USGS Scientific Investigations Map 3045, Pamphlet

Total Page:16

File Type:pdf, Size:1020Kb

USGS Scientific Investigations Map 3045, Pamphlet Three-Dimensional Geologic Map of the Hayward Fault Zone, San Francisco Bay Region, California By G.A. Phelps, R.W. Graymer, R.C. Jachens, D.A. Ponce, R.W. Simpson, and C.M. Wentworth Pamphlet to accompany Scientific Investigations Map 3045 U.S. Department of the Interior U.S. Geological Survey 1 Contents Abstract..................................................................................................................................................................................3 Scope and Purpose of this report ......................................................................................................................................3 1. Earthquake studies. .....................................................................................................................................................3 2. Ground water studies..................................................................................................................................................3 3. Mineral hazards studies..............................................................................................................................................4 4. Education and scientific inquiry...............................................................................................................................4 Introduction...........................................................................................................................................................................4 Geologic Background .........................................................................................................................................................6 Mesozoic terrane complexes .........................................................................................................................................6 Paleogene unroofing and overlap .................................................................................................................................8 Neogene transpression and development of the San Andreas Fault system .........................................................8 Methods.................................................................................................................................................................................9 Hayward Fault................................................................................................................................................................ 12 East Hills Area ............................................................................................................................................................... 12 Cenozoic sedimentary deposits and tertiary volcanic deposits ............................................................................. 13 San Leandro gabbro of Ponce and others (2003)..................................................................................................... 14 Geology west of the Hayward Fault........................................................................................................................... 14 Description of Map Features ........................................................................................................................................... 15 Description of Map Units................................................................................................................................................. 16 Description of Map Structures ........................................................................................................................................ 17 Hayward Fault................................................................................................................................................................ 17 Calaveras Fault............................................................................................................................................................... 18 Rodgers Creek Fault...................................................................................................................................................... 18 Palomares-Miller Creek-Moraga-Pinole Fault System........................................................................................... 18 Chabot Fault ................................................................................................................................................................... 19 Other San Leandro gabbro-bounding faults.............................................................................................................. 19 Cretaceous/Tertiary (KT) faults east of the Hayward Fault................................................................................... 19 San Pablo Bay Fault...................................................................................................................................................... 19 Cenozoic (Ce) faults east of the Hayward Fault ...................................................................................................... 20 Mesozoic (Mw) faults west of the Hayward Fault .................................................................................................. 20 Data ...................................................................................................................................................................................... 20 Acknowledgments ............................................................................................................................................................. 24 References Cited................................................................................................................................................................ 24 Tables 1. Density-depth function for Cenozoic basin deposits and Cenozoic volcanic rocks ...................................14 2. Description of data and algorithms .............................................................................................................21 Figures 1. Generalized map of the major faults of the Hayward Fault zone ..................................................................5 2. Generalized terrane map of the Hayward Fault zone (modified from ...........................................................7 3 .Isostaticresidualgravityanomalymapofthestudyarea. ...................................................................................10 4. Magneticanomalymapofthestudyarea...........................................................................................................11 Appendixes Appendix I. Data Files ....................................................................................................................................31 Appendix II. Introduction to the Basic EarthVision™ 3D Viewer Tools.......................................................32 2 THREE-DIMENSIONAL GEOLOGIC MAP OF THE HAYWARD FAULT ZONE, SAN FRANCISCO BAY REGION, CALIFORNIA By G.A. Phelps, R.W. Graymer, R.C. Jachens, D.A. Ponce, R.W. Simpson, and C.M. Wentworth Abstract A three-dimensional (3D) geologic map of the Hayward Fault zone was created by integrating the results from geologic mapping, potential field geophysics, and seismology investigations. The map volume is 100 km long, 20 km wide, and extends to a depth of 12 km below sea level. The map volume is oriented northwest and is approximately bisected by the Hayward Fault. The complex geologic structure of the region makes it difficult to trace many geologic units into the subsurface. Therefore, the map units are generalized from 1:24000-scale geologic maps. Descriptions of geologic units and structures are offered, along with a discussion of the methods used to map them and incorporate them into the 3D geologic map. The map spatial database and associated viewing software are provided. Elements of the map, such as individual fault surfaces, are also provided in a non-proprietary format so that the user can access the map via open-source software. The sheet accompanying this manuscript shows views taken from the 3D geologic map for the user to access. The 3D geologic map is designed as a multi-purpose resource for further geologic investigations and process modeling. Scope and Purpose of this report The purpose of this new map is to compile the best available data on: 1) identity and subsurface distribution of bedrock units, 2) sedimentary deposits, and 3) geologic structures at a regional scale, and to integrate the data into a 3D map. The 3D nature of the map allows the modeled geology to be incorporated into physically based process models that are used to predict the behavior of geologic systems. The 3D map also offers interesting new possibilities for visualizing complex geologic relations with the help of increasingly powerful computer software. Potential applications of the 3D map include: 1. Earthquake studies. The intensity of earthquake shaking has been shown to depend strongly on the distribution of geologic units. For example, the intensity increases within sedimentary basins. Simulations of the shaking produced by the great 1906 San Francisco, California earthquake were based on a 3D velocity model made by assigning seismic velocities to the various rock units in a 3D geologic map of the San Francisco Bay region (see, for example, Hartzell and others, 2006; McPhee and others, 2007). Accurate seismic velocity models are required to precisely locate earthquake epicenters, which can be used to map
Recommended publications
  • Land Resources
    3.2 Land Resources 3.2 Land Resources 3.2.1 Geologic Setting The project site is located within the Coast Range Geomorphic Province of California. The topography of the province is characterized by mountain ranges with intervening valleys trending to the northwest, roughly paralleling the Pacific coastline. The project site is located in the northern portion of the Alexander Valley, which in the area is also referred to locally as the Cloverdale Valley. The Alexander Valley is likely a sediment-filled valley that has been pulled apart by the Maacama and the Healdsburg Fault Zones. Elevation of the project site ranges from approximately 302 to 332 feet above mean sea level, sloping in a southeasterly direction. The project site lies within the eastern flank of the northern Coast Ranges, which is underlain by the Franciscan Complex, an assemblage of igneous, sedimentary, and metamorphic rocks. Bedrock underlying the project area is about 50 feet to 60 feet deep and consists of fractured dark greenish-gray shale of the Franciscan Formation. Overlying the bedrock assemblages in the project region are younger (10,000 to 1.6 million years old) alluvium and river channel deposits consisting of various clay, silt, sand, and gravel mixtures. Boring logs revealed that these alluvial sediments occur generally as alternating sandy clay mixtures and gravels from the surface to the interface with the bedrock. The sediment transport and depositional history of the Russian River has controlled the placement of the alluvial sediments and the horizontal and vertical distribution of these materials (Appendix K). 3.2.2 Soils Figure 3.2-1 provides a map of soils on the project site.
    [Show full text]
  • Fremont Earthquake Exhibit WALKING TOUR of the HAYWARD FAULT (Tule Ponds at Tyson Lagoon to Stivers Lagoon)
    Fremont Earthquake Exhibit WALKING TOUR of the HAYWARD FAULT (Tule Ponds at Tyson Lagoon to Stivers Lagoon) BACKGROUND INFORMATION The Hayward Fault is part of the San Andreas Fault system that dominates the landforms of coastal California. The motion between the North American Plate (southeastern) and the Pacific Plate (northwestern) create stress that releases energy along the San Andreas Fault system. Although the Hayward Fault is not on the boundary of plate motion, the motion is still relative and follows the general relative motion as the San Andreas. The Hayward Fault is 40 miles long and about 8 miles deep and trends along the east side of San Francisco Bay. North to south, it runs from just west of Pinole Point on the south shore of San Pablo Bay and through Berkeley (just under the western rim of the University of California’s football stadium). The Berkeley Hills were probably formed by an upward movement along the fault. In Oakland the Hayward Fault follows Highway 580 and includes Lake Temescal. North of Fremont’s Niles District, the fault runs along the base of the hills that rise abruptly from the valley floor. In Fremont the fault runs within a wide fault zone. Around Tule Ponds at Tyson Lagoon the fault splits into two traces and continues in a downwarped area and turns back into one trace south of Stivers Lagoon. When a fault takes a “side step” it creates pull-apart depressions and compression ridges which can be seen in this area. Southward, the fault lies between the 1 lowest, most westerly ridge of the Diablo Range and the main mountain ridge to the east.
    [Show full text]
  • Sonoma Gounty Residents Face Big Challenges
    July 8, 2019 TAC Mtg Agenda Item #5 Attachment 1 WILL THERE BE WATER AFTER AN EARTHQUAKE? Sonoma Gounty Residents Face Big Challenges SUMMARY When the next earthquake arrives, will we have enough water? Engineers say our water supplies will probably be disrupted after a major earthquake. In Sonoma County, most people rely on water supplied by Sonoma Water (formerly known as the Sonoma County Water Agency) to nine city contractors and special districts, and they, in turn, deliver water to residents, businesses, and organizations within their areas. The Sonoma County Civil Grand Jury has investigated how well-prepared Sonoma Water is to respond to a major earthquake. Our report seeks to answer this crucial question: What plans and resources are in place in the event of a major earthquake, to provide drinking water to residents of the county who receive water from Sonoma Water? The Russian River is the primary source of water for Sonoma County and northern Marin County. Sonoma Water supplies 90%o of the pressurized water used in nine contracting cities and water agencies (Santa Rosa, Windsor, Cotati, Rohnert Park, Petaluma, City of Sonoma, Valley of the Moon Water District, Marin Municipal Water District, North Marin Water District) that together serve over 600,000 customers. Water flows through a network of pumps, pipes, and valves to its final destination in our homes, hospitals, schools, and businesses. Sonoma Water projects that a minor earthquake (5.0 or less) will not impair water supply operations or services, and will not present immediate danger to the health and welfare of the public.
    [Show full text]
  • Wasatch Fault
    WASATCH FAULT NORTHERN POI=ITION Raymond Lundgren WOODWARD· CLYDE ASSOCIATES George E.Hervert & B. A. Vallerga CONSULTING SOIL ENGINEERS AND GEOLOGISTS SAN FRANCISCO - OAKLAND - SAN JOSE OFFICES Wm.T.Black Lloyd S. Cluff Edward Margeson 2730 Adeline Street Keshavan Nair Oakland, Ca 94607 Lewis L.Oriard (415) 444-1256 Mahmut OtU5 C.J.VanTiI P. O. Box 24075 Oaklllnd, ea 94623 July 17, 1970 Project G-12069 Utah Geological and Mineralogical Survey 103 Utah Geological Survey Building University of Utah Salt Lake City, Utah 84112 Attention: Dr. William P. Hewitt Director Gentlemen: WASATCH FAULT - NORTHERN PORTION EARTHQUAKE FAULT INVESTIGATION AND EVALUATION The enclosed report and maps presents the results at our investigation and evaluation of the Wasatch fault from near Draper to Brigham City, Utah. The completion of this work marks another important step in Utah's forward-looking approach to minimizing the effects of earthquake and geologic hazards. We are proud to have been associated with the Utah Geological and Mineralogical Survey in completing this study, and we appreciate the opportunity of assisting you with such an inter­ esting and challenging problem. If we can be of further assistance, please do not hesitate to contact us. Very truly yours, {4lJ~ Lloyd S. Cluff Vice President and Chief Engineering Geologist LSC: jh Enclosure LOS ANGELES-ORANGE' SAN DIEGO' NEW YORK-CLIFTON' DENVER' KANSAS CITY-ST. LOUIS' PHILADELPHIA-WASHINGTON Affiliated with MATERIALS RESEARCH & DEVELOPMENT, INC. WASATCH FAULT NORTHERN PORTION EARTHBUAKE FAULT INVESTIGATION & EVALUATION av LLOYO S. CLUFF. GEORGE E. BROGAN & CARL E. GLASS PROPERll Of mAR GEOLOGICAL AND. MINfBAlOGICAL SURVEY A GUIDE·TO LAND USE PLANNING FOR UTAH GEOLOGICAL & MINERALOGICAL SURVEY WOODWARD- CLYDE & ASSOCIATES CONSULTING ENGINEERS AND GEOLOGISTS OAKLAND.
    [Show full text]
  • 4.5 Geological Resources
    Cotati Downtown Specific Plan GEOLOGICAL RESOURCES Draft EIR 4.5 GEOLOGICAL RESOURCES 4.5.1 Issues Although implementation of the DSP will improve buildings in the planning area relative to geologic and seismic safety by upgrading structures or developing new structures subject to current building codes, implementation of the plan will also induce population growth and development in a seismically active area. The evaluation that follows provides a general characterization of the seismic setting, soil types, and associated hazards and risks in the planning area. This analysis is not intended as a substitute for site-specific geotechnical reports that may be required for individual projects in the DSP area under the Uniform Building Code (UBC). Additional study may be required to obtain site-specific data, and to determine the appropriate engineering recommendations based on a particular building’s size, design, and use. 4.5.2 Setting Regional (Structural) Geology California is divided geologically into several physiographic or geomorphic provinces, including the Sierra Nevada range, the Central (Great) Valley, the Transverse Ranges, the Coast Ranges, and others. Cotati lies within the Coast Ranges geomorphic province of California. The Coast Range was formed at the intersection of two tectonic plates: the Pacific to the west, and the North American to the east. The compressive and shearing motions between the tectonic plates resulted in a complex system of active strike-slip faults, reverse faults, thrust faults and related folds (bends in rock layers). Locally, the Coast Ranges are characterized by northwest trending valleys and basins. Cotati is located in the topographic area known as the Cotati Valley.
    [Show full text]
  • Fault-Rupture Hazard Zones in California
    SPECIAL PUBLICATION 42 Interim Revision 2007 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act 1 with Index to Earthquake Fault Zones Maps 1 Name changed from Special Studies Zones January 1, 1994 DEPARTMENT OF CONSERVATION California Geological Survey STATE OF CALIFORNIA ARNOLD SCHWARZENEGGER GOVERNOR THE RESOURCES AGENCY DEPARTMENT OF CONSERVATION MIKE CHRISMAN BRIDGETT LUTHER SECRETARY FOR RESOURCES DIRECTOR CALIFORNIA GEOLOGICAL SURVEY JOHN G. PARRISH, PH.D. STATE GEOLOGIST SPECIAL PUBLICATION 42 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act With Index to Earthquake Fault Zones Maps by WILLIAM A. BRYANT and EARL W. HART Geologists Interim Revision 2007 California Department of Conservation California Geological Survey 801 K Street, MS 12-31 Sacramento, California 95814 PREFACE The purpose of the Alquist-Priolo Earthquake Fault Zoning Act is to regulate development near active faults so as to mitigate the hazard of surface fault rupture. This report summarizes the various responsibilities under the Act and details the actions taken by the State Geologist and his staff to implement the Act. This is the eleventh revision of Special Publication 42, which was first issued in December 1973 as an “Index to Maps of Special Studies Zones.” A text was added in 1975 and subsequent revisions were made in 1976, 1977, 1980, 1985, 1988, 1990, 1992, 1994, and 1997. The 2007 revision is an interim version, available in electronic format only, that has been updated to reflect changes in the index map and listing of additional affected cities. In response to requests from various users of Alquist-Priolo maps and reports, several digital products are now available, including digital raster graphic (pdf) and Geographic Information System (GIS) files of the Earthquake Fault Zones maps, and digital files of Fault Evaluation Reports and site reports submitted to the California Geological Survey in compliance with the Alquist-Priolo Act (see Appendix E).
    [Show full text]
  • Structural Superposition in Fault Systems Bounding Santa Clara Valley, California
    A New Three-Dimensional Look at the Geology, Geophysics, and Hydrology of the Santa Clara (“Silicon”) Valley themed issue Structural superposition bounding Santa Clara Valley Structural superposition in fault systems bounding Santa Clara Valley, California R.W. Graymer, R.G. Stanley, D.A. Ponce, R.C. Jachens, R.W. Simpson, and C.M. Wentworth U.S. Geological Survey, 345 Middlefi eld Road, MS 973, Menlo Park, California 94025, USA ABSTRACT We use the term “structural superposition” to and/or reverse-oblique faults, including the emphasize that younger structural features are Silver Creek Thrust1 (Fig. 3). The reverse and/or Santa Clara Valley is bounded on the on top of older structural features as a result of reverse-oblique faults are generated by a com- southwest and northeast by active strike-slip later tectonic deformation, such that they now bination of regional fault-normal compression and reverse-oblique faults of the San Andreas conceal or obscure the older features. We use the (Page, 1982; Page and Engebretson, 1984) fault system. On both sides of the valley, these term in contrast to structural reactivation, where combined with the restraining left-step transfer faults are superposed on older normal and/or pre existing structures accommodate additional of slip between the central Calaveras fault and right-lateral normal oblique faults. The older deformation, commonly in a different sense the southern Hayward fault (Aydin and Page, faults comprised early components of the San from the original deformation (e.g., a normal 1984; Andrews et al., 1993; Kelson et al., 1993). Andreas fault system as it formed in the wake fault reactivated as a reverse fault), and in con- Approximately two-thirds of present-day right- of the northward passage of the Mendocino trast to structural overprinting, where preexisting lateral slip on the southern part of the Calaveras Triple Junction.
    [Show full text]
  • FINAL TECHNICAL REPORT Project Title: Assessment of Late Quaternary
    FINAL TECHNICAL REPORT Project Title: Assessment of late Quaternary deformation, eastern Santa Clara Valley, San Francisco Bay region Recipient: William Lettis & Associates, Inc. 1777 Botelho Drive, Suite 262 Walnut Creek, California 94596 (925) 256-6070 Principal Investigators: Christopher S. Hitchcock William Lettis & Associates, Inc., 1777 Botelho Dr., Suite 262, Walnut Creek, CA 94596 (phone: 925-256-6070; email: [email protected]) Charles M. Brankman William Lettis & Associates, Inc., 1777 Botelho Dr., Suite 262, Walnut Creek, CA 94596 (phone: 925-256-6070; email: [email protected]) Program Elements: I and II U. S. Geological Survey National Earthquake Hazards Reduction Program Award Number 01HQGR0034 July 2002 Research supported by the U.S. Geological Survey (USGS), Department of the Interior, under USGS award number 01HQGR0034. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. ABSTRACT A series of northwest-trending reverse faults that bound the eastern margin of Santa Clara Valley are aligned with the southern termination of the Hayward fault, and have been interpreted as structures that may transfer slip from the San Andreas and Calaveras faults to the Hayward fault. Uplift of the East Bay structural domain east of Santa Clara Valley is accommodated by this thrust fault system, which includes the east-dipping Piercy, Coyote Creek, Evergreen, Quimby, Berryessa, Crosley, and Warm Springs faults. Our study provides an evaluation of the near-surface geometry and late Quaternary surficial deformation related to reverse faulting in the eastern Santa Clara Valley.
    [Show full text]
  • Seismic Imaging of a Portion of the West Chabot Fault At
    SEISMIC IMAGING OF A PORTION OF THE WEST CHABOT FAULT AT CALIFORNIA STATE UNIVERSITY, EAST BAY __________________ A University Thesis Presented to the Faculty Of California State University, East Bay __________________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Geology __________________ By Adrian Thomas McEvilly December 2018 ABSTRACT Located along the Pacific-North American plate boundary, the San Francisco Bay Area is home to more than seven million people and no fewer than a dozen active faults. As documented in the United States Geological Survey (USGS) publication: Earthquake Outlook for the San Francisco Bay Region 2014–2043, the Hayward, West Napa, Greenville, Calaveras, and several other faults of the San Andreas Fault system have all produced earthquakes of magnitude 6.0 or greater in the past 150 years, and the occurrence of lower magnitude (<M6.0) earthquakes is not uncommon on these faults as well as the many other faults within the region. The San Francisco Bay region is statistically likely (72%) to produce one or more M6.7 or greater earthquakes before 2043, with the Hayward Fault as the most statistically likely (33%) to produce such an event. Earthquakes are commonly classified by their moment magnitude, a metric that accounts for the area of fault rupture, the average slip distance along the fault, and the force required to initiate the temblor. However, moment magnitude does not consider the qualities of the earth materials through which the rupture occurs, or the depth of the earthquake. While moment magnitude describes the size of the earthquake, strong shaking is a function of the earthquake’s source, the path the earthquake travels, and the site conditions.
    [Show full text]
  • Active Fault Mapping and Validation Using Geophysical and Terrain Parameters for Assessing Seismic Hazards in Parts of Himalaya
    ACTIVE FAULT MAPPING AND VALIDATION USING GEOPHYSICAL AND TERRAIN PARAMETERS FOR ASSESSING SEISMIC HAZARDS IN PARTS OF HIMALAYA ABHISHEK SAIKIA March, 2015 SUPERVISORS: Dr. P.K. Champati ray (IIRS, India) Mr. S. Kannaujiya (IIRS, India) dr. M. van der Meijde (ITC, The Netherlands) THESIS ASSESSMENT BOARD: Chair: prof.dr.ir. M.G. Vosselman ITC Professor: prof.dr. V.G. Jetten External Examiner: Dr. G. Philip, Scientist-G, Wadia Inst. Of Him. Geol. (WIHG) Observers: dr. N.A.S. Hamm and Dr. P.K. Champati ray ACTIVE FAULT MAPPING AND VALIDATION USING GEOPHYSICAL AND TERRAIN PARAMETERS FOR ASSESSING SEISMIC HAZARDS IN PARTS OF HIMALAYA ABHISHEK SAIKIA Enschede, The Netherlands, March, 2015 Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation. Specialization: Natural Hazards and Disaster Risk Management SUPERVISORS: Dr P.K. Champati ray, (IIRS, India) Mr S. Kannaujiya, (IIRS, India) dr. M. van der Meijde, (ITC, The Netherlands) THESIS ASSESSMENT BOARD: Chair: prof.dr.ir. M.G. Vosselman ITC Professor: prof.dr. V.G. Jetten External Examiner: Dr. G. Philip, Scientist-G, Wadia Inst. Of Him. Geol. (WIHG) Observers: dr. N.A.S. Hamm and Dr. P.K. Champati ray DISCLAIMER This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the Faculty.
    [Show full text]
  • Database of Potential Sources for Earthquakes Larger Than Magnitude 6 in Northern California
    U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY DATABASE OF POTENTIAL SOURCES FOR EARTHQUAKES LARGER THAN MAGNITUDE 6 IN NORTHERN CALIFORNIA By The Working Group on Northern California Earthquake Potential Open-File Report 96-705 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American stratigraphic code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1996 Working Group on Northern California Earthquake Potential William Bakun U.S. Geological Survey Edward Bortugno California Office of Emergency Services William Bryant California Division of Mines & Geology Gary Carver Humboldt State University Kevin Coppersmith Geomatrix N. T. Hall Geomatrix James Hengesh Dames & Moore Angela Jayko U.S. Geological Survey Keith Kelson William Lettis Associates Kenneth Lajoie U.S. Geological Survey William R. Lettis William Lettis Associates James Lienkaemper* U.S. Geological Survey Michael Lisowski Hawaiian Volcano Observatory Patricia McCrory U.S. Geological Survey Mark Murray Stanford University David Oppenheimer U.S. Geological Survey William D. Page Pacific Gas & Electric Co. Mark Petersen California Division of Mines & Geology Carol S. Prentice U.S. Geological Survey William Prescott U.S. Geological Survey Thomas Sawyer William Lettis Associates David P. Schwartz* U.S. Geological Survey Jeff Unruh William Lettis Associates Dave Wagner California Division of Mines & Geology
    [Show full text]
  • Fault Segmentation and Controls of Rupture Initiation and Termination
    DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY PROCEEDINGS OF CONFERENCE XLV Fault Segmentation and Controls of Rupture Initiation and Termination Palm Springs, California Sponsored by U.S. GEOLOGICAL SURVEY NATIONAL EARTHQUAKE-HAZARDS REDUCTION PROGRAM Editors and Convenors David P. Schwartz Richard H. Sibson U.S. Geological Survey Department of Geological Sciences Menlo Park, California 94025 University of California Santa Barbara, California 93106 Organizing Committee John Boatwright, U.S. Geological Survey, Menlo Park, California Hiroo Kanamori, California Institute of Technology, Pasadena, California Chris H. Scholz, Lamont-Doherty Geological Observatory, Palisades, New York Open-File Report 89-315 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1989 TABLE OF CONTENTS Page Introduction and Acknowledgments i David P. Schwartz and Richard H. Sibson List of Participants v Geometric features of a fault zone related to the 1 nucleation and termination of an earthquake rupture Keitti Aki Segmentation and recent rupture history 10 of the Xianshuihe fault, southwestern China Clarence R. Alien, Luo Zhuoli, Qian Hong, Wen Xueze, Zhou Huawei, and Huang Weishi Mechanics of fault junctions 31 D J. Andrews The effect of fault interaction on the stability 47 of echelon strike-slip faults Atilla Ay din and Richard A. Schultz Effects of restraining stepovers on earthquake rupture 67 A. Aykut Barka and Katharine Kadinsky-Cade Slip distribution and oblique segments of the 80 San Andreas fault, California: observations and theory Roger Bilham and Geoffrey King Structural geology of the Ocotillo badlands 94 antidilational fault jog, southern California Norman N.
    [Show full text]