THE 73Rd NAME-LIST of VARIABLE STARS

Total Page:16

File Type:pdf, Size:1020Kb

THE 73Rd NAME-LIST of VARIABLE STARS COMMISSIONS AND OF THE IAU INFORMATION BULLETIN ON VARIABLE STARS Number Konkoly Observatory Budap est April HU ISSN THE rd NAMELIST OF VARIABLE STARS The present rd NameList of Variable Stars compiled basically in the manner rst introduced in the th NameList IBVS No contains all data necessary for identication of new variables nally designated in The total number of designated variable stars not counting designated nonexisting stars or stars subsequently identied with earlierdesignated variables has now reached In the nearest future we are going to present two sp ecial NameLists containing variables discovered by the HIPPARCOS mission and in the frame of the OGLE pro ject The rd NameList consists of two tables Table contains the list of new variables arranged in the order of their right ascensions It gives the ordinal number and the des ignation of each variable its equatorial co ordinates for the equinox note that we have changed the standard accuracy For all stars but two we present right ascensions s 00 to and declinations to The co ordinates were found in the literature taken from p ositional catalogues including GSC or determined by the authors Sometimes the ac curacy may actually b e ab out seconds of arc For V and V Cas we could not improve the published rough co ordinates b ecause nding charts are not available the range of variability sometimes the column Min gives in parentheses the amplitude of light variation and the system of magnitudes used the symbols Rc Ic desig nate magnitudes in Cousinss RI system the symbols y b u mean Stromgrens y b u magnitudes g designates magnitudes in the system of Thuan and Gunn T stands for broadband Tycho magnitudes formed from B and V measurements r are red magnitudes not tied to a particular system the type of variability according to the classication system describ ed in the forewords to the rst three volumes of the th GCVS edition with the additions introduced in the th NameList IBVS No in the th NameList IBVS No and in the nd NameList IBVS No two references to the list of pap ers which follows Table the rst reference is to the investigation of the star the second one indicates the pap er containing a nding chart or the corresp onding Durchmusterung BD CoD or CPD containing the variable or the Hubble Space Telescope Guide Star Catalog GSC if the star can b e found using it In a small number of cases the value of the variability amplitude column Min in parentheses could not b e expressed in the same system of magnitudes as the stars brightness in such cases we indicate the photometric band for the amplitude separately Table contains the list of variables arranged in the order of their variable star names within constellations After the designation of a variable its ordinal number from Ta ble is given as well as identications with several ma jor catalogues and identications necessary to nd this star in the pap ers with the rst or indep endent announcement of the discovery of its variability References to such pap ers are given in square brackets af ter the corresp onding identication The name of the discoverer accompanies the reference only in the case of its b eing dierent from the name of the authors of the pap er referred to For the stars having NSV catalogue numbers the references to discovery pap ers already taken into account in the NSV catalogue are not always given After the identi cations some minimal remarks are given if necessary Several new corrections to earlier NameLists have b een found necessary Thus in the NameList No IBVS No V Oph is actually V Oph this was not revealed b ecause of the thenadopted co ordinates for V Oph b eing seriously in error The same applies to V Lyr NameList No IBVS No actually the star is identical with BI Lyr Co ordinates for several stars in the NameLists Nos opcit IBVS No IBVS No are for dierent reasons in error The table b elow contains a list of these stars with corrected co ordinates No Star : : h m s 0 V Sco V Sco V Sco V Sco V Oph AO Lyn V Cyg V Mon V Sgr The following signicant identications are to b e added to the NameLists Nos and PZ And BD V Aql HD K Leo Gliese V Ori AFGL V Sgr NSV V Sgr NSV V Sgr NSV Several more corrections to NameList No V Cyg should have the variability range to P type SR V Oph the magnitudes quoted are in the V band V Pup NSV not Note that the corrected version of the past NameLists in the form of a combined NameList Nos is available as a zip le from Sternberg Astronomical Institute ftp neptunsaimsusu cd pubgroupsclustergcvs Thanks are due to SV Antipin OV Durlevich MS Frolov NN Kireeva and EN Pastukhova for their help during the preparation of the present NameList and to all members of the GCVS team who prepared information for the variable star data base This study was supp orted in part by Russian Foundation for Basic Research through grant EV KAZAROVETS NN SAMUS Institute of Astronomy of Russian Academy of Sciences Pyatnitskaya Str Moscow Russia Table No Name RADecl Max Min Type Ref h m s o m m AY Scl J EA GSC V Cas V M V Cas V M V Cas V M LN Peg V RS BD BI Psc B UV QR And V NL QS And V EW V Cas B XM V Cas V FU V Cas g E V Cas g E V Cas g E V Cas g E V Cas g E V Cas g E V Cas g RRC V Cas g E V Cas g E BK Psc V RS QT And Rc V BYUV BD BL Psc U NL V Cas P SR BG Phe V BE AZ Scl V BE CoD V Cas V M alpha Scl u V SXARI CoD V Cas V M sigma Scl u V ACV CoD V Cas V NB QU And V RS BD V Cas V M BM Psc V EW QV And U ACV BD QW And V EW GSC BN Psc V EW BW Cet B V ACVO BD BB Scl V E CoD BO Psc V BY GSC QX And V EW XY Tri V RRAB XZ Tri V RRAB QY And P SRA ER Eri U UV CPD Table continued No Name RADecl Max Min Type Ref h m s o m m V Per V BE BD YY Tri K M V Per V IA BD V Cas I M XZ Ari V EW GSC BX Cet V BY V Cas I L YY Ari J SR GSC BY Cet V RS BD VW For P AM YZ Ari J M BZ Cet V BY BD V Cas P M V Per V DSCTC BD CC Cet H R GSC CD Cet V BY V Per V BY V Per V BY GSC V Per V BY GSC V Per V BY ES Eri V RS GSC V Per V BY V Per V BY GSC V Per V BY V Per V BY V Per V BY V Per V BY V Per V BY V Per V BY V Per V BY GSC V Per V BY GSC VX For V UG V Per V BY CE Cam V ACYG BD CL Oct V ZZ ET Eri J SRB GSC V Per V BY V Per V BY GSC VY For V XM V Per V BY GSC CF Cam P DCEP GSC V Per V BY V Per V BY V Tau V RS BD Table continued No Name RADecl Max Min Type Ref h m s o m m V Per V BY GSC V Tau J M V Tau V RS V Per V BY EU Eri T SRC CoD V Tau V BY V Tau V RRAB V Tau U UV CG Cam B RCB GSC V Tau P UV V Tau V BY V Tau V BY V Tau U UV V Tau V BYUV V Tau V EW CH Cam V ZZ EV Eri J SRB GSC V Per V LB V Tau V EA BD V Tau V BY V Tau V BY V Tau V BY V Tau V INB TW Ret J RV V Tau V ELL BD V Per V LBV BD CI Cam B ZAND GSC TX Ret B DSCTC CPD V Tau P M V Tau P UV TY Ret J SR GSC V Tau V BY V Tau V BY V Tau V BY V Per V BY V Tau P UV V Tau P UV V Tau P UV V Tau P UV V Tau P UV V Tau V RS BD V Tau P UV V Tau V EW V Tau P UV Table continued No Name RADecl Max Min Type Ref h m s o m m EW Eri J INT V Tau P UV V Tau V BY V Tau V DSCTC BD V Tau P UV TZ Ret B RRAB V Tau P UV EX Eri b V DSCTC CoD EY Eri J M RS Cae V XM V Aur V EW BD CK Cam V DCEP BD EZ Eri V RS BD UU Col B XM CL Cam V RS BD V Ori V XME UU Pic P NL UV Col J M GSC UV Pic V BY CoD V Tau V BY BD UW Col J M V Ori U UVN UX Col V RS CoD V Ori u BYUV UW Pic V XM V Ori U UVN V Ori Ic BY V Ori Ic FU V Ori Ic BY V Ori.
Recommended publications
  • The Tierras Observatory: an Ultra-Precise Photometer to Characterize Nearby Terrestrial Exoplanets
    The Tierras Observatory: An ultra-precise photometer to characterize nearby terrestrial exoplanets Juliana Garc´ıa-Mej´ıaa, David Charbonneaua, Daniel Fabricanta, Jonathan M. Irwina, Robert Fataa, Joseph M. Zajaca, and Peter E. Dohertya aCenter for Astrophysics Harvard and Smithsonian, 60 Garden Street, Cambridge MA j ABSTRACT We report on the status of the Tierras Observatory, a refurbished 1.3-m ultra-precise fully-automated photometer located at the F. L. Whipple Observatory atop Mt. Hopkins, Arizona. Tierras is designed to limit systematic errors, notably precipitable water vapor (PWV), to 250 ppm, enabling the characterization of terrestrial planet transits orbiting < 0:3 R stars, as well as the potential discovery of exo-moons and exo-rings. The design choices that will enable our science goals include: a four-lens focal reducer and field-flattener to increase the field-of-view of the telescope from a 11:940 to a 0:48◦ side; a custom narrow bandpass (40:2 nm FWHM) filter centered around 863:5 nm to minimize PWV errors known to limit ground-based photometry of red dwarfs; and a deep-depletion 4K 4K CCD with a 300ke- full well and QE> 85% in our bandpass, operating in frame transfer mode. We are also× pursuing the design of a set of baffles to minimize the significant amount of scattered light reaching the image plane. Tierras will begin science operations in early 2021. Keywords: ultra-precise photometry, terrestrial planet detection, exoplanet instrumentation, transit method 1. INTRODUCTION The construction of observatories tailor-built to routinely achieve precise photometry from the ground is mo- tivated by the multitude of exoplanetary and stellar phenomena whose exploration will be enabled with high- cadence, ultra-precise time series of diverse stellar targets.
    [Show full text]
  • Volume 76 Nos 3 & in This Issue
    Volume 76 Nos 3 & 4 April 2017 In this issue: News notes, New Director at SAAO, Pro -Am Interaction with NASA Juno mission, Six hours with our Home Star, Colloquia a nd Seminars EDITORIAL Mr Case Rijsdijk (Editor, MNASSA ) BOARD Mr Auke Slotegraaf (Editor, Sky Guide Africa South ) Mr Christian Hettlage (Webmaster) Mr James Smith (Web Manager) Prof M.W. Feast (Member, University of Cape Town) Prof B. Warner (Member, University of Cape Town) MNASSA Mr Case Rijsdijk (Editor, MNASSA ) PRODUCTION Dr Ian Glass (Assistant Editor) Vacant (Book Review Editor) Willie Koorts (Consultant) EDITORIAL MNASSA, PO Box 9, Observatory 7935, South Africa ADDRESSES Email: [email protected] Web Manager: [email protected] MNASSA Download Page: www.mnassa.org.za SUBSCRIPTIONS MNASSA is available for free download on the Internet ADVERTISING Advertisements may be placed in MNASSA at the following rates per insertion: full page R400, half page R200, quarter page R100. Small advertisements R2 per word. Enquiries should be sent to the editor at [email protected] CONTRIBUTIONS MNASSA mainly serves the Southern African astronomical community. Articles may be submitted by members of this community or by those with strong connections. Else they should deal with matters of direct interest to the community . MNASSA is published on the last day of every second month and articles are due one month before the publication date. RECOGNITION Articles from MNASSA appear in the NASA/ADS data system. Cover: Image of Jupiter taken by Clyde Foster on 2 February 2017. See article on page 68. mnassa Vol 76 Nos 3 & 4 April 2017 Editorial Rec ently I have received many submissions, for which I am really grateful, but they come in a variety of formats and styles.
    [Show full text]
  • Detection and Characterization of Hot Subdwarf Companions of Massive Stars Luqian Wang
    Georgia State University ScholarWorks @ Georgia State University Physics and Astronomy Dissertations Department of Physics and Astronomy 8-13-2019 Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars Luqian Wang Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_diss Recommended Citation Wang, Luqian, "Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars." Dissertation, Georgia State University, 2019. https://scholarworks.gsu.edu/phy_astr_diss/119 This Dissertation is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. DETECTION AND CHARACTERIZATION OF HOT SUBDWARF COMPANIONS OF MASSIVE STARS by LUQIAN WANG Under the Direction of Douglas R. Gies, PhD ABSTRACT Massive stars are born in close binaries, and in the course of their evolution, the initially more massive star will grow and begin to transfer mass and angular momentum to the gainer star. The mass donor star will be stripped of its outer envelope, and it will end up as a faint, hot subdwarf star. Here I present a search for the subdwarf stars in Be binary systems using the International Ultraviolet Explorer. Through spectroscopic analysis, I detected the subdwarf star in HR 2142 and 60 Cyg. Further analysis led to the discovery of an additional 12 Be and subdwarf candidate systems. I also investigated the EL CVn binary system, which is the prototype of class of eclipsing binaries that consist of an A- or F-type main sequence star and a low mass subdwarf.
    [Show full text]
  • Distances and Absolute Ages of Galactic Globular Clusters From
    651 DISTANCES AND ABSOLUTE AGES OF GALACTIC GLOBULAR CLUSTERS FROM HIPPARCOS PARALLAXES OF LOCAL SUBDWARFS 1 2;3 2 2 4 5 R.G. Gratton ,F.Fusi Pecci , E. Carretta , G. Clementini , C.E. Corsi , M.G. Lattanzi 1 Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy 2 Osservatorio Astronomico di Bologna, Via Zamb oni 33, 40126 Bologna, Italy 3 Stazione Astronomica, 09012 Cap oterra, Cagliari, Italy 4 Osservatorio Astronomico di Monte Mario, Via del Parco Mellini 84, 00136 Roma, Italy 5 Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Italy +5 ABSTRACT 1996; t =15 Gyr, VandenBerg et al. 1996. These 3 values are in con ict with the age of the Universe derived from the most recent estimates of the Hub- High precision trigonometric parallaxes from the ble constant and the standard cosmological Eistein- Hipparcos satellite and accurate metal abundances de Sitter mo del. Since, most recent determinations 1 1 [Fe/H], [O/Fe], and [ /Fe] from high resolution of H are in the range of 55 75 km s Mp c 0 sp ectroscopy for ab out 30 lo cal sub dwarfs have b een H = 73 10 km/s/Mp c, Freedman et al. 1997; 0 used to derive distances and ages for a carefully se- H =63:13:42:9 km/s/Mp c, Hamuy et al. 1996; 0 lected sample of nine globular clusters. We nd H =587 km/s/Mp c, Saha et al. 1997, H =567 0 0 that Hipparcos parallaxes are smaller than the cor- km/s/Mp c, Sandage & Tamman 1997, the age of resp onding ground-based measurements leading, to the Universe is constrained to be t < 11:6 Gyr in a longer distance scale 0:2 mag and to ages an Einstein-de Sitter mo del, and t<14:9 Gyr in a 2:8 Gyr younger.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Ghost Imaging of Space Objects
    Ghost Imaging of Space Objects Dmitry V. Strekalov, Baris I. Erkmen, Igor Kulikov, and Nan Yu Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109-8099 USA NIAC Final Report September 2014 Contents I. The proposed research 1 A. Origins and motivation of this research 1 B. Proposed approach in a nutshell 3 C. Proposed approach in the context of modern astronomy 7 D. Perceived benefits and perspectives 12 II. Phase I goals and accomplishments 18 A. Introducing the theoretical model 19 B. A Gaussian absorber 28 C. Unbalanced arms configuration 32 D. Phase I summary 34 III. Phase II goals and accomplishments 37 A. Advanced theoretical analysis 38 B. On observability of a shadow gradient 47 C. Signal-to-noise ratio 49 D. From detection to imaging 59 E. Experimental demonstration 72 F. On observation of phase objects 86 IV. Dissemination and outreach 90 V. Conclusion 92 References 95 1 I. THE PROPOSED RESEARCH The NIAC Ghost Imaging of Space Objects research program has been carried out at the Jet Propulsion Laboratory, Caltech. The program consisted of Phase I (October 2011 to September 2012) and Phase II (October 2012 to September 2014). The research team consisted of Drs. Dmitry Strekalov (PI), Baris Erkmen, Igor Kulikov and Nan Yu. The team members acknowledge stimulating discussions with Drs. Leonidas Moustakas, Andrew Shapiro-Scharlotta, Victor Vilnrotter, Michael Werner and Paul Goldsmith of JPL; Maria Chekhova and Timur Iskhakov of Max Plank Institute for Physics of Light, Erlangen; Paul Nu˜nez of Coll`ege de France & Observatoire de la Cˆote d’Azur; and technical support from Victor White and Pierre Echternach of JPL.
    [Show full text]
  • 1993Apjs ... 86. .293D the Astrophysical Journal Supplement
    The Astrophysical Journal Supplement Series, 86:293-306, 1993 May .293D © 1993. The American Astronomical Society. All rights reserved. Printed in U.S.A. 86. ... OBSERVATIONS OF THE Ca n INFRARED TRIPLET IN CHROMOSPHERICALLY ACTIVE 1993ApJS SINGLE AND BINARY STARS Robert C. Dempsey1 Joint Institute for Laboratory Astrophysics, University of Colorado, Campus Box 440, Boulder CO 80309 Bernard W. Bopp1 Ritter Observatory, The University of Toledo, 2801 West Bancroft, Toledo, OH 43606 Gregory W. Henry Center for Excellence in Information Systems, Tennessee State University, 330 10th Avenue North, Nashville, TN 32703 AND Douglas S. Hall Dyer Observatory, Vanderbilt University, Nashville, TN 37235 Received 1992 August 5; accepted 1992 October 16 ABSTRACT Spectroscopic observations of the Ca n infrared triplet (XX 8498, 8542, 8662) have been obtained for 45 stars which are known or suspected to be chromosphericaUy active. The sample includes both single and binary stars of spectral types from F2 to M5 spanning luminosity classes III, IV, and V. Several different types of activity diagnostics were measured and their relative merits are discussed. Dependence of chromospheric emission upon rotation period, luminosity, temperature, and duplicity are analyzed. Synchronous binaries show a slight trend of increased emission with decreasing period while the asynchronous binaries show abnormally high activity levels for their rotation periods. Several stars exhibit rotationally modulated emission which is anticorrelated with the stellar brightness. Finally, estimates of chromospheric energy losses are presented with the result that the total loss in the infrared triplet is about twice that of the H and K Unes. Subject headings: infrared: stars — stars: chromospheres — stars: late-type 1.
    [Show full text]
  • Observing Exoplanets
    Observing Exoplanets Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) Nov 29, 2017 My Background Astronomer / Optical scientist at University of Arizona and Subaru Telescope (National Astronomical Observatory of Japan, Telescope located in Hawaii) I develop instrumentation to find and study exoplanet, for ground-based telescopes and space missions My interest is focused on habitable planets and search for life outside our solar system At Subaru Telescope, I lead the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. 2 ALL known Planets until 1989 Approximately 10% of stars have a potentially habitable planet 200 billion stars in our galaxy → approximately 20 billion habitable planets Imagine 200 explorers, each spending 20s on each habitable planet, 24hr a day, 7 days a week. It would take >60yr to explore all habitable planets in our galaxy alone. x 100,000,000,000 galaxies in the observable universe Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. For constant stellar flux, distance to star scales as L1/2 Examples: Sun → habitable zone is at ~1 AU Rigel (B type star) Proxima Centauri (M type star) Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L.
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • International Astronomical Union Commission 42 BIBLIOGRAPHY of CLOSE BINARIES No. 93
    International Astronomical Union Commission 42 BIBLIOGRAPHY OF CLOSE BINARIES No. 93 Editor-in-Chief: C.D. Scarfe Editors: H. Drechsel D.R. Faulkner E. Kilpio E. Lapasset Y. Nakamura P.G. Niarchos R.G. Samec E. Tamajo W. Van Hamme M. Wolf Material published by September 15, 2011 BCB issues are available via URL: http://www.konkoly.hu/IAUC42/bcb.html, http://www.sternwarte.uni-erlangen.de/pub/bcb or http://www.astro.uvic.ca/∼robb/bcb/comm42bcb.html The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a.
    [Show full text]
  • Stellar Encounters with the Oort Cloud Based on Hipparcos Data Joan Garciça-Saçnchez, 1 Robert A. Preston, Dayton L. Jones, and Paul R
    THE ASTRONOMICAL JOURNAL, 117:1042È1055, 1999 February ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. STELLAR ENCOUNTERS WITH THE OORT CLOUD BASED ON HIPPARCOS DATA JOAN GARCI A-SA NCHEZ,1 ROBERT A. PRESTON,DAYTON L. JONES, AND PAUL R. WEISSMAN Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 JEAN-FRANCÓ OIS LESTRADE Observatoire de Paris-Section de Meudon, Place Jules Janssen, F-92195 Meudon, Principal Cedex, France AND DAVID W. LATHAM AND ROBERT P. STEFANIK Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 1998 May 15; accepted 1998 September 4 ABSTRACT We have combined Hipparcos proper-motion and parallax data for nearby stars with ground-based radial velocity measurements to Ðnd stars that may have passed (or will pass) close enough to the Sun to perturb the Oort cloud. Close stellar encounters could deÑect large numbers of comets into the inner solar system, which would increase the impact hazard at Earth. We Ðnd that the rate of close approaches by star systems (single or multiple stars) within a distance D (in parsecs) from the Sun is given by N \ 3.5D2.12 Myr~1, less than the number predicted by a simple stellar dynamics model. However, this value is clearly a lower limit because of observational incompleteness in the Hipparcos data set. One star, Gliese 710, is estimated to have a closest approach of less than 0.4 pc 1.4 Myr in the future, and several stars come within 1 pc during a ^10 Myr interval.
    [Show full text]