Evolution of the Rodgers Creek–Maacama Right-Lateral Fault System and Associated Basins East of the Northward-Migrating Mendocino Triple Junction, Northern California
Tectonics, Volcanism, and Stratigraphy within the Evolving Transform Margin North of San Francisco Bay, California themed issue Evolution of the Rodgers Creek–Maacama right-lateral fault system and associated basins east of the northward-migrating Mendocino Triple Junction, northern California Robert J. McLaughlin1, Andrei M. Sarna-Wojcicki1, David L. Wagner2, Robert J. Fleck1, Victoria E. Langenheim1, Robert C. Jachens1, Kevin Clahan3*, and James R. Allen4 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA 2California Geological Survey, 801 K Street, Sacramento, California 95814, USA 3California Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA 4California State University East Bay, Hayward, California 94542, USA ABSTRACT Rodgers Creek fault zone dextral slip rate ated with releasing bends and strike-slip basins. increased from ~2–4 mm/yr 7–3 Ma, to 5–8 The Rodgers Creek–Maacama fault system is The Rodgers Creek–Maacama fault sys- mm/yr after 3 Ma. one such domain of extensional right-lateral tem in the northern California Coast Ranges The Maacama fault zone is shown from faults and releasing bend basins, though the (United States) takes up substantial right- several data sets to have initiated ca. 3.2 Ma long-term history of faulting in the area appears lateral motion within the wide transform and has slipped right-laterally at ~5–8 mm/yr to have included signifi cant compression. Else- boundary between the Pacifi c and North since its initiation. The initial Maacama fault where, the transform boundary zone clearly American plates, over a slab window that zone splayed northeastward from the south includes mixed compressional and extensional has opened northward beneath the Coast end of the Rodgers Creek fault zone, accom- right-lateral faulting.
[Show full text]