ 0.99 for the training subset and of r ≥ 0.96 for the test subset, being close to the ideal value. Keywords: Electronic Tongue, Carbohydrates, Artificial Neural Network, Multi-walled carbon nanotubes, Metal nanoparticles, Second generation ethanol.
    [Show full text]
  • Pulp and Paper Chemistry and Technology Volume 1
    Pulp and Paper Chemistry and Technology Volume 1 Wood Chemistry and Wood Biotechnology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Pulp and Paper Chemistry and Technology Volume 1 This project was supported by a generous grant by the Ljungberg Foundation (Stiftelsen Erik Johan Ljungbergs Utbildningsfond) and originally published by the KTH Royal Institute of Technology as the “Ljungberg Textbook”. Wood Chemistry and Biotechnology Edited by Monica Ek, Göran Gellerstedt, Gunnar Henriksson Editors Dr. Monica Ek Professor (em.) Dr. Göran Gellerstedt Professor Dr. Gunnar Henriksson Wood Chemistry and Pulp Technology Fibre and Polymer Technology School of Chemical Science and Engineering KTH Ϫ Royal Institute of Technology 100 44 Stockholm Sweden ISBN 978-3-11-021339-3 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. ” Copyright 2009 by Walter de Gruyter GmbH & Co. KG, 10785 Berlin. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanic, including photocopy, recording, or any information storage retrieval system, without permission in writing from the publisher. Printed in Germany. Typesetting: WGV Verlagsdienstleistungen GmbH, Weinheim, Germany. Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen, Germany. Cover design: Martin Zech, Bremen, Germany. Foreword The production of pulp and paper is of major importance in Sweden and the forestry industry has a profound influence on the economy of the country. The technical development of the industry and its ability to compete globally is closely connected with the combination of high-class education, research and development that has taken place at universities, institutes and industry over many years.
    [Show full text]
  • Polysaccharides
    Block 2 Carbohydrates ......................................................................................................................................................................................... UNIT 7 POLYSACCHARIDES Structure 7.1 Introduction 7.5 Glycoconjugates Proteoglycans Expected Learning Outcomes Glycoproteins 7.2 Classification of Polysaccharides Glycolipids and 7.3 Storage Polysaccharides Lipopolysaccharides Starch 7.6 Summary Glycogen 7.7 Terminal Questions 7.4 Structural Polysaccharides 7.8 Answers Cellulose 7.9 Further Readings Chitin Glycosaminoglycans 7.1 INTRODUCTION In the previous units, we discussed about structures and properties of monosaccharides and oligosaccharides. We also learnt how nature of the glycosidic bonds affects the properties of the oligosaccharides and their digestion by enzymes in human body. In this unit, we shall discuss about polysaccharides. Most of the carbohydrates in nature are polysaccharides. Some of them are simply polymers of monosaccharides like starch, glycogen and cellulose while others in addition to being polymeric saccharides are also linked covalently to other biomolecules like amino acids, peptides, proteins and lipids. These show not only structural diversity but also perform diverse functions. Let us now look at these aspects by studying different examples of polysaccharides. Objectives After going through this unit, you should be able to: v classify polysaccharides; v draw structures of energy storing forms of sugars; starch, glycogen, and discuss their properties;
    [Show full text]
  • Full Text in DIVA
    Aspects of optimizing pulp fibre properties for tissue and packaging materials Hafizur Rahman Main supervisor: Prof. Armando Cordova Co-supervisors: Prof. Per Engstrand Asst. Prof. Börje Norlin Faculty of Science, Technology and Media Thesis for Doctoral degree in Chemical Engineering Mid Sweden University Sundsvall, 2021-06-14 Akademisk avhandling som med tillstånd av Mittuniversitetet i Sundsvall framläggs till offentlig granskning för avläggande av teknologie doktorsexamen i kemiteknik, Måndagen den 14:e juni, 2021 klockan 10:00 i sal C312 , Mittuniversitetet Sundsvall. Seminariet kommer att hållas på engelska. Aspects of optimizing pulp fibre properties for tissue and packaging materials © Hafizur Rahman, 2021-06-14 Printed by Mid Sweden University, Sundsvall, Sweden ISSN: 1652-893X ISBN: 978-91-89341-15-9 Faculty of Science, Technology and Media Mid Sweden University, SE-851 70 Sundsvall, Sweden Phone: +46 (0)10 142 80 00 Mid Sweden University Doctoral Thesis 348 iii iv Table of contents ABSTRACT ....................................................................................................... viii SAMMANFATTNING .......................................................................................... ix LIST OF PAPERS ................................................................................................ x CONTRIBUTION TO THE PAPERS .................................................................... xi LIST OF RELATED PAPERS AND PUBLICATIONS ........................................ xii CONFERENCES AND SEMINARS ..................................................................
    [Show full text]