Sucrose Metabolism and Exopolysaccharide Production by Lactobacillus Sanfranciscensis
Total Page:16
File Type:pdf, Size:1020Kb
Lehrstuhl für Technische Mikrobiologie Sucrose metabolism and exopolysaccharide production by Lactobacillus sanfranciscensis Maher Korakli Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. rer. nat. habil. S. Scherer Prüfer der Dissertation: 1. Univ.-Prof. Dr. rer. nat. habil. R. F. Vogel 2. Univ.-Prof. Dr. rer. nat. W. P. Hammes, Univ. Hohenheim 3. Univ.-Prof. Dr.-Ing. Dr.-Ing. habil. W. Back Die Dissertation wurde am 29.10.2002 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 9.12.2002 angenommen. Lehrstuhl für Technische Mikrobiologie Sucrose metabolism and exopolysaccharide production by Lactobacillus sanfranciscensis Maher Korakli Doctoral thesis Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Freising 2002 Mein herzlicher Dank gilt: Meinem Doktorvater Prof. Rudi F. Vogel für die Überlassung des Themas, die zahlreichen Anregungen und die stete Bereitschaft zu fachlichen Diskussionen, für das mir entgegengebrachte Vertrauen und für den gewährten Raum meine Forschungsideen zu verwirklichen. Dr. Michael Gänzle für die motivierende und kritische Begleitung der Arbeit, die ständige Diskussionsbereitschaft und hilfreichen Anregungen. Monika Thalhammer, Nicole Kleber, Stephan Pröpsting, Melanie Pavlović, Konstanze Graser, Patrick Schwindt and allen fleißigen Händen für die fruchtbare Zusammenarbeit. Bedanken möchte ich mich weiterhin bei Angela Seppeur, Holger Schmidt, Georg Maier, Monika Hadek und Claudine Seeliger für die stete Hilfsbereitschaft. Darüber hinaus gilt mein Dank allen Mitarbeiterinnen und Mitarbeitern des Lehrstuhles für Technische Mikrobiologie für die kollegiale Zusammenarbeit und entspannte Laboratmosphäre. Contents 1. Introduction _____________________________________________________________ 1 1.1. Microflora of sourdough ________________________________________________ 1 1.2. Maltose and sucrose metabolism by L. sanfranciscensis________________________ 3 1.3. Exopolysaccharides ____________________________________________________ 5 1.4. Environmental stress responses ___________________________________________ 8 1.5. Objectives of the thesis _________________________________________________ 9 2. Materials and Methods ___________________________________________________ 11 2.1. Organisms and culture conditions ________________________________________ 11 2.2. Determination of colony forming units ____________________________________ 12 2.3. Determination of the maximum growth rate ________________________________ 12 2.4. Determination of metabolites____________________________________________ 13 2.5. EPS Isolation and purification ___________________________________________ 13 2.6. Characterization of the oligosaccharide____________________________________ 14 2.7. Isolation of water soluble polysaccharides from wheat and rye flours ____________ 15 2.8. Hydrolysis of polysaccharides ___________________________________________ 15 2.9. Preparation of doughs and bread _________________________________________ 15 2.10. Degradation of polysaccharides by bifidobacteria and lactobacilli _____________ 19 2.11. Determination of carbon isotope ratio ___________________________________ 19 2.12. High pressure treatment ______________________________________________ 20 3. Results _________________________________________________________________ 21 3.1. Effect of fructose on the utilization of sucrose ______________________________ 21 3.2. Kinetic of sucrose metabolism and EPS production in Su-MRS_________________ 22 3.3. Characterisation and properties of EPS ____________________________________ 24 3.4. Effect of sucrose concentration on the EPS production________________________ 25 3.5. In situ production of EPS during sourdough fermentation _____________________ 32 3.6. Metabolism of EPS by Bifidobacteria _____________________________________ 41 3.7. Effect of sublethal high pressure on the metabolism of L. sanfranciscensis ________ 45 4. Discussion ______________________________________________________________ 47 4.1. Sucrose metabolism by L. sanfranciscensis_________________________________ 47 4.2. Production of EPS during sourdough fermentation ___________________________ 51 4.3. Metabolism of EPS by Bifidobacteria _____________________________________ 55 5. Summary_______________________________________________________________ 57 6. Zusammenfassung _______________________________________________________ 60 7. References______________________________________________________________ 63 8. Appendix_______________________________________________________________ 72 Introduction 1 1. Introduction Lactic acid bacteria (LAB) have being used for centuries in production of various fermented foods due to their preservative contribution and metabolic activity, that award the fermented food its characteristic flavour. The most important attribute of LAB is the production of lactic acid, as a result of which the pH is lowered exerting an inhibitory effect on spoilage microorganisms. It is believed that fermentative conservation of food initially happened coincidentally. Nevertheless, the preservative advantages of LAB and the characteristic taste of fermented food have been appreciated by ancient civilisations, which had few possibilities for food preservation. In the last decades the physiology and genetics of LAB were and are still subject of major research efforts. Besides the preservative effect of acid(s) produced, LAB have a diversified metabolic spectrum including the release of flavour precursors and the potential to excrete bacteriocins with sometimes wide inhibitory effect on the accompanying flora. Another interesting property of several LAB is their ability to synthesise exopolysaccharides (EPS), that may improve the texture and “mouthfeel” of food and moreover have health promoting properties. 1.1. Microflora of sourdough The use and later the cultivation of cereals as a part of human nutrition can be dated to 7000-6000 BC (Lönner and Ahrne, 1995). The addition of water to flour leads to sourdough, this phenomenon has been already observed in ancient times. During excavations in Switzerland a 5500 years old charred wheat sourdough bread was discovered (Währen, 1985). Dumas (1843) attributed the leavening of dough to the alcoholic fermentation of sugars available in flour, and Holliger (1902) described homofermentative lactic acid bacteria as the organisms responsible for the acid production and yeasts for the leavening of sourdough. The first heterofermentative organism from sourdough was identified by Henneberg (1909) as Bacillus panis fermentati (syn., Lactobacillus brevis, Spicher and Stephan, 1987). Knudsen (1924) isolated the same group of heterofermentative LAB from 300 sourdoughs and described this group as the most important in the sourdough Introduction 2 fermentation. Lactobacillus plantarum, Lactobacillus brevis ssp. lindneri and Lactobacillus fermentum were isolated from sourdoughs by Spicher (1958, 1959, 1978). Kline and Sugihara (1971) described a new heterofermentative Lactobacillus sp. from San Francisco sourdough and proposed the name Lactobacillus sanfrancisco. DNA-DNA-hybridisation confirmed Lactobacillus sanfrancisco as new species (Sriranganathan et al. 1973), and taxonomical investigations resulted in its inclusion into the “Approved List of Bacterial Names” (Weiss and Schillinger, 1984). DNA- DNA-homology showed that Lactobacillus brevis ssp. lindneri and Lactobacillus sanfrancisco belong to the same species (Kandler and Weiss, 1986). According to the “International Code of Nomenclature of Bacteria” the specific epithet of L. sanfrancisco was changed to sanfranciscensis (Trüper and De Clari., 1997). Vogel et al. (1994) applied physiological characteristics, protein patterns and 16S rRNA sequences to identify sourdough lactobacilli. Strains of Lactobacillus species accounted for 30 to 80% of microflora of some rye and wheat sourdoughs were isolated. These organisms were differentiated from other sourdough lactobacilli and are closely related to L. reuteri. This species was characterised and proposed as Lactobacillus pontis. Böcker et al. (1995) divided sourdoughs into three types based on the fermentation conditions. Type I doughs are continuously (daily) propagated at temperature <26°C. Investigations of the microbiology of type I sourdough revealed that two strains of L. sanfranciscensis and one strain of L. pontis were present for at least 10 years (Hammes and Gänzle, 1998). Type II doughs with high acid content are fermented for up to 5 days at temperatures of 40°C and usually dominated by acid tolerant lactobacilli e. g. L. pontis, L. reuteri, L. panis, L. frumenti and L. amylovorus. Type III are dried sourdoughs fermented by dry tolerant lactobacilli e. g L. plantarum, L. brevis and Pediococcus pentosaceus (Böcker et al., 1995). Besides heterofermentative LAB, several yeasts have been isolated from sourdoughs. Saccharomyces exiguus and Candida milleri, that cannot metabolize maltose unlike L. sanfranciscensis, are typical yeasts associated with L. sanfranciscensis. Sugihara et al. (1970) attributed this differentiated use of maltose for the lack of competition between L. sanfranciscensis and S. exiguus. Furthermore, it