1993ApJS ... 86. .293D the IRTaccountsforabout40%oftotalchromospheric tionships havebeenobservedinotherdiagnostics(e.g.,Simon the Caiiemissionfluxtomagneticdynamobeheved be blue Canfines,theIRTliesin aregionofthespectrumwith losses whichisequivalenttotheHandKlosses.Unlike the which sharetheupperlevelsofHandKtransitions(see, relationship isnowfirmlyestablished,atleastforsinglestars. the solar11yrcycle(Bahúnas&Vaughn1985).Noyesetal. &Fekel 1987;Strassmeieretal.1990)andtherotation-activity (1984, hereafterNHBDV)demonstratedtheconnectionof stellar activitylevelsmayundergocyclicvariationssimilarto for example,Mihalas1978).Duncan(1983)estimated that called Caninfraredtriplet(IRT),XX8498,8542,and8662, operating inrapidlyrotating,convectivestars.Similarrela- ered unevenlywithplagelikeregions(Wilson1978)andthat Wilson projectwenowknowmanystarspossesssurfacescov- chromospheres. ThroughtheremarkableworkofMount H andKlineshaveprovidedawealthofinformationonstellar schild &Eberhard(1913).Subsequently,observationsofthe related toplageregionsontheSun(Hale&Ellerman1903) and connectedtoactivestellarchromospheresbySchwarz- cal AstronomyObservatories,operated bytheAssociationofUniversities Foundation. for ResearchinAstronomy,Inc.,under contractwiththeNationalScience © 1993.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. The AstrophysicalJournalSupplementSeries,86:293-306,1993May 1 Transitions whicharesimilartotheHandKUnesso Ca nHandKemissionreversalshavebeenshowntobe VisitingAstronomer,KittPeakNational Observatory,NationalOpti- in theinfraredtripletisabouttwicethatofHandKUnes. increased emissionwithdecreasingperiodwhiletheasynchronousbinariesshowabnormallyhighactivitylevels which areknownorsuspectedtobechromosphericaUyactive.Thesampleincludesbothsingleandbinarystarsof Subject headings:infrared:—stars:chromosphereslate-type for theirrotationperiods.Severalstarsexhibitrotationallymodulatedemissionwhichisanticorrelatedwiththe rotation period,,temperature,andduplicityareanalyzed.Synchronousbinariesshowaslighttrendof diagnostics weremeasuredandtheirrelativemeritsarediscussed.Dependenceofchromosphericemissionupon stellar brightness.Finally,estimatesofchromosphericenergylossesarepresentedwiththeresultthattotalloss spectral typesfromF2toM5spanningluminosityclassesIII,IV,andV.Severaldifferentofactivity Spectroscopic observationsoftheCaninfraredtriplet(XX8498,8542,8662)havebeenobtainedfor45stars © American Astronomical Society • Provided by theNASA Astrophysics Data System OBSERVATIONS OFTHECanINFRAREDTRIPLETINCHROMOSPHERICALLYACTIVE Center forExcellenceinInformationSystems,TennesseeStateUniversity,33010thAvenueNorth,Nashville,TN32703 Joint InstituteforLaboratoryAstrophysics,UniversityofColorado,CampusBox440,BoulderCO80309 1. INTRODUCTION Ritter Observatory,TheUniversityofToledo,2801WestBancroft,OH43606 Dyer Observatory,VanderbiltUniversity,Nashville,TN37235 Received 1992August5;acceptedOctober16 SINGLE ANDBINARYSTARS 1 1 Robert C.Dempsey Gregory W.Henry Bernard W.Bopp Douglas S.Hall ABSTRACT AND 293 tions ofawidervarietyobjectswereobtained. ily tobrightstars(V<5).Furthermore,theobjectsinthese tensive numberofstellarobservationstheX8542fine. tron density,andCandensitytobehigherforagivenoptical the emissionresultsfromasteepeningoftemperaturegra- tions andinterpretationsofsolarIRTplageprofileswerepre- that theIRTisformedinlowerchromosphere.Observa- tectors. Calculationofsurfacefluxesisquitestraightforward wavelength regioniseasilyobservablewithmodemCCDde- well-defined continuum,makingcalibrationsimpler.This CVn) classeswhilesomeFK Comae starsareamongthesingle BY Draconis(BYDra),and RSCanumVenaticomm(RS unevolved. Thebinarysystems includemembersoftheAlgol, role oftheIRTinactivechromospherestars,andtogain in- ity levelsasindicatedbyCanHandKfluxes.Toascertain the depth, comparedtothequietphotosphere,thusincreasing dient inthechromosphere.Thisforcestemperature,elec- and Kfines,Vemazza,Avrett,&Loeser(1976)demonstrated stars. Spectraltypesrangefrom F2toM4.5.Inmostcasesonly characteristics includingbeing singleorbinaryandevolved sight intothedynamosoperatingonthesesystems,observa- studies tendedtohavelowrotationalvelocitieswithmildactiv- Linsky etal.(1979)andFoing1989)presentedan ex- source functiontherebyproducingemissioninthefinecores. sented byShine&Linsky(1972,1974)whoconcludedthat for thesefeatures(Linskyetal.1979).AsisthecasewithH 70 starsintheinfrared.Objectsstudiedcoverawiderange of We reporttheresultsofmorethan200observationsover To dateobservationsoftheIRThavebeenrestrictedprimar- 1993ApJS ... 86. .293D 2 tronomy, Inc.,undercontractwith theNationalScienceFoundation. which isoperatedbytheAssociation ofUniversitiesforResearchinAs- from filhnginbychromospheric emission.Spectraofeight ability duetostarspotsorboth.Exceptforafewcases(e.g., HR presence ofstrongCanHandKemission,photometricvari- in Table2.SpectraforthestarsarepresentedFigures 1-4. Stars aresegregatedinto“active”and“inactive”basedon the was usedforIMPeg(Huenemoerder,Ramsey,&Buzasi revealed nosignificantdifferenceswithpreviousresults.There- data withPDM(Stellingwerf1978),asimplementedinIRAF, fore, theephemeris2,444,686.5+\9A\0E(Strassmeieretal. reported previouslyinconjunctionwithspotimaging(Demp- sey etal.1992).Performingstandardperiodanalysisonthe May. ResultsforaGemfromthe1989-1990seasonhavebeen obtained in1989January-MarchandDecember-1990 IM PegwiththeVanderbilt-TennesseeState0.4mAutomatic Photoelectric Telescope(Genetetal.1987).Thedatawere tween 30-100:1andthedatawerereducedinstandardfashion and 8662willbereferredtoasIRT-1,IRT-2,IRT-3,re- lution of1.2Á.Thesignal-to-noise(S/N)wastypicallybe- spectively. using IRAF.Henceforth,thethreetransitions,XX8498,8542, Dispersion Spectrograph(=LDS,Boppetal.1992)withareso- fainter stars.HerethestarswereobservedwithRitterLow 1908) alloftheactivestarsexhibitshallowprofilesresulting included allthreelinesofthetriplet,wereobtained which wasdemonstratedbyShine&Linsky(1974)toshow and activesolarregions.Lowerdispersionobservations,which the greatestchangeincoredepthofthreebetweenquiet ing afiber-fedechelle(seeDempseyetal.1992fordetails). 1990). 1988a) wasadoptedforaGemwhile2,422,243.316+2439E These observationscoveronlytheregionofX8542line resolution wasabout0.2Á.AtRitterObservatorythehighest Table 1.ThehighestresolutionwasobtainedwiththeKPNO spectral resolutionwas0.39Âwiththe1mtelescopeemploy- Coudé FeedwhereaTICCDwasusedwithgratingA.Herethe in 1989.Fourdifferentresolutionswereusedasdetailed National Observatory(KPNO),overa3yrintervalbeginning vatories, RitterObservatoryinToledo,Ohio,andKittPeak Dempsey etal.(1992). . Manyoftheseobservationswereperformedin localized regionsspatiallyassociatedwithlargespotsinthe phase coveragewassufficienttoidentifytheemissionasdue conjunction withthespectralmappingprogramconductedby one observationperstarwasobtainedbutinseveralcases, 294 2 IRAFisdistributedbyNational OpticalAstronomyObservatories, A fistofobservedstarsandtheirrelevantpropertiesisfound Johnson VandBphotometrywereobtainedforaGem Spectroscopic observationswereobtainedfromtwoobser- © American Astronomical Society • Provided by theNASA Astrophysics Data System 2.1. SpectroscopicObservations 2.2. PhotometricObservations 3. ACTIVITYLEVELS 2. OBSERVATIONS DEMPSEY ETAL. -1 1 -1 -1 be expectedbasedonvsinialone. three IRTlinesareasymmetricandshallowerthanwould phases lacktheemissioncore. changes intheemissioncore (Fig.2).Observationsatother vations separatedbyfourdays, 0.14inphase,revealquick and fivemoreovera1weekinterval in1990May.Twoobser- higher vsini.Twoobservations wereobtainedin1990March comparable tothatinIMPegeventhoughthelatterhas a claims ofphotometricvariabilityforthisstar.However, all depth. AsimilarresultisobservedinHR7635,oDra, and broadening inactivestarspectraandcomparingthe core its spectraltypeandvsin/,thelatterverifiedbyartificially Although itpossessesmoderateemissionintheHandKfines low profilewithemissioncorespresentatseveralphases(Fig. This likelyresultsfromlessrotationalsmearingoftheemission eUMi. (Strassmeier etal.1988b)thedepthofIRT-2isconsistentwith files. NotethesimilarityofV711TauandUXAriinFigure4. owing toVYAri’slowerpsiniof6kms. km s')butwithslightlymorewell-definedemissionreversals. that ofV711Tau(psini=38kms)andUXAri37 broadening alone.NosignificantemissionisdetectediniVir but lookingatartificiallybroadenedspectraofinactiveearly (F6 III)aswefi. G IIIstarssuggestthefinedepthsareconsistentwithrotational in thisprogram.TheIRTfinesappearverystrongandbroad. 5 ).Low-resolutiondataalsodisplayfilled-in,asymmetricpro- An appropriatestandardisnotavailablefordirectcomparison in onaLDSspectrumobtained1990December10(Fig.4). on eightdifferentoccasionsovertheinterval1989January its lowrotationrate(psin/=8kms,P76days).High-res- olution observationsrevealanextremelyshallowIRT-2profile eral objectsfollow. in thisfineapparentADLeo.Specificcommentsaboutsev- which theemissionextendsabovelocalcontinuum.Inall eight casestheemissionwasweakestatIRT-3withnoreversal one observation.TheIRT-1fineofBYDraistheonlycasein fined emissionrisingabovetheshallowfinecore)inatleast adae) revealclearlydefinedemissionreversals(i.e.,wellde- Draconis, ADLeonis,EQVirginis,VYArietis,andXAndrom- stars (V711Tauri,IMPegasi,BMCanumVenaticorum,BY 10-23 (Fig.2).However,thetripletisonlymoderatelyfilled a a 3 Cam.—Strassmeier&Hall(1988)rejectedprevious BM CVn.—ThedegreeoffillinginIRT-2CVn is HR 1908.—Thisisanexampleofamarginallyactivestar. 14 Ari.—WithaspectraltypeofF2IIIthisistheearheststar A HR 454.—Thisstarexhibitsinterestingvariationsdespite V711 Tau.—High-resolutiondatarevealanextremelyshal- V YAri.—TheIRTforthisactivebinarystronglyresembles LDS, grating6R021.28380-8685 Instrument DesignationResolutionWindow Echelle ROl0.398520-8565 Coudé, Camera5,gratingAKP20.238530-8610 Coudé, Camera5,gratingBKP10.908425-8780 DefinedasFWHMofcomparisonlines. Equipment TABLE 1 >H>H^¡

§ § § h) a pit p^ CL, O O Ph tí tí Pu PU tí tí tí tí tí o O O Pu O O O O O Pu PU O PU PU PU O O 0* O « W w tí tí w tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí Oí tí tí tí tí tí tí tí tí tí tí lOO O)lO OCO lO1-1 m00 OlO CO CO O lO o lO es o o »o esO coO coO LOO 00LO eso LOo o o o loO b-LO coLO esLO esO O OCS r-Hlo iOT^eocoi-iint- tî< CO tîh lO Oco Oco O)^ coes Tji

ñ 05 CO °î OO û7 ^ es co oï t- Íh ^ ® eo b-^ oo TÍH CO (kj b~

aÖ g“ : ^ Ti< es es tí* es - «> b- S oo es es oo ® CO ^ O Tí* ^ O I > LO £O > tí tí § p tí + hhhh+hh_ + 3 ;> > 3 S ä o>>HK 3 3 > 3 3 S>>S¿ > > p > > > es lo es co es Ü o es <30 r-i th es es oo lo CS LO 00 LO CO LO b- 1-1 Ü tí tí tí tí Ü ^ O tí tí tí tí tí tí Ü Ü tíÜ¿¿títí tí O Ü tí tí tíOtítítí Ü tí Ü

lOLO O 1-1CO Olo b-05 00CO coCO ooTi* i-*T-l eso rio 05co t-05 05o Oco 05Tí* CJ5i-iCSCS05b- r—* 1-1 i—* r-H b-lo ooi—i ooes tíioo Tiioo cooo 05CO 05o loi-* coCS coOS 1 i—*o 1-1 LOlo LOco 05o b-CO lo00 lo00 co05 coTí* b- 05 rH rH CO 1-1 1-1 es es es cs co co co co co <—) Ty tj Li j COCOCOb-t- oo oo oo oo 05 1-105 05I-* OCS OCS CSi-* Q Q Q Q P Q Q Q Q Q P P P P P p p p p p p p p p p p p p p p p p p H W W M W W tí tí P P p W PQ tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí

^ Ti* co m Ü < m a M s SI LOco loLO mjh* ¿a M M rf t-es «J ió oo ^ 00 00 M ü > S M § M -f- LO LO M U J J V) Ö ^ ftScsgt- 'S o w tí O’ oí > « > p tí tí Cfi > > o W o eri. W co , > CO co ^ PQ en PQ < H >1>1>*>1>H^; ¡Z;>H>H>H>1 >H Î5 >1 >H ^ >1>1>H^;>1 >1>1¡Z;>1 >1>1>H>H>H ^¡^¡Z¡>1

PU O tí '¡^T' cs i—i i—i cs i-i es cs n CS i—t i—* i—t O O O O O O O O O O O ¡ PU O PU O O O O O O O O O PU CU Ph PU O O Pu PU Pu O tí tí tí tí tí tí tí tí tí tí tí ! tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí tí O_ oLO COo oLO o cso LOo o b-o o Ti*O LO1-1 COo o o loo olo oco oco o COo Oo LOo Ti*o 00o LOo oLO oCS oLO LOo oco o o LOOO b-Tí* I-*LO 00LO COTí* Ti*Tí* LOI-* Tí*Tf LO LOo Tí*oo COi-* tí*LO coTí* ooCO b-•^* t-^ LOn nLO oTí* b-Tí* Tí*co Tí* csCO coLO t-tí* coOO Ti*tí* lo1-1 t-Ti* COO OCO COTí*

tí oo i—i e'i o co ^ 2lo co<=> co coP ûT 0 b- lo eo co ¡ P¡ 03 *>■ 2 CO i-* b- b-

b- co i co oo \ e^ co lo «^ MS VI /vï'“ oo loC5 esTí* oo : VI ^ ^ VI o : ^ > „ > p > Tí* H LO O LO p w Ü tí tí 1* LO ^ -|- + + TS P > P + P ^ P 5 ^ T > > >>>33 > P P LO ^ « p > P > K P + n rQ o s> CS CSL “r CO LO LO LO QO LO I—* LO CO rH O ¿ Scs rl OS iCS nLO o o es fe tí ^ a bbtí fe b. tí Ü o O fe Ü tí tí tí tí tí ^ <¡ Td tí Ü tí Ü S tí •p 3 COLO Ti* § 3 1-1 O CO o cs 00 Ti* b- 1-1 05 b- b- 05 05 rH OO Ti* 05 „cs lo Q0 „ t- o es n es O co05 esO b-cs Oco coTf* 05es b-n ooTí* coTí* COco CStí* coTí* Tí*oo coCO 05LO cori eo1—lLOCSb-b- co o o 11 ooo otí* oLO °2 ^co ^50 oS 05co eslo b-co b-Tí* LOlo COcs 5 d g « 1-H LO CO 05 b- cs co co b- o ri CS CS CO OO 05 05 cs tí* cob- LO CS cs i L° es T 05 o ¡ CO Ti* b- CO 05 1-1 1-1 1-1 1-1 cs cs cs cs cs cs cs os co co co co tí* co co + 05 *7 + 05 rH ü co ^ p p p p p p p p p p p p p p p p p p p p p P P P P P P P P P p p p p w w P P P P p p p p p p p p p p p p p p p p p p m P ü P P P p p p p ¡ £<2.2

05 a o ^ ^ CO o Ö \-p-xM h 1 P P 8 OJ ^ E 2 -r* p p ^ ^ fe •s a M o 1 H » _i Data are taken from Dempsey et al. 1992, Gray 1989, Hoffleit 1982, Noyes 1984, Speisman & Hawley 1985, Strassmeier 1988b, and 1990. Refers to the cooler component unless hotter is known be source of activity. Q tí ü M ^ C , <í CÏ5 <í ¡^1 o ¡ ^* P P Tí* P Where only one quantity listed for SB2s values refer to the active component while SB Is primary are listed. „ >h tí tí ^ ¡ tí tí b-P H— fe STí* ¿^ ü E <í fe tí p Ü Ü Q ^ H fe tí O’ ° -1 ” VJ. P P Ö , > p p í> i-* fe !> ö eo P Ö CClP O b CCL<Í Ü H Q P Q fe b P

American Astronomical Society • Provided by the NASA Astrophysics Data System 1993ApJS ... 86. .293D the otherFKComtypeobject inthissurvey,HD199178. ences observableinthethreeIRT lines.BothIRT-1andIRT-2 by dark,coolspots(Vogt&Penrod1983).However,in the tions. Asymmetriesarepresentinthelinecores,particular units ofintensity.Datahavebeennormalizedtounityandshiftedbothverticallyhorizontallyforclarity. may bepresent.Spectraofthis starareverysimilartothoseof view. Emissioninthewings of thelines,inparticularIRT-1, sphere, thesearelikelytheresultofplagesmovinginandout of case oftheIRT,sincecoresareformedinchromo- changes aresimilartothoseseeninabsorptionlinesproduced IRT-2 andIRT-3,whicharemirroredinbothlines.These sented inFigure6coverslightlylessthanthreecompleterota- of itsclasswhereitisbelievedtobeacoalescedbinary(Bopp & Stencel 1981).Withaperiodof2.4daystheobservations pre- 296 Fig. 1.—High-resolutionspectraofIRT-2forinactivestars.Aprominenttelluriclineisindicatedinthespectrum^Her.They-scale isinarbitrary HD 129333.—Dataforthisstar (Fig.4)indicatethediffer- FK Com.—Thisrapidlyrotatingsinglestaristheprototype © American Astronomical Society • Provided by theNASA Astrophysics Data System Fig. leId Fig. lalb DEMPSEY ETAL. tially filledinbyemissionas seeninFigure8.Theprofiles low-resolution. Thedataonthis starrevealtheIRTtobepar- strongly resemblethesolarplage profilesofIRT-1presentedby tion data. served oneightoccasionsat high-resolutionandtwicewith was observedbyHuenemoerderetal.(1990)withlowerresolu- tions. Asimilarresult,butwithoutthedetectionofreversals, the Flightcurvedisplayedbelow.Thespectracoverthreerota- which roughlycorrespondtophotometricminimaasseen in emission reversalisobservedintwospectra(0=0.35,0.86) ure 7.Atthetopoffigurearespectra,orderedinphase. An This isconsistentwiththeresultsofShine&Linsky(1974). reveal emissionreversalswhileonlyashallowIRT-3isvisible. X And.—Thislong-periodasynchronous systemwasob- IM Peg.—PhasedependentvariationsareillustratedinFig- 1993ApJS ... 86. .293D for BMCVn.Thesetwoobservations wereobtainedfourdaysapart(0.14inphase). Fig. 2.—Sameas1fortheactive stars.Singlearrowsdenotetelluriccontaminationwhiledouble highlightthequickchangeinemission © American Astronomical Society • Provided by theNASA Astrophysics Data System Fig. 2e Fig. 2/ Fig. 2c2d 1993ApJS ... 86. .293D R alsodependsonluminosity.However,remainsanexcel- tometry displayedbelow.Emission isgreatest,i.e.,Rlargest, is plottedinthetopofFigure 10withcontemporaneouspho- residual coreintensityforoGem duringthe1988-1989season that canbedetectedinmoderately activestarslikeoGem.The lent parametertostudysmalltemporalvariations. the finebecomesbroaderandmoreshallow.Toalesserextent, pendent inthatRincreasesastherotationratesince no apparentvariationsatthislevel.NotethatRisvsin/-de- Lambert 1987;butseeAyers,Fleming,&Schmitt1991),show and aBoo,whichsomehaveclaimedtobemildlyactive,(e.g., ent thattheinternalerrorsareabout2%.Evenstarslikee Peg better results.Hereerrorsprimarilyresultfromcontinuum stars, whereanumberofobservationsareavailable,itisappar- placement ifS/Nissufficientinthefinecore.Forstandard tion. onstrated howtheresidualcoredepth(R)couldbeusedwith must beusedwithcautionduetoluminosity,metalficityand to difficultiesindefiningthecontinuumandfinewings, v sinieffects.Bothmethodssufferfromtelluriccontamina- making smallvariationsundetectable,whileintegratedindices c c c c in Linskyetal.(1979),anindexobtainedbyintegratingthe the ?Frequently,investigatorsuseequivalentwidth area underthefinecontainedinalimitedbandpass.However, W measurementsaretypicallyonlyaccurateto5%-10%due ( ofaspectralfeaturetoquantifythelevelactivityor,as ered withsuchregions.AsimilarresultwasfoundbyBaliunas c sess strongemissionreversalsinallthreeIRTfines. degree offillingsuggeststhatthephotosphereisheavilycov- & Dupree(1982)studyingUVemissioninXAnd. of discreteplagescrossingtheobserver’slinesightwhile Shine &Linsky(1972).Theobservedvariationsaresuggestive 298 x Figure 9isanillustrationofthe smallchangesincoredepth Herbig (1985)andBopp,Dempsey,&Maniak(1988)dem- The firstquestionis,howdoweevaluatetheactivitylevelof BY Dra.—AlongwithADLeoandDFUMa,Drapos- © American Astronomical Society • Provided by theNASA Astrophysics Data System 3.1. CoreDepth wavelength (angstroms) Fig. 2g DEMPSEY ETAL. Fig. 2—Continued rotation, itisusuallynotwell-known owingtouncertaintiesin the strongcorrelationofstellar radiusonperiod(Rengarajan tions ofsurfacefluxwithrotational periodareobserveddueto the fluxtobolometric(Rutten&Schrijver1987; the temperature(T)dependenceintroducedbynormalizing velocity mayrepresentamore fundamentalmeasureofthe liland 1985;Simon&Fekel1987).Forbinaries,falsecorrela- vective turnovertimesarenotwellknownformanystars(Gil- Young etal.1989).Afurthercomplicationresultsinthatcon- gued thatthisisfortuitousandusingRonlypartiallyremoves the scatterintheirflux-periodplots.However,othershave ar- & Yerma1983;Dempseyet al.1993).Whiletheequatorial many dynamotheories.NHBDVadoptedRsinceitreduced convective turnovertimeandisafundamentalparameter in The Rossbynumberistheratioofrotationalperiodto the Thurman 1989;Simon&Fekel1987;Strassmeieretal.1990). Walter 1987;Glebocki&Stawikoski1988;Young,Ajir, & fluxes orluminositiesversustherotationperiodRossby number, R(Barden1985;Basri1987;Basri,Laurent,& reported fortwoseasonsofobservationsbyBoppetal.(1988). changes mirrorthoseofthespots.AsimilarchangeatHawas regions moreuniformlydistributedonthesurface.These emission, whichalsohasthesamemeanlevel,isproducedby decreased from0.10to0.06mag19891990whilethe mean brightnessremainedunchanged.Thisindicatesthatthe anticorrelation foroGem.Duringthisinterval,Rremained eff nearly constantat0.49.Thephotometricamplitude,AF,also 0 gions, assumedtobeplages,arecospatialwiththedarkspots straight forwardinthe1989-1990data(compareFigs.9and producing thebrightnessvariations.Similarresultshavebeen at photometricminimum.Thisindicatesthattheemittingre- Huenemoerder etal.1990).However,thecorrelationisless observed inothersystems(e.g.,Baliunas&Dupree1982; 0 0 15 inDempseyetal.1992). c Since theworkofNHBDVithasbeencustomarytoplot However, duringthe1989-1990seasonthereisnoobvious wavelength (angstroms) 3.2. Fluxes Fig. 2h 1993ApJS ... 86. .293D © American Astronomical Society • Provided by theNASA Astrophysics Data System Fig. 3c Fig. 3a Fig. 3.—Sameas1butforstars withthelow-dispersionspectra Fig. 3e wavelength (angstroms) Fig. 3d Fig. 3b 1993ApJS ... 86. .293D © American Astronomical Society • Provided by theNASA Astrophysics Data System Fig. 4.—Sameas3butforthe activestars.TheIRT-1profileforHD199178islikelycontaminated withnoise. Fig. 4e Fig. 4a wavelength (angstroms) Fig. 4/ Fig. 4b 1993ApJS ... 86. .293D © American Astronomical Society • Provided by theNASA Astrophysics Data System Fig. 4—Continued wavelength (angstroms) wavelength (angstroms) Fig. 4h Fig. 4/ Fig. 4g Ca nINFRAREDTRIPLET tions. Notethechangesinline cores observableinallthreelines,espe- ( 1976)ephemeris. cially atphases0.30and0.71.Phases werecalculatedfromChugainov’s the stellarinclination.Therefore,toinvestigateperiod-activity tively. Linskyetal.(1979)concludedthatemissionwithin width underihtlinecorein2.0and1.0Ábandpasses,respec- broadened tothesamevsiniasactivestar.Photospheric third quantity,Z>,istheequivalentwidthofresidualemis- measured. Thefirsttwo,andW,aretheequivalent believed duetothechangingaspectofspotsorplagesasstar relations wechosetouseonlytheperiod,PPeriods,taken cover 400days. sion outsideofthisrangemayarisefromthephotosphere.The rotates. from theliteratureandlistedinTable2,arederivedviaphoto- sion afterthesubtractionofasuitablestandardwhichhasbeen metric orCanHandKmodulationwherethevariationis ± 1.0Âofthefinecoreischromosphericinoriginwhileemis- x xx Fig. 6.—Low-resolutionspectraof FKCom.Datacoverthreerota- To parameterizetheemissionlevelsthreequantitieswere Fig. 5.—ObservationsofV711Tauatthreephases.Theseobservations 301 1993ApJS ... 86. .293D due toincompletescatteredlightsubtraction. TheCanlineisnotaffected. have improvedconsiderablyinthelast23years,thoseofCar- Linsky etal.(1979).Althoughmodelatmospherecalculations widths wereconvertedtofluxesandusingtheatmo- D couldnotbemeasuredforallprogramstars.Equivalent sphere modelsofCarbon&Gingerich(1969)asdetailedin ment. Duetolimitedavailabilityofappropriatestandardstars, mated tobe10%,duemainlythechoiceofcontinuumplace- mospheric emission.Errorsintheequivalentwidthsareesti- (Schrijver 1987)butassumesthatthestandardhasnochro- pheric fluxwhileimplicitlyremovingthebasalcomponent This quantityhastheadvantageofmeasuringallchromos- ( seeFig.4,Linskyetal.1979)andisignoredincalculatingD. as broadwingsinadditiontothechromosphericemissioncore emission, ifpresent,willbevisibleinthedifferentialspectrum x 302 x Fig. 8.—ObservationsofXandshowing thechangesinplagelikecore.Inbottomspectrum, continuumredwardoftheIRT-2appearsnoisier © American Astronomical Society • Provided by theNASA Astrophysics Data System Fig. lalb Fig. 7.—(a)IRT-2spectraofIMPegorderedinphase,(b)LightcurveforPeg. DEMPSEY ETAL. r lated asarethefluxesintwobandpasses.Therefore,further IRT-2 revealsthatthefluxesinallthreeUnesarehighlycorre- IRT-1 versusIRT-2,IRT-2IRT-3,and7mversus^f° spectra consistofallthreelinesthetriplet.Plotting^for the cooleststars.Totalerrorsinderivedfluxesareesti- gerich (1969)forr<4000K,fluxeswerenotcalculated temperature willchangethefluxbyapproximately8%.Since mated tobe20%-30%. appropriate atmosphereswerenotpresentedinCarbon&Gin- taken eitherfromStrassmeieretal.(1990)orestimated temperatures inoursampletheinfrared.Temperatureswere bon &Gingericharetheonlyonesavailableforrangeof spectral typesusingthesamemethod.Anerrorof100Kin eff Except fortheRitterechelledata,whichcoveronlyIRT-2, Vol. 86 1993ApJS ... 86. .293D 1988-1989 observingseason. and dwereplottedversusperiod(Figs.1113).Thereisa between IRT-1-IRT-2,especiallywhenthechromospheric line becomesalmostcompletelyfilledinforthemostactive tors. Amongthefluxes,thereishighestdegreeofscatter the conclusionsaresimilarforothertwolines.Similarre- is toosmalltoincludethemajorityofchromosphericemis- The largerscatterresultsfromthefactthat1.0Abandpass discussion willberestrictedtoIRT-2butitnotedthat emission fluxislarge.ThisresultsbecausetheshallowIRT-1 Foing etal.(1989)becausemostoftheirstarswereslowrota- sion formostofthestarsstudiedhere.Itwassufficient sults, butwithahigherdegreeofscatter,areobservedin^. stars, makingidentificationofthelinedifficult. (1992) forthecorrespondinglightcurve. while thesolidlinerepresentsphase0.41.SeeFig.15inDempseyetal. ing the1989-1990observingseason.Plusescorrespondtophase0.11, No. 1,1993 x Fig. 10.—(a)RofIRT-2fora Gem. AlargerRindicatesincreasedemission.(6)Contemporaneous lightcurvefor100days.Ourresultsagreethese. A generalresultofallpreviousstudiesisthatinevolvedbina- ing UVfluxwithincreasingperiodatbestforevolvedbinaries ries thefluxisroughlyconstantoverrangeof10-100days and Strassmeieretal.(1990)foundonlyaslighttrendforCan. gions inthechromosphere.However,theremaybeatrendof mon &Fekel(1987). increasing slopewithdecreasingluminosityasobservedbySi- trend isclearlyvisible.Thefluxappearstoremainroughly may reflectsaturationinthefillingfactorofemittingre- constant exceptforanupturnattheshortestperiods,which tion oftheweaktrendobservedinFigure11.Weconcludethat basal levelfromfyieldsaquantitycomparabletod.Re- temperature alsomasksanyperioddépendance.Noobvious thermore, thedecreasingstrengthofIRTwithincreasing thus raisingthecoredepthandsimulatingincreasedflux.Fur- for thehigh-resolutionobservations.Ingeneral,nostrong basal fluxlevelisindicatedbythedashedline.Subtractingthis correlations onluminosityorduplicityareobserved.InFigure sion sincelow-resolutionfluxesweresystematicallylargerthan v sin/.Figure13displaystheresultsfordseparatedbydisper- primarily fromanincreaseinvsin/whichbroadenstheprofile weak trendofincreasing^fordecreasingperiodbutthisresults moval ofabasalcomponentfrom^didimprovethedefini- 12 weplot^2f°IRT-2versus(F-R)color.Anapproximate x2x ^\2,i arenotaccuratediagnostics,exceptinthecaseoflow x Although comparisonwithmodelatmosphericlineprofiles Simon &Fekel(1987)foundaweakcorrelationofdecreas- 3.3 ChromosphericLosses 303 1993ApJS ... 86. .293D AY Cet. UX Ari... HR 996 VY Ari. a Ari... HR 454 HR 339 V711 Tau TT Hyd. OU Gem ß Lep— BM Cam. V492 Per. El Eri.... L Tri f And.. ß Com.. ßGem .. HR 1908. a Aur 3 Cam... FK Com BM CVn DQ Leo. HR 4430 GX Lib EQ Vir.. (7 Gem.. ¡i Her— ß Oph— UZ Lib. UV CrB HR 5553 HR 5534 BD +64°1017 Vir.... a Boo... HR 5110 V772 Her K Her... MS Ser. HR 7275. o Dra 5 Ser L Vir.... 14 Ari.. 13 Cet.. y Aql. € UMi.. ß Aql.. oUMa 10 Tau... respectively. IM Peg 61 CygB.. 61 CygA.. VI764 Cyg e Cyg.. 39 Cyg 16 Vir... X And b a 62 Indicatesdifference waszeroornegative. Fluxesareinunits of10ergscmsNobasal subtractionhasbeenperformed with^SubscriptshrandIrdenote high-andlow-resolution, Star © American Astronomical Society • Provided by theNASA Astrophysics Data System IRT-1 2.89 2.58 6.94 3.71 4.74 0.85 2.17 2.01 3.86 3.86 2.01 2.70 2.20 2.89 2.32 2.51 6.19 0.97 0.78 3.02 2.29 4.21 1.73 1.76 1.48 1.63 1.07 1.44 1.51 /x, 1.35 IRT-2 0.34 2.76 2.29 0.91 2.20 0.16 2.27 2.23 2.42 0.34 0.85 0.41 0.53 3.08 5.62 0.28 0.69 0.88 2.17 0.53 2.01 2.01 0.44 0.78 0.75 0.22 3.68 3.83 3.42 0.44 0.63 0.50 3.42 2.54 1.51 1.51 1.82 1.10 1.07 1.79 1.38 1.51 1.04 1.41 1.92 1.54 1.88 1.38 1.98 1.60 1.38 1.07 1.16 1.22 1.26 1.22 1.13 1.26 1.82 1.66 1.19 IRT-3 2.39 2.95 2.92 2.36 5.59 0.72 0.50 3.08 2.32 2.01 8.14 0.44 3.36 0.44 0.63 3.36 2.58 L32 1.54 1.70 1.79 1.51 1.92 1.19 1.16 1.92 1.48 1392 1.79 1.26 IRT-1 27.77 20.58 11.62 11.06 15.58 16.65 10.37 13.16 16.37 10.87 15.90 11.91 14.20 6.85 7.00 fxl 6.41 4.24 8.64 8.64 7.19 6*63 5.03 8.42 5.78 8.17 9.42 5.31 3.55 5.00 3.36 TABLE 3 Fluxes* IRT-2 22.96 13.32 13.13 11.47 12.35 13.63 13.07 15.17 10.81 10.30 4.52 4.11 2.32 9.30 6.28 4.49 4.62 7.32 9.96 7.48 Á2 6.13 9.94 8.29 5.97 5.00 2.51 2.17 6.97 7.22 5.78 4.55 4.62 6.31 7.54 6.22 9.46 7.16 2.07 5.31 3.71 5.12 8.42 5.84 5.72 5.69 8.95 3.71 3.20 4.56 2.80 5.03 3.24 5.47 3.39 7.16 3.02 8.80 1.19 1.98 1.54 1.98 IRT-3 22^43 12.13 12.63 12.50 13.66 10T2 11.06 12^53 12.94 11.50 9.58 4.56 6.19 9.49 f\2 5.47 4.87 4.81 2.86 9.05 7.22 5.47 2.20 7.35 5.78 5.40 2.07 2.86 5.06 7.04 5.12 b b b IRT-2 0.72 0.82 0.00 0.97 0.75 0.85 0.00 3.61 0.00 0.56 0.66 2.07 1.38 1.41 1.63 1.82 1.66 1.82 1.63 d\br IRT-1 4.65 3.36 3.27 4.27 0.69 5.47 5.03 4.71 6.66 4.59 1.44 ^Xlr 1.07 1.85 1.82 IRT-2 11.56 9*49 2.13 ^Xlr 0.97 7.17 7.66 5.25 0.44 6.60 5.22 2.45 2.86 5.43 8.01 1.88 IRT-3 10.99 4.27 0.75 6.13 6.47 ^Xlr 4.78 6.13 7.57 2.17 1.70 1.95 1.44 1993ApJS ... 86. .293D 6-2-1 6 -216- R) color.Thedashedlinerepresents a“byeye”estimateofthebasalflux level. ColorsweretakenfromStrassmeier etal.(1988b,1990). digm, whichisfrequentlyinvokedinthequestofunderstand- levels canchangedramaticallyasthestarrotates.Incaseof anticorrelation ofemissionandbrightness.Inthesolarpara- IM Peg,andforatleastoneseasonaGem,weseeclear the latterfromStrassmeieretal:(1990).Thisislargerthan the IRTofabouttwicethatinHandKfinesusingdatafor sonable consideringthe20%-30%errorsinourderivedfluxes. expected equalitypredictedbyDuncan(1983),butnotunrea- differential fluxbetweenthetwoof0.84X10ergscms. tracted fluxesforßGemandaof0.351.1X10ergs than oursbutagreementbetweenthetwostudiesisexcellent However, weassumeßGemtobeaninactivestarandfinda cm s",respectively,adiflerence0.75X10ergss. for starscommontoboth.Forexample,theyderivebasalsub- stellar sampleinLinskyetal.(1979)isgenerallylessactive period. 65 Fig. 12.—Fluxina2Âbandpassunder thelinecoreforIRT-2vs.(F- It isclearfromourresultsthatthechromosphericemission Combining fluxesforallthreefinesyieldsatotallossrate ^ - Fig. 11.—Fluxina2ÂbandpassunderthelinecoreofIRT-2vs. _o ^ 10 cr> 7.0 7.5 5.5 6.0 20 15 0 5 0.4 0.60.8 1.0 1.2 0 5 © American Astronomical Society • Provided by theNASA Astrophysics Data System 4. DISCUSSION (V-R) Ca nINFRAREDTRIPLET -1 tions canaddagreatdealofinformation toourunderstanding fines, HaorUVemission wefeeltheseneglectedtransi- of stellarchromospheres.To exploittheinformationcon- rotation dependence. lution isadequatefordetectingchromosphericemission and is implicitlysubtracted.Wealsoconcludethatwhilelow-reso- differential fluxismuchmorereliablesinceabasalcomponent rotating stars(vsini<10kms)whereactivitylevels are is notaverygooddiagnostictouse,exceptforthemostslowly the Sun. high resolutionisrequiredfordetailedanalvsisoftheactivity- for monitoringchangesonthemostactivestarslikeFKCom, only moderatelyhigherthanisthecaseforSun.Using the related (Zirin1988).InthecaseofaGemweseeanexample pluses, stars,anddiamonds,respectively. low-resolution data(6).LuminosityclassesIII,IV,andVareindicatedby of theevolutionthesespotsandplagesovertimeaswedo on ing stellaractivity,sunspotsandplagesarefrequentlyspatially 65 Since theIRTcanbeobserved moreeasilythantheHandK We alsofindthattheintegratedfluxinaspecifiedbandpass Fig. 13.—Differentialfluxvs.periodforhigh-resolutiondata(a)and ^ ' ~o CD 7.0 5.5 7.5 5.0 0.0 0.51.01.52.02.5 Fig. 136 log(p) 305 1993ApJS ... 86. .293D Gilliland, R.,L.1985,ApJ,299,286 Gray, D.F.1989,ApJ,347,1021 Glebocki, R.,&Stawikowski,A.1988,A&A,189,199 Genet, R.,M.,Boyd,L.J.,Kissell,K.E.,Crawford,D.L.,Hall,S., Ayers, T.R.,Fleming,A.,&Schmitt,J.H.M.1991,ApJ,376,L45 Hoffleit, D.1982,TheBrightStarCatalogue(NewHaven:YaleObs.) Herbig, G.H.1985,ApJ,289,269 Hale, G.E.,&EllermanF.1903,Publ.YerkesObs.,3,3 Foing, B.,Crivellari,L.,Vladilo,G.,Rebolo,R.,&Beckman,J.1989, Dempsey, R.C,Linsky,J.L.,Fleming,T.A.,&Schmitt,H.M. Dempsey, R.C.,Bopp,B.W.,Strassmeier,K.G.,Granados,A.F.,Henry, Chugainov, P.F.1976,Izv.Krymsk.Astrofiz.Obs.,54,89 Carbon, D.F.,&Gingerich,O.1969,inTheory,ObservationofNormal Bopp, B.W.,&Stencel,R.E.1981,ApJ,247,LI31 Bopp, B.W.,Mak,>W&Asbury,W.1992,Inf.Bull.Var.Stars,3738 Bopp, B.W.,Dempsey,R.C,&Maniak,S.1988,ApJS,68,803 Bopp, B.W.1991,Mem.Soc.Astron.Ital.,61,723 Basri, G.,Laurent,R.,&Walter,F.M.1987,ApJ,298,761 Basri, G.1987,ApJ,316,377 Barden, S.1985,ApJ,295,162 Bahúnas, S.L.,&Dupree,A.K.1982,ApJ,252,668 Duncan, D.1983,inCoolStars,StellarSystems,&theSun,ed.S.Baliunas Bahúnas, S.L,&Vaughn,A.H.1985,ARA&A,23,379 bined withDopplerimagingorcorrelativeanalysis(Dempsey connection tothechromosphere,canbeobtainedwithoptical 306 spectra ofmoderateresolution. et al.1992),acompletepictureofthephotosphere,andits information onspatialextentoftheemittingregions.Com- density informationaboutthechromosphere,wecanextract quent paper.Thusnotonlycanwedeterminetemperatureand those ofNeflfetal.(1989);resultswillbereportedinasubse- tained intheprofilesofthesefineswearecurrentlyapplying Doppler imagingtoIRTspectrausingmethodssimilar A&AS, 80,189 G. W.,&Hall,D.S.1992,ApJ,392,187 Kayes, D.S.,&Baliunas,S.L.1987,PASP,99,660 & L.Hartmann(NY:Springer),128 Stellar Atmospheres,ed.O.Gingerich(Cambridge:MIT),377 1993, ApJS,inpress © American Astronomical Society • Provided by theNASA Astrophysics Data System DEMPSEY ETAL. REFERENCES Young, A.,Ajir,F.,&Thurman,G.1989,PASP,101,1017 Zirin, H.1988,inAstrophysicsoftheSun(NY:Press),316 Wilson, O.C.1978,ApJ,226,379 .1974,SP,39,49 Vogt, S.S.,&Penrod,D.1983,PASP,95,565 Vemazza, J.E.,Avrett,E.H.,&Loeser,R.1976,ApJS,30,1 Strassmeier, K.G.,Hah,D.S.,Zeilik,M.,Nelson,E.,Eker,Z.,&Fekel, Strassmeier, K.G.,&Hah,D.S.1988,ApJS,67,453 Strassmeier, K.G.,Fekel,F.C.,Bopp,B.W.,Dempsey,R.C,&Henry, Strassmeier, K.G.,etal.1988a,A&A,192,135 Schwarzschild, K.,&Eberhard,G.1913,ApJ,38,292 Noyes, R.W.,Hartmann,L.Bahúnas,S.L.,Duncan,D.K.,& bourg, France. Stellingwerf, R.F.1978,ApJ,224,953 Spiesman, W.J.,&Hawley,S.L.1985,AJ,92,664 Simon, T.,&Fekel,F.C.1987,ApJ,316,434 Schrijver, C.J.1987,A&A,172,111 Rutten, R.G.,&Schrijver,C.J.1987,A&A,177,155 Rengarajan, T.N.,&Verma,R.P.1983,MNRAS,203,1035 Neff, J.E.,Walter,F.M.,Rodono,&Linsky,L.1989,A&A,215,79 Lambert, D.L.1987,ApJS,65,255 NAG8-111 andNSFgrantHRD-9104484.Thisresearchhas Shine, R.A.,&Linsky,J.L.1972,SP,25,357 Mihalas, D.1978,inStellarAtmospheres,2ded.(SanFrancisco:Free- Linsky, J.,Hunten,D.,Glacken,&Kelch,W.1979,ApJS,41,481 Huenemoerder, D.,Ramsey,L.,&Buzasi,D.1990,ApJ,350,763 made useoftheSIMBADdatabase,operatedatCDS,Stras- ported byNASAgrantNAG5-1797.ResearchattheUniver- which improvedthemanuscript.ResearchatJILAissup- thank J.LinskyandL.Volskyfortheirhelpfulcomments sity ofToledowaspartiallysupportedbyNASAgrantNAG help inobtainingsomeofthedata.Theauthorsalsowishto 5-954 andatTennesseeStateUniversityunderNASAgrant F. C.1988b,A&AS,72,291 G. W.1990,ApJS,72,191 Vaughn, A.N.1984,ApJ,279,763 man), 381 We wishtothankA.GranadosandC.Robinsonfortheir