<<

Excesses in with and without

by

Ra´ulFelipe Maldonado S´anchez

Thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ASTROPHYSICS

at the Instituto Nacional de Astrof´ısica, Optica´ y Electr´onica

August 2015

Tonantzintla, Puebla

Under the supervision of: Ph.D. Miguel Ch´avez Dagostino (INAOE) Ph.D. Emanuele Bertone (INAOE)

c INAOE, 2015 The author hereby grants to INAOE permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part.

To my family and friends

iii

Acknowledgments

I would like to offer my special thanks to my advisors Ph.D. Miguel Ch´avez Dagostino and Ph.D. Emanuele Bertone for all their support, advice and patience since the be- ginning of the project until the successful conclusion of this work, for helping me to improve this thesis and sharing me the necessary knowledge to do this research work.

My special thanks are extended to Ph.D. Olga , Ph.D. Alicia Porras and Ph.D. Abraham Luna for being examiners of this thesis and giving me the advices and com- ments to improve this research work.

I am particularly grateful with all my classmates and friends: Eric, Carlos, Leticia, Emanuel, Ana, Gisela and Alan. They have shown me the meaning of a true friendship. The let me know that the study and learning in a perfect work team is easier and much funnier. I hope we still be friends for a long time and even collaborate in future projects.

I would like to express my very great appreciation to my colleague and friend Rodrigo Pineda, for his friendship and all his support through the master studies and during the development of this thesis, for encouraging me to continue in difficult times and showing me the importance of the study everyday.

I also want to thank Msc. Fernando Cruz S´aenzde Miera for his help in the develop- ment of this work.

I give my special thanks to my mom, sisters, brothers in law, nephews and nice, who are showing me their care and love everyday. The accomplishment of all my goals is because of their emotional support.

I really appreciate the knowledge acquired from all the teachers in the master, for their teachings in the classroom.

Finally, I thank CONACYT for the financial support in the master studies.

v

List of Figures

1.1 Spectral energy distributions of Vega, ,  Eridani and β Pictoris.2 1.2 Diagram of the evolution of a typical circumstellar disk...... 3 1.3 Spectral Energy Distribution of the Herbig Ae AB Aurigae.....4 1.4 Two parameter model...... 6 1.5 Spectral Energy Distributions of stars with prominent 22 µm excesses..9 1.6 Evolution of 24 µm excesses around -like stars...... 11 1.7 β Pictoris coronagraphic images...... 13 1.8 Dust emission around  Eridani at a wavelength of 850 µm...... 13

2.1 WISE satellite in its mapping configuration...... 16 2.2 Fit photometry profile differences between AllWISE and WISE All-Sky 17 2.3 Comparison of a real and spurious detection in WISE images...... 22 2.4 Spectral type distributions of stars with and without planets...... 23 2.5 Distance distribution of stars with and without planets...... 24 2.6 V magnitude distributions of stars with and without planets...... 24 2.7 distributions of stars with and without planets...... 25

3.1 Color vs spectral type of stars with and without planets samples.... 28 3.2 Color excess distribution of the stars with and without planets sample. 29 3.3 Comparison between ATLAS9 and NEXTGEN synthetic spectra.... 33 3.4 Comparison of synthetic spectra with same Teff , but different metallicity...... 35 3.5 Johnson, 2MASS and WISE filter response curves...... 36 3.6 Best fit of the Synthetic Spectral Energy Distribution for the star HD108874 using ATLAS9 models...... 37 2 3.7 χν distribution for the stars with and without planets...... 37 3.8 WISE vs Tycho-2 B-V color-diagrams...... 41

4.1 Distribution of uncertainties in the flux ratio W4/W3 in dependence of W4 flux...... 47 4.2 Distribution of total uncertainties propagated in the different IR-detection methods...... 48 4.3 Excess significance distribution of stars with and without planets.... 49

vii 4.4 Comparison between W4 and W3 observed and synthetic photometry as a function of W4 flux for each star in the combined samples of stars with and without planets...... 50 4.5 Comparison between W4, W3 and W2 observed and synthetic photom- etry in dependence of W4 flux for each star in the combined samples of stars with and without planets...... 51 4.6 Flux comparison of the WISE bands between the WISE catalogues avail- able in the literature...... 53 4.7 Spectral energy distribution of HD 106906...... 55 4.8 Spectral energy distribution of V342Peg (HR 8799)...... 56 4.9 Spectral energy distribution of BD-10 3166...... 57 4.10 Spectral energy distribution of CD-301812...... 58 4.11 WISE W4 pixel intensity distribution of CD-301812...... 58 4.12 WISE W2, W3 and W4 images of CD-301812...... 59 4.13 Spectral energy distribution of HD107146...... 60 4.14 Spectral energy distribution of HD85301...... 61 4.15 Spectral energy distribution of HD 136544...... 62

A.1 Empirically determined WISE vs. B-V photospheric color-color trends for all six WISE colors...... 69

B.1 Spectral energy distributions of HD106906 & HR7899...... 71 B.2 Spectral energy distributions of HD45184 & HD113337...... 72 B.3 Spectral energy distributions of HD114729A & HR6907...... 72 B.4 Spectral energy distributions of HD11506 & HD224693...... 72 B.5 Spectral energy distributions of HD130322 & HD98649...... 73 B.6 Spectral energy distributions of HD168443 & HD33643...... 73 B.7 Spectral energy distribution of HD4113...... 73 B.8 Spectral energy distributions of HD107146 & HD85301...... 74 B.9 Spectral energy distributions of HD60491 & HD125040...... 74 B.10 Spectral energy distributions of AFLep & HD136544...... 75 B.11 Spectral energy distributions of HD29137 & HD34745...... 75 B.12 Spectral energy distributions of HD8907 & LQHya...... 75 B.13 Spectral energy distributions of HD96418 & HR1981...... 76 B.14 Spectral energy distributions of HD205294 & HD44821...... 76 B.15 Spectral energy distributions of HD85638 & HD209253...... 76 List of Tables

3.1 Zero magnitude flux density for B, V, J, H, KS, W1, W2, W3, W4 bands. 30 3.2 Extinction law coefficients as a function of wavelength...... 30 3.3 Color corrections...... 32 3.4 Flux ratio comparison among the WISE bands in ATLAS9 synthetic spectra with different stellar parameters...... 34

4.1 Number and percentage of IR excesses (E) in stars with and without planets...... 43

C.1 Stellar parameters of the sample of stars with planets...... 77 C.2 Stellar parameters of the sample of stars without planets...... 81

D.1 Observed fluxes for stars with planets...... 100 D.2 Observed fluxes for stars without planets...... 106

ix

Contents

Acknowledgmentsv

1 Introduction1 1.1 Circumstellar Disks...... 1 1.1.1 Protoplanetary Disks...... 4 1.1.2 Debris Disks...... 5 1.2 Observing Debris Disks at IR wavelengths...... 7 1.3 Mid-IR observations: Warm debris disks...... 8 1.4 interaction and disks...... 12 1.5 Aims of this work...... 14

2 The sample selection 15 2.1 IR Surveys...... 15 2.1.1 Wide-field Infrared Survey Explorer (WISE)...... 15 2.1.2 Two Micron All Sky Survey (2MASS)...... 18 2.2 The sample...... 19 2.2.1 Stars with planets...... 19 2.2.2 Stars without planets...... 20 2.3 Optical and Infrared photometry...... 21 2.3.1 Comparison of both samples...... 22

3 Methodology 27 3.1 Correction for extinction and magnitude to flux conversion...... 27 3.2 fitting and synthetic photometry...... 32 3.3 Searching for Infrared Excesses...... 38 3.3.1 Method 1 (This work)...... 38 3.3.2 Method 2: Cruz-Saenz de Miera et al.(2014)...... 39 3.3.3 Method 3: Kennedy & Wyatt(2012)...... 39 3.3.4 Method 4: Morales et al.(2012)...... 40 3.3.5 Method 5: Patel et al.(2014)...... 40

4 Results 43 4.1 Comparing the two stellar samples...... 44

xi 4.2 Comparison among the methods...... 45 4.2.1 This work vs. Cruz-Saenz de Miera et al.(2014)...... 45 4.2.2 Kennedy & Wyatt(2012) vs. Morales et al.(2012)...... 45 4.2.3 Patel et al.(2014) vs. Morales et al.(2012)...... 46 4.3 Explaining differences among the methods...... 46 4.3.1 So, which is the best method?...... 51 4.4 Comparison between WISE data releases...... 52 4.5 Comments on some stars with planets...... 54 4.5.1 HD106906...... 54 4.5.2 V342Peg (HR 8799)...... 55 4.5.3 BD-10 3166...... 56 4.5.4 CD-301812 (WASP-79)...... 57 4.6 Comments on some stars without planets...... 59 4.6.1 HD107146...... 59 4.6.2 HD85301...... 60 4.6.3 HD 136544...... 61

5 Summary and Conclusions 63 5.1 Future work...... 65

A Apendix 67

B Apendix 71 B.1 Stars with planets SEDs...... 71 B.2 Stars without planets SEDs...... 74

C Apendix 77

D Apendix 99 Chapter 1

Introduction

1.1 Circumstellar Disks

Disks and rings are present in different astronomical objects and at different scale sizes, from to stars and planets. Circumstellar disks stars at different evolutionary stages and they are commonly detected as an infrared (IR) excess in their spectral energy distributions (SED). In the case of (MS) stars, an IR excess was first discovered in Vega (Aumann et al., 1984) with the Infrared Astronomical Satellite (IRAS). This finding, together with the discovery of the first around the MS star by Mayor & Queloz(1995), opened a new era in the field of stellar astrophysics. After the discovery of the ”Vega-like” phenomenon, a few other stars (Fomalhault,  Eridani, β Pictoris) were also found to have an IR excess with fluxes at 25 µm and 100 µm significantly higher than those expected solely from the photosphere. The SED of this kind of excesses in the IR is consistent with models where dust particles in disks emit the extra energy, because they absorb the optical and ultraviolet light from the central star and re-radiate this energy thermally in the IR (Zuckerman, 2001). In Figure 1.1 we show the SEDs of the four stars showing the Vega-like phenomenon (sometimes known as the fabulous four).

The temperature of dust particles depends on their distance from the star and their size relative to the wavelength of their maximum IR thermal emission. This means that small particles with respect to the peak of their IR emission will radiate inefficiently and their temperature will raise until they reach the temperature that a larger particle would have at the same location. Besides, particles much larger than the wavelength of interest will emit inefficiently in the IR, e.g. if we have millimeter wave observations, grains with sizes larger than 1 cm would contribute little to this total emission (Zuck- erman, 2001). If a disk consists of several components at different locations from the

1 2 CHAPTER 1. INTRODUCTION star, observations at different wavelengths can probe the multiple components: shorter wavelengths probe closer and warmer material, while longer wavelengths can detect cooler and fainter material. At distances about 0.01 to 0.03 AU, the emission of hot material with temperatures of 1500 K is traced at wavelengths near 2 µm. For distances of 0.1 AU to 1 AU, the∼ material has a temperature 300 K and∼ the emission peaks around 10 µm. At distances from 1 AU to 10 AU the∼ material emission peaks at 20 µm with a temperature 150 K. Finally, the temperature is 50 K for ma- terial∼ beyond 50 AU and the emission∼ of this material peaks at wavelengths∼ 60 µm ≥ (Dullemond & Monnier, 2010; Su,Chapter 2006 1.). Introduction

105

100

ε Eridani Vega 10-5 105

Flux [Jy]

100

β Pictoris Fomalhaut 10-5 1 10 100 1 10 100 Wavelength [µm]

Figure 1.1: Spectral energy distributions of the four stars with debris disks: Vega, β Pictoris, Figure 1.1: ϵSpectralEridani and energy Fomalhaut. distributions The photometric of the data firstpoints four are from stars the IRAS(Vega, (12, Fomalhault, 25, 60, 100  Eridani and β Pictoris) showingµm), 2MASS the Vega-like (J H and K phenomenon filters), AKARI and caused Spitzer by (24 the and presence 70 µm) missions. of debris All data disks. Photometric points representedwas obtained with through small the circles VizieR are search from engine. IRAS, The small 2MASS, circles AKARIrepresent the and photometricSpitzer missions. The continuous linepoints, are the thick synthetic lines are SEDs the synthetic from KURUCZ Kurucz models models for their (Cruz-Saenz respective ste dellar Miera effective et al., 2012). temperature, surface gravity and metallicity. Circumstellar disks evolve from protoplanetary to debris disks, hence their properties depend on their age. Williams & Cieza (2011, see also references therein) reviewed the evolution ofexcesses circumstellar around other disks nearby and stars, here as well we as for provide the study a onthefrequencyofthephe- brief summary of their work: the disk is formednomenon. by angular In fact, Aumann momentum[1985]soonconductedadetailedanalysisofallavailable conservation as the proto-star begins to accrete matter. Eventually,sources in the disks IRAS point start source to catalog lose and reported as the the disc starovery accretes of eight new matter stars at a rate of with7 infrared excess1 similar to8 that of Vega, this1 is, stars with prominent IR flux at three 6 1 about 10− M − to 10− M year− for T-Tauri stars and of 10− M year− for Ae/Be∼ HerbigIRAS bands: stars 12,( 25Hillenbrand and∼ 60 µ.ThisworkincreasedthenumberofVega-likestarsto et al., 1992), and by photoevaporation∼ (mainly by X-ray andtwelve. UV Subsequent light from analyses the of IRAS central data (e.g. star).Backman In and early Gillett stages,[1987], Walker the accretion rate dominates overand Wolstencroft the photoevaporation[1988], Oudmaijer andet al. [ the1992], gasMannings in the and outer Barlow disk[1998 serves]) pro- as a reservoir for replenishingvided the an ever inner increasing (closer number to of the objects star) and regions.verified that tThehe preconception accretion that rate stars decreases with time and theon outer the main disk sequence will are no devoid longer of surrounding be able material, to supply hence material, stellar the spectral thus en- an inner hole is created at fewergy AUs distribution from (SED) the cannot star. always However, be represented the evolution by simple photospheric of the solid (in early material is quite investigations, blackbodies) models, was wrong. Early statistics on IRAS data showed

2 1.1. CIRCUMSTELLAR DISKS 3

different. Dust grains starts to collide and stick together, they are transported towards the midplane of the disk, decoupling from the gas. Dust coagulation process and the settling begins to create and even larger rocky bodies. When the gas photoevaporates, dust with sizes 1 µm are blown away by the radiation pressure and drag forces might occur on the disks.≤ The dust particles are affected by a dissipative force called Poynting-Robertson (P-R) force. This force is produced by a tangential component of the radiation pressure that opposes the movement of the dust grains, it causes that they lose orbital energy and angular momentum and, as a consequence, get closer to the star (Burns et al., 1979). With this effect in action, dust evaporates when it reaches the sublimation radius and what is left after this event is a disk that lacks of significant amounts of gas and is populated with dust, planetesimals and even planets. This disk configuration is known as debris disk. Cold debris disks were first discovered by Aumann et al.(1984) and, later, presence of warm material (Carpenter et al., 2009; Cruz-Saenz de Miera et al., 2014; Patel et al., 2014) was also found in some other systems making cold and warm debris to coexist in many cases. Figure 1.2 AA49CH03-Williamsshows this evolutionary ARI 14 July 2011 phases 19:21 on the circumstellar disks. Below, we briefly describe the phase (Figure 1.2a) and the debris disk phase (Figure 1.2d). Debris disks are the main subject in this thesis.

Massive flared disk Settled disk a FUV photons b

Accretion

Evaporation flow

Photoevaporating disk

c d Debris disk EUV

Evaporation flow

FigureFigure 1.2: 6 Diagram of the evolution of a typical circumstellar disk. In blue is represented the gas materialThe evolution while of in a typical red the disk. dustThe gas (Williams distribution is & shown Cieza in blue, 2011 and the). dust in red. (a) Early in its evolution, the disk loses mass through accretion onto the star and far-UV (FUV) photoevaporation of the outer disk. (b)Atthesametime,grainsgrowintolarger bodies that settle to the mid-plane of the disk. (c) As the disk mass and accretion rate decrease, extreme-UV(EUV)-induced photoevaporation becomes important; the outer disk is no longer able to resupply the inner disk with material, and the inner disk drains on a viscous timescale ( 105 ). An inner hole is formed, accretion onto the star ceases, and the disk quickly dissipates from the ∼ inside out. (d ) Once the remaining gas photoevaporates, the small grains are removed by radiation pressure and Poynting-Robertson drag. Only large grains, planetesimals, and/or planets are left. This debris disk is very low mass and is not always detectable.

as a CTTS based on the presence of accretion indicators. Accretion may be variable on short timescales, but shows a declining long-term trend. Annu. Rev. Astro. Astrophys. 2011.49:67-117. Downloaded from www.annualreviews.org At the same time, grains grow into larger bodies that settle onto the mid-plane of the disk, where they can grow into rocks, planetesimals, and beyond. Accordingly, the scale height of the dust decreases and the initially flared dusty disk becomes flatter (Figure 6b). This steepens the slope of the mid- and far-IR SED as a smaller fraction of the stellar radiation is intercepted by Access provided by Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) on 06/22/15. For personal use only. circumstellar dust (Dullemond & Dominik 2005). The near-IR fluxes remain mostly unchanged because the inner disk stays optically thick and extends inward to the dust sublimation temperature. The most noticeable SED change during this stage is seen in the decline of the (sub)millimeter flux, which traces the decrease in the mass of millimeter- and smaller sized particles (Andrews & Williams 2005, 2007a) (see Figure 7). As disk mass and accretion rate decrease, energetic photons from the stellar are able to penetrate the inner disk and photoevaporation becomes important. When the accretion

98 Williams Cieza · AA48CH07-Dullemond ARI 16 July 2010 20:8

4 CHAPTER 1. INTRODUCTION all low-/intermediate-mass pre-main-sequence stars have disks. An often used indicator of the presence1.1.1 of a circumstellar Protoplanetary disk, or at Disks least of circumstellar material, is IR flux in excess of what can possibly be explained by a stellar photosphere of a reasonable size. By studying the fraction of stars with NIR excess flux in young clusters of ages from 0.5 to 5 million years, Haisch, Lada & LadaAccording (2001) established to Dullemond a clear & Monnier trend: that(2010 the), these “disk disks fraction” are composed decreases by with dust age, and or are in other words,enriched that disks with have gas a lifetimein a gas-to-dust of a few ratio million of about years. 100. They are found around pre-main A questionsequence is, stars, however, as T Tauriwhether stars one of can approximately be sure that one the solar NIR mass excess or is less indeed and Herbig from a disk and notAe from stars, some which circumstellar are few times envelope more or massive disk wind. than Although the Sun and we know will evolve from imaginginto A- that the coldtype outer main-sequence circumstellar stars material (Mathieu is indeed, 1994;disk-like, & little Waelkens is known, 1998 about). Protoplanetary the nature of the materialdisks inward are well of what traced telescopes by a near-IR can spatially (NIR) excess resolve. often The called lack of”NIR correlation bump”, speciallybetween inAV and NIR excess (Cohen & Kuhi 1979) is inconsistent with a spherical dust geometry, and the spectral Herbig Ae/Be stars. This NIR bump is characteristic of these type of disks. Spherical shape of the IR excess for stars and brown dwarfs can be explained fairly well with models envelopes or disks winds around these stars have been discarded as the sources of the of irradiated dusty disks with a flat (Adams & Shu 1986) or flared shape (Kenyon & Hartmann 1987, CalvetNIR bump et al. because 1992, Chiang the spectral & Goldreich shape of 1997, the excesses Menshchikov are well & explained Henning with 1997, models D’Alessio et al. 1998).of irradiated However, dust for with Herbig a flat Ae/Be or flared stars this shape was (Adams initially & not Shu so, clear1986; and D’Alessio still remains et al., under debate.1998 It appears). Hillenbrand that the et JHKL al.(1992 photometric) proposed points a Planck nicely component line up toof 1500form K a bump for modeling very similar, thoughthe not NIR identical, excess: to dust the evaporation peak of the was Planck taken function into account at a temperature at this temperature of about regime1,500 K. ∼ This isand perhaps a gap most in the clearly dust, seen filled in with the spectrum optically thinof the gas, prototype located Herbig in the very Ae star proximity AB Aurigae (Figureof 2 the). This proto-star NIR bump was proposed. was not at In all Figure expected 1.3 fromwe show any of the the SED above of the mentioned Herbig Ae models: They tendstar AB to yield Aurigae, relatively where smooth the NIR multicolor bump in the blackbody J, H, K, curves L passbands in which is evidenta continuous and is series of Planckrepresented peaks at by different the yellow temperatures solid line. add The up 1500 to K a smooth Planck component curve. Now is there shown appeared with the to be a singlegreen Planck solid peak line. in As the we spectrum, mentioned albeit before, often the with disk aevolves bit of and excess the emission gas present toward in the longer wavelengths.disk is Thisremoved NIR due bump, to radiation as it is often pressure called, from is the not star just and a small by formation feature: It of contains a large amountplanets of energy. (Baraffe The et bump al., 2010 alone). can contain up to half the IR flux from the entire system and nearly all the emission originating from the inner AU or so. It can therefore not be ignored; it must be understood in terms of some physical model.

10–7 AB Aurigae

) NIR bump –2

cm Stellar fux –1 10–8 (erg s ν F Planck ν Annu. Rev. Astro. Astrophys. 2010.48:205-239. Downloaded from www.annualreviews.org curve 1600K

Access provided by Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) on 06/08/15. For personal use only. 10–9 0.1 1.0 10.0 100.0 λ (μm) Figure 2 The spectral energy distribution of the Herbig Ae star AB Aurigae. Red is the measured emission. Blue is the steller spectrumFigure 1.3: predictedSED of with Herbig a Kurucz Ae star ABstellar Aurigae. atmosphere Measured model. emission The in excess red, predicted of flux above stellar the spectrum atmosphere (the “IRfrom excess”) Kurucz is the models thermal in blue, emission Planck from curve the of dust 1600 in K the in green disk. The and the emission sum of in the the Planck near-IR curve (NIR) with clearly has a bump-likethe stellar structure atmosphere and in is gold often (Dullemond called the & NIR Monnier bump., 2010 In green,). a Planck curve at a temperature of 1,600 K is overplotted. The golden curve is the sum of the Planck curve and the .

208 Dullemond Monnier · 1.1. CIRCUMSTELLAR DISKS 5

1.1.2 Debris Disks

Debris disk is a term for referring to all sub-planetary solids that are the aftermath of planet formation. After the protoplanetary stage, a star is expected to have in its surroundings at least one or all the following components: planets (from sub- to super- size); remnants of the protoplanetary disk (both dust and gas); plane- tesimals with growing solid particles and other planetesimals that are forming new dust through physical processes like collisions among them. As mentioned in Section 1.1, after the gas evaporation process in the protoplanetary disk, solids are settled into the midplane of the disk and some are carried onto the star by P-R drag reaching a radius where they sublimate due to the stellar radiation. The arrival of dust into the planetary region might have in consequence that planets, if they are present, would scatter this dust. This means that the star would clean its surroundings in timescales of 10 Myr, according to near IR observations (Wyatt, 2008). However, the existence of≤ disks with ages above 100 Myr implies mechanisms of dust replenishment. The mechanisms involve stirred dust produced by stellar flybys (Kroupa, 1998) or by Pluto- size bodies or even planets (Mustill & Wyatt, 2009), producing cascades of collisions between planetesimals, initiated with larger rocky bodies (Weinberger et al., 2011; Jackson & Wyatt, 2012). Thus, this kind of disks continues to evolve collisionally and dynamically.

The thermal IR emission of a debris disk is usually fitted with a SED of a blackbody with a single temperature. Nevertheless, gray body is also used for modeling debris disks because it describes the quasi-black body emission of the dust grains and takes into account their size, composition and morphology and their distance from the source. This emission is calculated through the equation:

1.9899B(λ, T ) B (λ, T ) = κ (1.1) g d2 abs

where Bg indicates the emission of the gray body, B(λ, T ) is the black body emission with temperature T, κabs is the absorption coefficient proposed by Draine(2006) and d is the distance to the source (Cruz-Saenz de Miera et al., 2012).

There are two quantities that can be derived from the fit: the dust temperature Td and the dust fractional fd, defined as the ratio between the bolometric luminosity of the dust and that of the star: fd = Ld/L . Wyatt(2008) proposed a way ∗ to calculate these quantities using the wavelength where the dust emission flux peaks d d λmax and the maximum flux itself Fmax, thus 6 CHAPTER 1. INTRODUCTION

  d d 1µm Fmax λmax Td = 5100K d , fd = (1.2) λmax Fmax∗ λmax∗

where Fmax∗ is the maximum emission from the star and λmax∗ the wavelength where it is emitted. In order to better illustrate the role of Td and fd, Figure 1.4 shows a G2V stellar spectrum at a distance of 10 pc that contains different disk spectra at temperatures of 278 K, 88 K, and 28 K (yellow, red and blue solid lines respectively), 3 with a fractional luminosity of fd= 10− . These disks are located at 1 AU, 10 AU and 5 100 AU respectively. The debris disk spectrum at fractional luminosity levels of 10− 7 and 10− are shown in dashed and dotted lines. In the , mutual collisions ANRV352-AA46-10 ARI 25 July 2008between 4:42 Edgeworth (EKB) objects and erosion by interstellar dust grains release dust particles that spread over the EKB region (Jewitt et al., 2009). This means that the EKB would appear as an extended 50 AU disk with a Td 70 100 K and 7 ∼ − a fractional luminosity f 10− (Backman et al., 1995). d ∼

102 a Total emission 101 spectrum = 10–3 G2V at 10 pc = 10–5 100 T = 278 K, 1 AU = 10–7 T = 88 K, 10 AU T = 28 K, 100 AU –1 Disk 10 contribution = 10–3 Flux density (Jy) –5 10–2 = 10 = 10–7

10–3 10–1 100 101 102 103 Wavelength (µm)

10–1 Figure 1.4: The SED of a G2V star at 10pc in gray, with a debris disk of dust at temperatures of 278 K, 88 K, andb 28 K in yellow, red and blue, which dust radii corresponds to 1 AU, 10 AU, and 100 AUrespectively. 10–2 The tick lines show the total emission spectrum and thin lines show the disk contribution (Wyatt, 2008). 10–3 *

L –4 / 10 24 µm IR 70 µm L –5 850 µm at 10 pc = 10 f

10–6

10–7 AB KB

10–8 100 101 102

Annu. Rev. Astro. Astrophys. 2008.46:339-383. Downloaded from www.annualreviews.org Radius (AU)

10–1 c MOV G2V AOV 10–2 Access provided by Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) on 06/11/15. For personal use only.

10–3 * L / 24 µm IR –4 L 10 70 µm

= 850 µm at 10 pc f 10–5

10–6

10–7 100 101 102 103 Radius (AU)

342 Wyatt 1.2. OBSERVING DEBRIS DISKS AT IR WAVELENGTHS 7 1.2 Observing Debris Disks at IR wavelengths

Observations of debris disks help to study their properties and to identify possible correlations with their host stars properties and, thus, to understand the diversity of planetary systems architectures. One of the objectives is to place the Solar System’s debris disk, composed of warm dust in the terrestrial zone (the belt at 0.5- 3 AU), and cold dust in the EKB, in context of the other systems (Matthews et al., 2014). As expected, these disks might be detected at different wavelengths, unveiling different dust composition and physical properties.

Far-Infrared to Millimiter Observations • Some debris disks are detected only at long wavelengths ( 60 µm), that corresponds to cold dust with temperatures 50 K orbiting from 10 to≥ 100 AU. For many systems, a single dust disk is enough to≤ fit their SED. These outer disks are much brighter 5 3 analogues of our EKB with fractional range from 10− to 10− (Krivov, 2010). The dust in debris disks, determined through sub-mm measurements, 3 are in range of 10− to 1 Earth masses (Sheret et al., 2004). Some debris disks reveal, in spectroscopic observations, features of the mineralogy of the dust grains, e.g. a mixture of amorphous and crystalline silicates, silica and other species, including ice. However, the interpretation of the spectra is difficult and involves degeneracies, since the same spectra can be fitted with different mixtures of material (Chen et al., 2008; Lisse et al., 2009; Krivov, 2010). Observations at millimeter wavelengths are valuable for studies of system dynamics because of the higher sensitivity of this wavelengths to larger dust grains, with long resonant lifetimes that best traces the structure of the disk (Wyatt, 2006).

In the past decade, several surveys have measured the incidence of debris disks in spectral types A to M at 70 and 160 µm. The most relevant are FEPS∗ (Rieke et al., 2005), using the Spitzer observatory, DEBRIS (Sibthorpe et al., 2013) and DUNES† (Eiroa et al., 2013), carried out with the Herschel satellite. Matthews et. al (2014, and references therein) make a comparison of detection rates of debris disks among the different surveys, making emphasis that for A stars, the detection rates are 33% and 25% at 70 µm and 100 µm respectively, while for solar type stars (FGK) the detection rate ranges from 10% in the case of FEPS survey to 17% reported in the DEBRIS survey. DUNES increased the detection rate up to 20% (Eiroa et al., 2013). Also, Trilling et al.(2008) reported that an apparent decrease of excess rates from A to K spectral types is due to an age effect as expected by the circumstellar disk evolution.

∗Formation and Evolution of Planetary Systems †DUst around NEarby Stars 8 CHAPTER 1. INTRODUCTION

Near-IR Observations • Systems with very hot dust, which have temperatures around 1000 K have been disco- vered through near-IR photometry. It is proposed that this kind of disks has grains with size 1 µm in a separation radius of 0.2 AU from the central star. These exozodiacal≈ clouds, as designated in analogy to the solar system zodiacal dust, has an 8 4 estimated dust mass of 8 10− Earth masses and a fractional luminosity of 5 10− . For instance, near-IR emission≈ × has been observed in Vega. A major dynamical× event, similar to the Late Heavy Bombardment (Wyatt, 2008) in the solar system, might explain the presence of small dust grains in the inner disk of this star (Absil et al., 2006).

1.3 Mid-IR observations: Warm debris disks

Most of the known debris disks are analogues to our Kuiper Belt and show no evidence of warm dust grains in the inner regions, nevertheless, new kind of disks were detected thanks to extensive surveys in the Mid-IR. These disks were called warm debris disks and the emission in excess found at wavelengths between 5 µm and 35 µm suggests the presence of material closer to the star. Recent studies with the Wide Infrared Survey Explorer (WISE) (Cruz-Saenz de Miera et al., 2014; Patel et al., 2014) have found stars with infrared excesses at Mid-IR. In Figure 1.5 we show the SED from Cruz-Saenz de Miera et al.(2014) of four stars with prominent 22 µm excesses (in the W4 WISE band), which might correspond to warm debris disks with temperatures 4 Td in the range of 100 K to 450 K and fractional luminosities fd from 4 10− to 2 × 1.25 10− . × Several physical processes have been proposed to explain the formation and presence of warm dust around stars. As mentioned before, the presence of debris disks around stars with ages 100 Myr implies a second generation dust production. In the spe- cific case of warm≥ dust, gravitational interaction among the particles in debris disks might produce a collisional cascade that populate regions at smaller stellocentric dis- tances. Williams & Wetherhill(1994) suggest that collisional grinding of planetesimals to micron-sized grains is produced by gravitational interaction between planets embed- ded in the belt. Besides, Pluto size objects, as well as and short period comets together, are considered also sources of the interplanetary dust observed at few AU from the star (Gr¨unet al., 2001). Currie et al.(2007) have proposed that warm dust is also product of formation, i.e. rocky planets in the habitable zone. This theory is reinforced with the evidence of the chaotic early times of our solar system. Jackson & Wyatt(2012) proposed the formation of our Moon as a collision between the primitive Earth and a gigantic object near the size of Mars. 1.3. MID-IR OBSERVATIONS: WARM DEBRIS DISKS 9

Wyatt(2008) proposed that dust is mainly produced by collisions of large rocky bodies and the dust is carried in zones closer to the star by P-R drag. A similar scenario was proposed by Reidemeister et al.(2011), where they proposed that stellar wind drag, similar as the P-R force but with particles instead of photons, is responsible of the warm6 dustF. around Cruz-Saenz Eridani. de Miera, M. Chavez, E. Bertone and O. Vega

HD 39415 HD 119718 1.00 1.000

0.10

0.01 Tdisc = 244 K Tdisc = 103 K 0.100 Fdisc = 6.50E-03 Fdisc = 4.25E-04

1.0 HD 115371 YZ Cep WISE 22 [Jy] Flux [Jy]

0.1 0.010

0.01

Tdisc = 197 K Tdisc = 442 K Fdisc = 1.75E-04 Fdisc = 1.25E-02 0.001 0.001 1 10 1 10 0.001 0.010 0.100 1.000 Wavelength [µm] MIPS 24 [Jy]

FigureFigure 1.5: SEDs 5. Spectral of four stars energy that display distributions prominent 22 µ ofm excesses. four stars Observational that display data points Figure 8. Comparison between WISE-W4 and Spitzer-MIPS at J, H, KS and the WISE bands in red dots. Continuous line correspond to the best fit photosphere fromprominent Kurucz models 22 plusµmexcesses.Observationaldatapoints(reddots) the blackbody. Each panel shows the disk temperature and the fractional 24 µm. Blue circles and red triangles are sources from Eiroa et al. luminosity (Cruz-Saenz de Miera et al., 2014). mark the J, H, and KS 2MASS magnitudes, extracted from SIM- (2013) and Chen et al. (2011), respectively. Data from Chen etal. BAD, and four WISE bands. The continuous lines correspond to (2011) consist of the 65 stars in their sample that accomplished Itthe is also best worth fit to of mention the stellar that other photosphere processes are plus involved a black in the body.destruction In ea ofch warm the WISE quality selection criteria adopted in this work. Green dust.panel In weKenyon indicate & Bromley the( black2004) models, body temperature a planetesimal belt and produces fractional lowlu- levels squares are the excess candidates included in the present work. of debris emission in the early stages of planetary accretion, then dust production reachesminosity a maximum that delivers and destructive the best collisional fit. cascades initiate by interaction of km- Error bars are smaller that the symbol size for most stars. The sized bodies. This means that, according to these models, rocky planetesimals grow agreement of the two instruments is evident down to the lowest into planets in 1-10 Myr at distances around 0.3-3 AU, icy planetesimals become W4 flux level in our sample of excess candidates indicated with planets in 10-30 Myr and, after icy planets formed,∼ a depletion of planetesimals occurs due to25 repeated collisions and the lack of replenishment of dust from the outer disk. As the dotted line.

20 observational programs at far-IR, sub-mm and mm that are 15 required to better characterise the material around Sun-like stars.

Frequency 10

5 ACKNOWLEDGMENTS 0 We thank the anonymous referee for constructive com- 0 100 200 300 400 ments that improved the presentation of this work. MC and Tdisc [K] FCSM would like to thank CONACyT for financial support through grant number 134985. This publication makes use of Figure 6. Distribution of the black body temperature of the disc candidates of our sample. The shaded area indicates the distribu- data products from the Wide-field Infrared Survey Explorer, tion of those objects that also display a 3σ excess in W3. which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California In- stitute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the 50 SIMBAD database, operated at CDS, Strasbourg, France.

40

30 REFERENCES

Frequency 20 Aumann H. H., Beichmann C. A., Gillett F. C., de Jong, T. Houck, J. R. et al., 1984, ApJL, 278, L23 10 Chen C. H., Mamajek E., Bitner M. A., Pecaut M., Su K. Y. L., et al., 2011, ApJ, 738, 122 0 Dermott S. F., Durda D. D., Grogan K., Kehoe, T. J. J. -4 -3 -2 -1 2002, in Asteroids III, ed. W. F. Bottke Jr. et al. (Tucson, Log F disc Univ. Arizona Press), 423 Figure 7. Distribution of the fractional luminosity of the disc Eiroa C., Fedele D., Maldonado J., Gonz´alez-Garc´ıa B. M., candidates of our sample. The shaded area indicates the distribu- Rodmann J., et al., 2010, A&A, 518, L131 tion of those objects that also display a 3σ excess in W3. Eiroa C., Marshall, J. P., Mora, A., Montesinos B., Absil, O., et al. 2013, A&A, 555, 11 Fujiwara H., Ishihara D., Kataza H., Onaka T., Yamashita T. et al., 2009, in proceedings of the conference AKARI,

c 2013 RAS, MNRAS 000,1–7 ⃝ 10 CHAPTER 1. INTRODUCTION a consequence, debris dust production eventually declines. This implies that dust mass drops systematically with time. Rieke et al. (2005 and references therein) proposed that debris luminosity peaks around an age of 10-30 Myr and then declines toward 1 older ages; in particular, they proposed that 24 µm emission declines as t− by erosive collisions. Nevertheless, although planet gravitational interaction is thought to be responsible of formation of warm dust, it is also possible that this interaction might be the cause of the decrease in dust mass. Quillen(2006) has proposed that massive planets, at least size, are required for clearing regions in disks and also planet migration could be constantly eroding away the inner regions of the disk forming gaps in the terrestrial zone.

According to Krivov (2010 and references therein), a balance between the production of dust by collisional cascades and its loss due to radiation pressure is expected. If such balance exists, the amount of particles with different sizes and stay constant relative to each other; however, Wyatt et al.(2012) claimed that debris disks incidence rate is higher around stars with planets of low mass.

Some physical properties have been derived for these inner disks: for example, the 8 6 typical masses are estimated in the range of 10− and 10− Earth masses (Krivov, 2010). Studies at 24 µm, done by Rieke et al.(2005) for A stars with ages in the range of 5-850 Myr, found that younger stars exhibit excess emission more frequently than older stars and the fractional excesses inversely fall with age. Observationally, Su (2006) found a rate for A stars of 32% at 24 µm. Also, different surveys with IRAS, ISO‡, and Spitzer have shown that Mid-IR excesses are rare in FGK stars (Wyatt, 2008). Trilling et al.(2008) found a fraction of 4% warm excesses in field stars with a median age of 5Gyr using the Spitzer survey. As shown in Figure 1.6 (a), the fraction of FGK stars with∼ 24 µm excesses falls with time from 20% - 40% at the youngest ages to a few percent on a 100 Myr scale. The fall off mimics the behavior of A type stars except that it is an order of magnitude faster (see Figure 1.6(b)). The difference in timescales and the lifetime of Sun-like stars in the MS stage explains in some way the rarity of warm dust excesses in field FGK stars (Wyatt, 2008).

‡Infrared Space Observatory ANRV352-AA46-10 ARI 25 July 2008 4:42

1.3. MID-IR OBSERVATIONS: WARM DEBRIS DISKS 11

102 HD 113766 a BD+20307 F5-K7 stars F0-F4 stars ) * –2

24 t F

/ HD 23514 24 F 101

t –1 Excess ratio (

η Corvi HD 69830

100

0 50 102 103 104 Age (Myr)

70 b 60 10–30 B5-A9 stars (Siegler) FGK stars (Siegler) Annu. Rev. Astro. Astrophys. 2008.46:339-383. Downloaded from www.annualreviews.org 50 NGC 2547 FGK stars (Meyer) 31–89 40 Access provided by Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) on 06/11/15. For personal use only.

30 Sco Cen 90–189

190–500 IC2391 20 10 –32 100–320

Fraction of stars with 24-µm excess (%) 10 501–800 32–100 Field 320 –1000 1000–3200 Hyades 0 101 102 103 Age (Myr)

Figure 1.6: Evolution of 24 µm excesses around Sun-like stars (Siegler et al., 2007). In Panel (a): www.annualreviews.org Evolution of Debris Disks 367 24 µm excess ratio as a function of age. In Panel (b): Fraction of stars• with 24 µm excesses as a function of age. Filled circles are FGK stars, squares for A and B stars. The numbers in the blue and red marks represent the timescale binning for the stars in each sample. Figure taken from Wyatt (2008). 12 CHAPTER 1. INTRODUCTION 1.4 Planet interaction and disks

Since the discovery of the first Jupiter size exoplanet around the main sequence star 51 Pegasi (Mayor & Queloz, 1995), many more around Sun-like stars have been identified by several methods like , transit, , microlen- sing, timing and direct imaging (see Perryman 2011 for further explanation of the detection methods). The majority of all exoplanet searches have taken place at optical wavelengths, with mature stars as primordial candidates. We have previously men- tioned that debris disk are perturbed by the presence of planets and, therefore, it is convenient to briefly elaborate on these interactions.

Murray & Dermott(1999) analyzed perturbations produced by planets on the disks. The secular occurs when the has a planet with an or- bital plane misaligned with the disk plane. Eventually, the disk plane tends to align with the planet plane and this alignment takes place in long term scales, that can take 10 Myr or more before reaching the steady state. Several scenarios for secular pertur- bations are proposed depending of the planet orbit inclination. First, if the planet has an orbital plane misaligned with the disk mid plane, a warp will propagate through the disk. Second, if there is a planet with an eccentric orbit, there would be spiral pertur- bations that propagate through the planetesimal disk and, in consequence, make the planetesimals change their initial circular orbits to a spiral form orbit. This will cause catastrophic collisions that will produce collisional cascades. Another consequence of this secular perturbation is the formation of asymmetric brightness on the side of the disk closer to the star. (Mustill & Wyatt, 2009; Wyatt, 1999; Matthews et al., 2014). This warp phenomenon is been observed in β Pic disk at 80 AU and was used to infer the presence of a planet at a distance of 9 AU, with a mass of 9 Jupiter masses (MJ §). This hypothetical planet was identified later by direct imaging. Figure 1.7 shows β Pic images obtained with the Space Telescope Imaging Spectrograph (STIS) on board the . The warp can be seen in the vicinity ( 100 AU) of the star (Lagrange et al., 2010; Heap et al., 2000). ∼ ±

Another kind of perturbations in debris disks are produced by resonances in the vicinity of a planet. The resonances overlap each other causing chaos in the region nearby where they are produced. As a consequence, dust is removed from its initial location, and the planet induces the perturbations that shape the inner edge of the debris disks, cleaning the region where the planet orbits. This means that it is possible that planets are orbiting stars within the gaps of debris disks. On the other hand, it is also possible that the formation of clumpy structures occurs. This implies that if a planet is migrating throughout the disk, its resonances will sweep the material and some planetesimals and dust might migrate also with the planet, producing a pinpointed signature where the planet might be located inside the clumps. This phenomenon can be seen around

§ −4 1 MJ = 9.54 10 M × 440 HEAP ET AL. Vol. 539

3.3. Evaluation of the Results di†erences in the six di†erent solutions for the disk Since there are no experimental data available for evalu- (observations at three roll angles times two wedge ating the e†ectiveness of the occulting mask and Lyot stop, positions). As such, they should represent a total error we compared the derived PSF for b Pic with theoretical including both observational uncertainties and errors in the models. Figure 5 compares the radial proÐle of the derived data processing. Along the spine of the disk, the signal-to- PSF with that computed from Telescope Imaging Model- noise ratio exceeds 100 over the region from 30 to 150 AU ling (TIM) models (Burrows & Hasan 1993). This plot from the star. Above and below the spine of the disk, the demonstrates the two main advantages of coronagraphy. brightness, and consequently, the S/N, drop rapidly. First, the 1A occulting wedge provides a rejection factor of 4. OBSERVED PROPERTIES OF THE b PIC DISK up to 8000. Were it not for the wedge, the star would produce count rates of up to nearly a billion e~ s~1 pixel~1. 4.1. Disk Morphology But because the star is occulted, the dynamic range of the b Figure 8 shows the resulting images of the b Pic disk Pic scene is lowered to a point where it can easily be accom- based on the WedgeB1 observations. At the top is a false- modated by the CCD detector. For example, atr \ 0A.5 (10 color image of the disk on a log scale. The bottom shows the AU), the occulted star contributes 26,000 e~ s~1 pixel~1, disk with intensities normalized to midplane brightness and well below the full-well capacity of the CCD (144,000 e~ the vertical scale (i.e., perpendicular to the spine of the disk) pixel~1) for a 1 s exposure. Since the readout noise of the expanded by a factor of 4 in order to show the shape of the summed image (eight or 16 exposures for WedgeB2 and disk more clearly. The main visual impressions are the WedgeB1, respectively) is below 1 e~ s~1 pixel~1, its smoothness of the disk and the presence of a warp close (in 1.4. PLANETdynamic range INTERACTION is about 1 ] 106. Second, the AND wings of DISKS the projection) to the star. The smoothness of the disk in the 13 PSF are a factor of 2 lower than the TIM model for the STIS images is in sharp contrast to previous images telescope performance. This level of suppression accords (Burrows et al. 1995; Mouillet et al. 1997), which are with the expected action of the Lyot stop, but further obser- marked by swirls and radial spikes. We interpret this  Eridani,vations which are needed presents to complete some the characterization of this of clumpy the texture structure in previous images in the to incomplete 850 µ eliminationm maps of the collected STIS coronagraphic mode. PSF. The pronounced warp in the disk was detected in with theFigure James 6 compares Clerk the radial Maxwell proÐles of Telescope light from the (JCMT).previous images, In but Figure only theSTIS 1.8 images we are reproduce able to the star and from the midplane of the disk. The star contributes follow it in close to the star. Below, we report on quantitat- 850 µmmore map light by tothe Greaves disk interior to etr \ al.3A and(1998 also beyond). The 9A; perturbationsive measurements of the presented disk, including the in radial the Ñux above gra- lines this is because the sky background is included in the PSF. dient and vertical Ñux distribution, the warp, and the are alsoFigure presented 7 shows the in disk works image with of contours Wisdom of the associ-(1980),innermost Faber region & of Quillen the disk(r \(12007A.5), which), heretoforeWyatt has(2003), ated signal-to-noise (S/N) ratios superposed. The errors not been seen in images of its dust-scattered light. To Mustill &used Wyatt to compute( the2011 S/N for), eachMatthews pixel were estimated et al. from(2014describe). the disk, we use a cylindrical coordinate system

FIG. 8.ÈSTIS/CCD coronagraphic images of the b Pic disk (WedgeB2 observations). The half-width of the occulted region is0A.75 \ 15 AU. At top is the disk at a logarithmic stretch. At bottom is the disk normalized to the maximum Ñux, with the vertical scale expanded by 4. Figure 1.7: STS/CCD coronagraphic images of β Pictoris disk (Heap et al., 2000).

L134 GREAVES ET AL. Vol. 506

Fig. 1.—Dust emission around e Eri at a wavelength of 850 mm. The false-color scale is linear from 2.8 mJy beam21 (3.5 j pixel21) to 8.5 mJy beam21 (at the peak). The star is marked by the star symbol, the circle shows the 150 beam size, and 10 corresponds to 3.22 AU. The apparent size of Pluto’s orbit at 3.22 pc Dustdistance emissionis also shown. The pos aroundition of the star is R.A.Eridani5 03h32m56.s0, decl at. 5 209 a727 wavelength9290.8 and is equinox 2000, e ofpoch 1 850998. The pµropm.er motion Theof the star falsewas color scale is Figure 1.8: only 00.5 over the 6 month observing period. linear from 2.8 mJy beam−1 to 8.5 mJy beam−1. the star is marked with the star symbol. The circle of less than 1), and calibration data were obtained from Mars in a peak signal-to-noise ratio per beam of 10. Photospheric shows the beama sizend Uran ofus. P 15”ointing a andccuracy 1”was 2 correspond0, which is small compa tored 3.22emiss AUion of (1.7Greaves5 0.2 mJy ha ets als al.o be,e n1998subtract).ed in the with the beam size of 150 at 850 mm (FWHM). The data image. The photospheric flux was estimated by independent were reduced using the SCUBA User Reduction Facility (Jen- extrapolations using 2.2 and 3.4 mm data (Carter 1990) and the ness & Lightfoot 1998) and are rebinned in a right IRAS 12 mm flux (corrected for an of ascension– frame with 20 cells. 5000 K). Dust emission around e Eri was also tentatively de- The 850 mm map of e Eri is shown in Figure 1. The data tected at 450 mm (Table 1). have been smoothed with a 80 point-spread function, resulting The image shows extended flux around the star out to about

TABLE 1 Flux Measurements for e Eri

Wavelength (mm) Dust Flux Photospheric Flux Unit Comments 850 ...... 40 5 3 1.7 5 0.2 mJy r 350 from star 450 ...... 185 5 103 6 5 1 mJy r ∑ 350 from star 100 ...... 1.78 0.11 Jy IRAS∑ 60 ...... 1.34 0.29 Jy IRAS 25 ...... 0.27 1.63 Jy IRAS 12 ...... ) 6.66 Jy IRAS 3.4 ...... ) 70.3 Jy SAAO 2.2 ...... ) 139.7 Jy SAAO 1300 ...... (17–24) 0.7 mJy Photometry, 110–240 beams Note.—The flux data were from this work, the IRAS point-source catalog, Carter 1990, Zuckerman & Becklin 1993, Chini, Kru¨gel, & Kreysa 1990, and Chini et al. 1991. The photospheric emission at 2.2–12 mm was extrapolated to find dust excesses (see also Gillett 1986). Only the 12 mm point was used for the IRAS wavelengths, and color corrections were made for a 5000 K photosphere (12–25 mm) and the dust spectral energy distribution (60–100 mm). 14 CHAPTER 1. INTRODUCTION

Greaves et al.(2006) have found that the incidence of debris disks do not correlate with metallicity of MS stars, whereas it has been found by Fischer & Valenti(2005) that the metallicity of stars with giant planets is likely super solar. More recently, Marshall et al.(2014) have found several trends between the stellar metallicity, the presence of a debris disk and the mass of the massive exoplanets around stars. They found that low metallicity stars are more likely to host low mass planets and these stars are more likely to have a detectable debris disk. However, there is not yet a significant evidence for a trend relating the eccentricity of the innermost planets with the fractional luminosity of the disks, which suggests that known exoplanets in the systems have little influence on the presence of dust.

1.5 Aims of this work

Given that planets are the final stage of agglomeration of smaller bodies from dust to planetesimals, and debris disks are the result of collisional grinding of these planete- simals, we might expect the presence of planets in the terrestrial zone located a few AUs from the star and warm debris disks to be correlated. This idea is reinforced by the hypothesis that the gravitational interaction of a planet with the dust particles is responsible for the continuous production and replenishing of warm dust. However, it also has been discussed that the cleaning processes of the innermost regions of debris disks are also caused by planets. Thus, it is interesting to see if the number of stars with Mid-IR excesses is correlated with the presence or absence of planets in order to understand which physical processes are dominating in these planetary systems. To achieve this, we analyze two samples of stars, one composed of stars with planets and the other composed of stars without planets (stars with no detected planets), using IR data from the four WISE bands (W1, W2, W3, W4) and searching for IR excesses at 22 µm with a comparison of the observed and the expected flux ratio W4/W3 in order to see if the correlation between warm debris disks and the presence of planets exists. Nevertheless, we also analyze other methods to search for IR excesses that have been used by other authors to understand which method provides better detection of the excess significance, thus avoiding unreliable IR excesses.

The structure of this thesis is as follows: In Chapter 2 we present a description of the photometry data used and the sample selection. In Chapter 3 we describe the methodology used in this work, as well as details of the different methods that have been implemented for detecting infrared excesses. In chapter 4 we report the results obtained and the analysis of these results. Finally, we present the conclusions and future work in chapter 5. Figures and tables of interest are shown in the appendix section. Chapter 2

The sample selection

The 2 Micron All Sky Survey (2MASS) and the Wide Infrared Survey Explorer (WISE) conducted sensitive observations of the entire sky at near and mid-IR wavelengths. These massive surveys complement the pioneering work of IRAS, particularly in the context of the present work. This chapter focuses on the description of 2MASS and WISE and the sample we have selected for investigating the prevalence of Mid-IR excesses in MS stars with and without planets. The next two sections of this chapter describe some scientific goals, characteristics and quality of the data releases of these surveys.

2.1 IR Surveys

2.1.1 Wide-field Infrared Survey Explorer (WISE)

WISE was a NASA mission (2009-2011) which had as objective to map the entire sky in the mid-infrared passbands at 3.4 µm (W1), 4.6 µm (W2), 12 µm (W3) and 22 µm (W4). It had a telescope with 40 cm of aperture, cryogenically cooled. It used four focal plains that simultaneously took images of a 47 47 arcmin field of view. Moreover, the exposure time was 7.7 s for W1 and W2, and 8.8× s for W3 and W4. The Full Width Half Maximum of the Point Spread Functiona were 6.1” for W1, 6.4” for W2, 6.5” for W3 and 12.0” for W4. In Figure 2.1 we show a sketch of the WISE satellite (Wright et al., 2010).

Two data releases have been delivered. The first one, called All-Sky (Cutri et al., 2012), covered more than 90% of the sky. These data were reduced in a way that

15 16 CHAPTER 2. THE SAMPLE SELECTION improved the calibrations. WISE photometry was conducted using profile fitting of the point spread function of the instrument instead of aperture photometry, where the photon integration was done inside a region of appropriate size. However, it is known that the All-Sky data release had several limitations, which were:

Possible differences in the measured positions of the objects between the catalog • and the .

The profile fitting in the photometry can systematically underestimate the fluxes • for the faintest sources, with W 1 > 14.0 mag and W 2 > 13.5 mag.

The catalog has unreliable entries. •

Figure 2.1: Sketch of WISE satellite in its mapping configuration (Wright et al., 2010).

The second data release, named AllWISE (Cutri, 2013), was delivered in November 2013 and included combined data of previous epochs of WISE, such as NEOWISE, which provided photometry measurements of asteroids and comets, and Cryogenic WISE, which obtained data before their cooling systems ended operations. Taking into account these combinations, the sensitivity and the photometric precision was improved as compared to the previous All-Sky data release. Photometry comparisons between the two data releases were done in the entire sky and Figure 2.2 shows pho- tometry profile differences between AllWISE and WISE All-Sky surveys in W4 band at a declination of +120 and of 127.50 as an example. Black dots show the relative differences in the W4 mag for sources present in the AllWISE and All-Sky surveys. In the figure, we can see that the photometry of both data releases are in agreement for sources with W4 magnitudes from 2 to 6. For magnitudes W4 6, All-Sky photometry delivered fainter fluxes than AllWISE. The situation is reversed≥ for magnitudes 8. Therefore, non negligible differences (as large as 0.1 mag) are present. ≥

The improvements in AllWISE catalogue with respect to All-Sky catalogue are sum- 2.1. IR SURVEYS 17 marized in the following points:

AllWISE has more sensitivity in W1 and W2 due to the inclusion of the preview • observational epochs, such as NEOWISE and Cryogenic WISE in the mission mapping.

AllWISE photometry is more reliable in the four bands than the previous release • because of a better estimation of the background in single exposures.

The astrometry has improved because the of the stars has been • corrected using 2MASS catalogue as reference.

Figure 2.2: Photometric differences between AllWISE and WISE All-Sky as function of AllWISE magnitude in the ecliptic plane. Black dots are individual sources. Green dots and error bars are the average fitting and the photometry residuals in bins of 0.5 mag width in W4 in a region of the sky of +120 in declination and right ascension of 1270∗

Some scientific goals

WISE achieved sensitivities of 5σ in point sources better than 0.08, 0.11, 1 and 6 mJy (16.5, 15.5, 11.2 and 7.9 Vega magnitudes respectively) in the four bands, respectively. This allowed to reach deeper magnitudes than 2MASS Ks data in W1 for sources with a spectrum similar to a A0 star. Furthermore, it was able to go even deeper for K

∗from wise2.ipac.caltech.edu 18 CHAPTER 2. THE SAMPLE SELECTION type stars and galaxies with old stellar populations. In comparison, IRAS survey had sensitivities at 12 µm, 25 µm and 60 µm of 0.5 Jy for the three bands (Neudebauer et al., 1984), implying that for 12 µm and 25 µm, WISE is 100 times more sensitive than IRAS. ∼

Data from the WISE survey have been used in scientific cases involving many astro- physical scenarios. For the purposes of this work, we only mention some of them that are of our interest and can be summarized as follows: WISE studied the Solar System’s zodiacal cloud and the asteroid system, with a better angular resolution than IRAS, which had 0.5 arcmin at 12 µm and 2 arcmin at 100 µm, in order to observe dust bands and comet trails. Also, the mission provided a robust statistical database for study- ing and the evolution of circumstellar disks around thousands of stars in the solar neighborhood. These observations helped to understand the dynamics of the system and refined the timescales for disk clearing in early evolutionary stages of stars. Using WISE longer wavelengths, excess at 22 µm are easily detectable. For instance, the simultaneous four color photometry detect optically thick disk emission for solar-like stars in the and Ophiucus star-forming regions (Wright et al., 2010).

2.1.2 Two Micron All Sky Survey (2MASS)

The 2MASS project was designed for surveying sky in the near infrared. It used two telescopes of 1.3 m of diameter, one located at Mt. Hopkins, Arizona, and the other at Cerro Tololo Interamerican Observatory (CTIO), Chile. Each telescope was equipped with a three channel camera that observed simultaneously in the J (1.25 µm), H (1.65 µm) y Ks (2.17 µm) bands. The point sources brighter than 1 mJy were detected and characterized in each band, with a signal-to-noise ratio greater than 10. Furthermore, the spatial resolution of this instrument was 2.0 arcesc. The scanning of the northern sky begun on June 1997 and finished on December 2000. In the South observatory the scanning started on March 1998 and ended on February 2001 (Skrutskie et al., 2006).

The main science goals were:

A look to the almost free of the darkening effect caused by interstellar • dust revealed the structures of luminous mass in the .

The first photometric census of all sky from the galaxy, with magnitude greater • than Ks = 13.5 mag, including galaxies in the dusty zones where it was impossible to complete the optical census. 2.2. THE SAMPLE 19

A statistical base to look for rare but important astronomical objects, as cold • or extremely red (e.g. low luminosity stars or brown dwarfs), as well as objects highly darkened in optical wavelengths (e.g. globular clusters in the galactic plane).

The data were released on March 2003 (Cutri et al., 2003) and 99.998% of the sky was mapped, with almost 300 million stars and over 1 million galaxies and many other objects of unknown nature.

2.2 The sample

In order to achieve the objectives of this work, we need a properly selected sample of stars. One set corresponds to an updated collection of stars for which planetary companion have been found. The other, also arising from exoplanetary surveys, is composed of stars with not yet detected planets. In the following, we will describe the selection criteria of the working dataset.

2.2.1 Stars with planets

The sample of stars with planets was constructed based upon “The Extrasolar Planet Encyclopedia” web page∗. The team responsible of this database have gathered data from February 1995 up to date. On July 2015, the database consists of 1932 discovered exoplanets in 1222 stellar systems. The reported planetary systems have been detected by different methods, including radial velocity, transits, micro-lensing, direct imaging and astrometry. The database also offers planetary parameters like planet mass, radius, , distance to the parent star, ellipticity, etc. Additionally, the catalogue includes stellar parameters of the host stars like metallicity, spectral type, temperature, distance from the Sun, etc. However, the sample of stars with planets taken into account for this work was obtained in April 2015, as the last update. Thus, we begin with a sample of 1207 stars with planets.

Up to 20% of the current confirmed extrasolar planets have been discovered by the very successful Kepler Mission (Batalha, 2014). The WISE Mid-IR excesses associated to these targets were studied in detail by Kennedy & Wyatt(2012). In their work, they concluded that all but one excess at 22 µm are caused by background extragalactic sources and not produced by debris disks around the stellar systems. Considering Kennedy & Wyatt(2012) conclusion about the IR excesses in the Kepler field, 444

∗http://exoplanet.eu 20 CHAPTER 2. THE SAMPLE SELECTION stars with planets catalogued as Kepler Object of Interest (KOI) and Kepler Input Catalogue (KIC) are not considered in the sample selection. Thus, eliminating the 444 stars from the initial number of stars with planets, we remained with 763 stars with planets at the beginning of the sample selection.

2.2.2 Stars without planets

There have been many surveys with the goal of finding exoplanets in the last 10 years. For the purposes of the present work we based our sample of stars without plan- ets on the results of the Searching Program Guaranteed Time Observations (GTO) High Accuracy Radial velocity Planet Searcher (HARPS). GTO HARPS is a project designed to look for planets by measuring the radial velocity of stars. The Echelle spectrograph HARPS offers a radial velocity precision of about 1 m/s (Sousa et al., 2008, 2011). From this GTO HARPS program, 1033 stars were initially selected (April 2015). These stars are considered as low rotators, not evolved and with low chromo- spheric activity, effect that may jeopardize precise radial velocity measurements. Since this studies were carried out several years ago, there was the chance that some stars previously catalogued as not having planets might have a confirmed planet nowadays, thus, we compared both samples of stars with and without planets and found that 145 stars from this GTO program were later on confirmed as exoplanetary hosts. This reduced our sample to 888 stars.

Other stars without planets used in this work were taken from Valenti & Fischer (2005) work. They spectroscopically analyze a sample of stars observed with the High- Resolution Echelle Spectrograph (HIRES) at the 10 m telescope Keck, with University College London Echelle Spectrometer (UCLES) at the 4 m Anglo-Australian telescope located at Siding Spring Observatory, and with the Hamilton Echelle Spectrograph at Lick Observatory. These stars were initially selected having low chromospheric activity and not being binaries.

Comparing the stars between Sousa et al.(2008, 2011) and Valenti & Fischer(2005) catalogues, we found 148 stars in common. Furthermore, 146 Valenti & Fischer(2005) stars are now confirmed as planet hosts and were not included in Sousa et al.(2008, 2011) sample. Thus, the final sample of stars taken from Valenti & Fischer(2005) work includes 746 stars without planets. Finally, adding the stars without planets from Valenti & Fischer(2005) and Sousa et al.(2008, 2011), we ended up with a total number of 1634 stars without planets to analyze. 2.3. OPTICAL AND INFRARED PHOTOMETRY 21 2.3 Optical and Infrared photometry

We collected mid-infrared photometry from AllWISE catalogue with the following constraints:

The signal-to-noise ratio S/N 5 in W4 photometry. • ≥ W1, W2, W3 and W4 photometry must include uncertainties (some sources • brighter than 0 magnitude in any WISE band do not have uncertainties).

The selected sources must be free from any artifact or contamination. These • artifacts can include diffraction spikes caused by nearby bright sources, halos of dispersed light or optical ghosts due to a brighter source in the vicinity.

The pixel saturation in W3 and W4 must be zero. • By applying the previous criteria, the two samples of stars reduced to 1215 stars without planets and 309 stars with planets.

The J, H, and KS photometry is collected from the All-Sky catalogue of 2MASS. The restrictions applied on this catalogue are as follows:

J, H and KS photometry must be accompanied by the corresponding uncertain- • ties.

The quality flag of the photometry must be A or B, with a S/N 10 and S/N 7, • respectively, in the catalogue. Data with lower quality flags C,≥ D, E, F and≥ X are discarded.

Taking into account these restrictions, the number of stars in both samples is reduced again, leaving the samples with 1121 stars without planets and 271 stars with planets. Stars like  Eridani, Fomalhaut and β Pic do not fulfill the 2MASS restrictions, thus, these well known stars were not considered in our sample.

We subsequently used the Astronomical Database SIMBAD to obtain the B and V photometry and to select MS and stars and excluded objects of luminosity classes III, II and I, as well as pre-main sequence objects (T-Tauri, Ae/Be Herbig) and stars in binary or multiple systems. This reduced our sample of stars with planets to 232 stars and the sample of stars without planets to 964.

Finally, since the WISE catalog is known to include spurious detections (e.g., Cruz- Saenz de Miera et al. 2014), we therefore proceeded to carefully inspect each image 22 CHAPTER 2. THE SAMPLE SELECTION

Figure 2.3: Spurious WISE image in W4 band of HD 192020 (up). Reliable image in W4 of HD 3277 (down). and excluded false detections in W4. This effect is consequence of the profile fitting used to obtain the photometry, since the fit on the noise level may raise the flux level artificially. Some examples of true and false detections can be seen on Figure 2.3.

After considering all the previous steps, the final samples consist in 910 stars without planets and 202 stars with planets.

2.3.1 Comparison of both samples

After selecting the samples of stars with and without planets, we needed to ensure that the results obtained in this work were not biased due to discrepancies in both samples. Thus, it was necessary to see if both samples were compatible with each other. For this, we plotted the spectral type, distance, V magnitude and metallicity distribution histograms of both samples and applied a two-sample Kolmogorov Smirnov (KS) test considering the null hypothesis that both independent samples are taken from the same continuous distribution. In brief, the KS test consists in comparing the maximum distance between the cumulative distributions of the two samples with a critical value, that depends on the sample sizes.

Figure 2.4 shows the histograms of the spectral type distributions of both stellar sam- ples. From this plot we can see that the spectral types for the stars with planets range from B6 to K7, with a peak in K0, followed in number by G0 and then G5. On the other hand, the stars without planets spectral types range from F2 to K8, with G5-type stars being the most numerous, followed by G0 and F8. 2.3. OPTICAL AND INFRARED PHOTOMETRY 23

Spectral Type of stars 140 with planets without planets 120

100

80

Number 60

40

20

0 B6 B7 B8 B9 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 Spectral Type

Figure 2.4: Spectral type distributions of stars with and without planets.

To carry out the KS test, we first computed the maximum distance D between the two samples formed by n1 and n2 entries. Then, we compared it with the critical value D , which depends on the chosen significance value α and can be calculated with the c p equation Dc = c(α) (n1 + n2)/n1n2, where c(α) = 1.63 for a confidence level α= 99% (Massey, 1952). If D > Dc, the null hypothesis is rejected.

The statistic KS value computed in the spectral type distributions of stars with and without planets is D= 0.064, The critical KS value for the chosen significance level is Dc=0.126. In this case D < Dc, thus, the null hypothesis is not rejected and we conclude that the samples of stars with and without planets are coming from the same parent distribution with a confidence level of 99%. This result indicates that both samples are compatible and all the stars homogeneously sample the spectral types.

For the distance from the Sun distribution histograms shown in Figure 2.5, the KS statistic value calculated is D=0.276. Since D > Dc in this case, the null hypothesis is rejected and we conclude that the distance distributions are not coming from the same parent distribution with a confidence level of 99%; in other words, they are independent. This outcome is referring that the stars without planets were chosen from the solar neighborhood, while some stars with planets are located further and are not selected in the solar vicinity. 24 CHAPTER 2. THE SAMPLE SELECTION

Distance of stars 180 with planets 160 without planets

140

120

100

80 Number

60

40

20

0 100 101 102 103 log(distance) (pc)

Figure 2.5: Distance distributions of stars with and without planets.

For the case of the V magnitude distribution histograms shown in Figure 2.6, the KS value obtained is D=0.109. In this case, D < Dc and the null hypothesis is accepted, we concluded that both samples are coming from the same parent population in a confidence level of 99%. This implies that both samples are compatible between them. We can prove this result visually since the V magnitude ranges from 6 to 10 in both histograms and most of the stars in the sample of stars with planets are peaking at 8 mag bin while in case of stars without planets are peaking at 7 mag bin.

V magnitude of stars 100 with planets without planets

80

60 Number 40

20

0 5 6 7 8 9 10 11 V magnitude (mag)

Figure 2.6: V magnitude distributions of stars with and without planets. 2.3. OPTICAL AND INFRARED PHOTOMETRY 25

For metallicity distribution histograms shown in Figure 2.7, the KS value calculated was D=0.295 Then, we also conclude that both samples are independent each other and do not come from the same parent distribution of with a confidence level of 99% as D > Dc. An average metallicity of [Fe/H]=-0.6 is calculated in the sample of stars without planets. This result is in agreement with other works (e.g. Casagrande et al. 2011; Haywood 2001), where they report metallicities in the solar neighborhood of [Fe/H]=-0.06 and [Fe/H]=-0.7 respectively. On the other hand, the sample of stars with planets shows an average [Fe/H]=0.07. this result is due to the fact that Fischer & Valenti(2005) found that there is a positive correlation between giant planets and metallicity. Thus, knowing that 60% of stars in our sample have planets with masses 1 MJ (Jupiter mass), we expected to find the sample of stars with planets more metallic≥ than the stars without planets.

Metallicity of stars 180 with planets 160 without planets

140

120

100

80 Number

60

40

20

0 2.0 1.5 1.0 0.5 0.0 0.5 1.0 Metallicity log(Fe/H)

Figure 2.7: Metallicity distributions of stars with and without planets.

For the study presented in this work, we have selected 202 stars with planets and 910 stars without planets. The statistical analysis indicates that these samples are statisti- cally similar in their spectral type and V magnitude distributions. This result indicates that the samples are not biased in these parameters. However, we found that the sam- ple with planets is biased to higher metallicities than the other sample. In the following chapter we describe the analysis of the WISE data, and show the method applied to correct the observed fluxes for interstellar extinction, the prescription to identify IR excess, as well as a comparison with other IR excess identification criteria. 26 CHAPTER 2. THE SAMPLE SELECTION Chapter 3

Methodology

3.1 Correction for extinction and magnitude to flux conversion

Correction by interstellar extinction is important because we need to remove the effects of obscuration by interstellar dust in the observed SED of the stars in our samples. On one side, 17% and 13% of stars with and without planets, respectively, are located close to the galactic plane ( b 10 degrees). On the other side, some stars are at distances in excess of 100 pc whose| |≤ light might be affected by absorption of interstellar material. Additionally, the set of theoretical SEDs used to predict the stellar contribution in the search for IR excesses are calculated as flux vs. wavelength, thus we require to transform WISE magnitudes and other ancillary data of our targets to compatible flux units.

First of all, to achieve the correction by extinction process, the color excess E(B V ) = − (B V ) (B V )0 is calculated for each star, where (B V )0 is the intrinsic color, which− depends− − of the spectral type of the star, taken from− the spectral type-intrinsic color calibration proposed by Pecaut et al.(2012) for MS stars. In Figure 3.1 we show the distribution of B V colors with respect to the spectral type in both samples. In red dots the B V color− is plotted for the stars in the samples while the solid line represents the Pecaut− et al.(2012) calibration. As we can see, there are some objects that are bluer (B V below the solid black line) than expected. The bluest object is found in the sample− of stars without planets and the reddest object is found in the other sample.

27 28 CHAPTER 3. METHODOLOGY

Stars without planets 1.4 Intrinsic B-V (Pecaut et al. 2012) Sample's B-V 1.2

1.0

0.8

B-V (mag) 0.6

0.4

0.2

0.0 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 M0 Spectral type

Stars with planets 1.5 Intrinsic B-V (Pecaut et al. 2012) Sample's B-V

1.0

B-V (mag) 0.5

0.0

B5 B6 B7 B8 B9B9.5A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 Spectral type

Figure 3.1: Color vs spectral type of stars without planets (upper panel) and with planets (lower panel). In red points the B V color for each star. The black continuous line represent the spectral type-intrinsic color calibration− of Pecaut et al.(2012).

After the calculation of the color excess E(B V ) and plotting the distributions of the color excesses shown in Figure 3.2, we proceeded− to make a Gaussian fitting to each distribution in order to get the mean µ and the standard deviation σ of both sample histograms. We decided to correct those stars with E(B V ) µ + σ. To eliminate the outliers in the color excess distributions, we carried out− an iterative≥ sigma clipping process with a threshold of 3σ. Thus, the Gaussian fitting applied to the distributions of color excess shows that the stars without planets with E(B V ) > 0.055 mag are to be corrected by stellar extinction. For stars with planets the− correction is applied for the stars with E(B V ) > 0.078 mag. − 3.1. CORRECTION FOR EXTINCTION AND MAGNITUDE TO FLUX CONVERSION29

Color excess distribution of stars without planets 160 µ +σ 140 µ σ − Gaussian Fit 120

100

80 Number

60

40

20

0 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 (B V) (B V) − − − 0

Color excess distribution of stars with planets 30 µ +σ µ σ − 25 Gaussian Fit

20

15 Number

10

5

0 0.2 0.0 0.2 0.4 0.6 (B V) (B V) − − − 0

Figure 3.2: Color excess distribution of stars with (lower panel) and without (upper panel) planets. The blue line shows the best gaussian fits applied to the distributions. The red and black vertical lines indicate the 1σ symmetrical threshold.

To correct for interstellar extinction and to convert magnitude to flux, the following equation must be applied.

−mλ+Aλ Fc = F010 2.5 (3.1)

where F0 is the zero magnitude flux density in the Vega scale (all zero points are reported in Table 3.1), mλ is the in the λ band and Aλ is the extinction coefficient derived form the coefficient ratio Aλ/AV shown in Table 3.2 taken 30 CHAPTER 3. METHODOLOGY

from the interstellar extinction curve of Rieke & Lebofsky(1985). AV is calculated by taking into account the total selective extinction ratio RV = AV /EE(B V ), assuming − the canonical value RV =3.1.

Table 3.1: Zero magnitude flux density for B, V (Bessell, 1979), J, H, KS (ipac.caltech.edu/2mass), W1, W2, W3, W4 (wise2.ipac.caltech.edu) bands.

Band F0 (Jy) B (Johnson) 4266.7 V (Johnson) 3836.3 J (2MASS) 1594.0 H (2MASS) 1024.0 KS (2MASS) 666.7 W1 (WISE) 306.682 W2 (WISE) 170.663 W3 (WISE) 29.045 W4 (WISE) 8.284

Table 3.2: Extinction law coefficients as a function of wavelength (Rieke & Lebofsky, 1985).

λ E(λ-V)/E(B-V) Aλ/Av

(1) (2) (3) U 1.64 1.531 B 1.00 1.324 V 0.0 1.00 R -0.78 0.748 I -1.60 0.482 J -2.22 0.02 0.282 H -2.55 ± 0.03 0.175 K -2.744 ± 0.024 0.112 L -2.92 ± 0.03 0.058 M 3.02 ± 0.03 0.023 N 2.93± 0.052 8.0µ -3.03 0.020 0.003 8.5µ -2,96 0.043± .006 9.0µ -2.87 0.074 ±0.011 9.5µ -2.83 0.087 ± 0.013 10.0µ -2.86 0.083±0.012 10.5µ -2.87 0.074±0.011 11.0µ -2.91 0.060 ±0.0009 11.5µ -2.95 0.047± 0.007 12.0µ -2.98 0.037±0.006 12.5µ -3.00 0.030±0.005 13.0µ -3.01 0.027 ± 0.004 ± 3.1. CORRECTION FOR EXTINCTION AND MAGNITUDE TO FLUX CONVERSION31

By applying the general formula of error propagation, we acquire the following equa- tion:

F0 (A m)/2.5 dF = 10 j − ln(10)dm (3.2) 2.5

In the case of W3 (12 µm), Table 3.2 shows A /A = 0.037 0.006. In other words, 12µm V ± dAj = AV dc, where dc is the uncertainty of the constant in the ratio A12µm/AV . Thus we also applied for this particular case,

s  2  2 F0 F0 dF = 10(Aj m)/2.5ln(10)dm + 10(Aj m)/2.5ln(10)A dc (3.3) −2.5 − 2.5 − v

For the rest of the stars, which do not need to be corrected by extinction, we used the classical magnitude to flux conversion formula:

m Fν = Fν010− 2.5 (3.4)

Furthermore, Wright et al.(2010) mention that WISE calibration fluxes are flux den- α sities for astronomical sources with power-law spectra Fν α ν− in general. The index α ranges from -3, -2, -1, 0, 1, 2, 3 and 4 and is used for color corrections such that Fν0 = F0/fc, where fc is the flux correction. In the case of WISE photometry 2 used in this work, Fν α ν− for the Rayleigh-Jeans regime (Mid-IR) of stellar SED, thus, Fc = 1 according to Table 3.3.

Finally, we used the general formula for error propagation in order to derive the un- certainty on the flux, assuming Gaussian-distribution error:

s  2 ∂f F0 −m df = dm = ln(10)10 2.5 dm (3.5) ∂m 2.5 32 CHAPTER 3. METHODOLOGY

Table 3.3: Color corrections from Wright et al.(2010).

3.2 Photosphere fitting and synthetic photometry

A detection of a debris disk happens when the observed infrared flux is larger than the expected flux of the star alone. For this, a synthetic spectrum is used to predict the stellar contribution in the IR interval. In this work we used ATLAS9 spectra (Castelli & Kurucz, 2003) for the calculation of synthetic photometry. Previous studies in the searching of infrared excesses, (e.g. Kennedy & Wyatt(2012), Morales et al. (2012)), have also used ATLAS9 synthetic spectral energy distributions (sSED). The in properties are as follows.

There are 476 synthetic model spectra with several combinations of effective • temperature (Teff ), metallicity ([M/H]) and surface gravity (log g).

All the models have the same number of 72 plain-parallel layers from log τRoss = • 6.875 to log τ = +2.00, with steps of ∆τ = 0.125 − Ross Ross All models and theoretical fluxes are computed with abundances scaled to the • solar composition.

In all model spectra, a micro turbulence of 2.0 km/s is assumed. • The ATLAS9 model spectra are available for different effective temperature, from 3500 K to 13000 K in steps of 250 K, and, from 13000 K to 50000 K in 1000 K steps. For surface gravity, the spectra are available in the range of 0.0 log(g) 5.0 with 0.5 dex steps. For metallicity, the interval is 2.5 [M/H] 0.5,≤ with steps≤ of 0.5 dex. − ≤ ≤ 3.2. PHOTOSPHERE FITTING AND SYNTHETIC PHOTOMETRY 33

The whole wavelength coverage of the synthetic SEDs ranges from 9.09 nm to 160 µm with variable spacing. In the IR, ∆λ is 0.005 µm for 0.999 µm λ 1.5975 µm; 0.01 µm for 1.605 µm λ 3.195 µm; 0.02 µm for 3.21 µm λ ≤6.39≤µm; 0.04 µm for 6.42 µm λ 9.98≤µm;≤ 10 µm for 10.2 µm λ 20 µm and≤ 20≤µm for 20 µm λ 160 µm. ≤ ≤ ≤ ≤ ≤ ≤

The analysis of the differences among different model atmospheres at IR regimes has been carried out by other authors. For example, Sinclair et al.(2010) found that ATLAS9 and MARCS present discrepancies no larger than 2% at 24 µm for stellar parameters compatible with F, G and K spectral types. ATLAS9 and NEXTGEN agree even better. Cruz-Saenz de Miera et al.(2012) found a merely 0.62% differences at 5000 K, 0.97% at 6000 K and 2.05% at 7000 K between the fluxes at 24 µm (see Figure ≈3.3). Therefore, we concluded≈ that the proposed analysis of WISE fluxes does not depend on the theoretical data.

Figure 3.3: Comparison between ATLAS9 and NEXTGEN synthetic spectral energy distribution covering all the wavelengths available at ATLAS9 (1-160 µm, the pink vertical dashed line marks a limit of 20 µm. Figure taken from Cruz-Saenz de Miera et al.(2012).

The SED morphology depends essentially on the stellar parameters (Teff , [M/H] and log g). Although we do not expect important differences in the Rayleigh-Jeans (R-J) tail (λ > λmax, where λmax is the peak wavelength of Wien’s law) for the metallicity and surface gravity, we considered convenient to explore if there are significant differences while varying these parameters for a fixed Teff . For each test, we decided to use 34 CHAPTER 3. METHODOLOGY

synthetic spectra of ATLAS9 models with Teff =5000 K, 6000 K and 7000 K and modifying the other two stellar parameters. When metallicity varies from -2.5 to +0.5, we selected log g=4.5 for the three temperatures; for variations in log g from 0.5 to 5.0, we used [M/H]=0.0 for the same three temperatures. Then, we calculated flux ratios between the spectra with the largest flux difference in each WISE band. The results are in Table 3.4 where we show that for different temperatures, the flux do not significantly change. We noted that the largest discrepancies are found in the W2 band for a temperature of 5000 K, while the most significant agreement is found in the W4 band at Teff =7000 K. We decided to make this test using this three temperatures and the specified log g and [M/H] since most of the stars in our samples ranges among these parameters. The effects of stellar parameters is shown in Figure 3.4 in which the WISE bands appear as solid vertical lines in black for W1, green for W2, blue for W3 and red for W4.

Table 3.4: Flux ratio comparison among the WISE bands in ATLAS9 synthetic spectra. This ratio is calculated between the spectra with the largest flux difference in each WISE band. The first column shows the parameters that remained constant along the test.

Constant parameters W1 flux ratio W2 flux ratio W3 flux ratio W4 flux ratio

Teff = 5000 K, log(g)=4.5 0.978 0.886 0.984 0.961 Teff = 5000 K, [M/H]=0.0 0.987 0.944 0.979 0.986 Teff = 6000 K, log(g)=4.5 0.987 0.969 0.979 0.992 Teff = 6000 K, [M/H]=0.0 0.984 0.978 0.987 0.988 Teff = 7000 K, log(g)=4.5 0.954 0.958 0.976 0.995 Teff = 7000 K, [M/H]=0.0 0.941 0.968 0.988 0.992

It was necessary to find the synthetic spectrum that best fitted the observed photo- metry of each star in order to obtain a better estimation of the expected stellar flux. To achieve this, the best fit model is found using χ2 minimization algorithm called MPFIT (Markwardt, 2009). In this algorithm, χ2 is calculated in several iterations and the program gives as a result, the parameters that gives de minimum χ2. The free parameters to be fitted were Teff and a scalar value that was needed to normalize the flux in Jy units of the synthetic spectrum to the observed photometry. The bands considered in the fit were B, V, J, H, and Ks. Their uncertainties were taken from the SIMBAD data base, for B, V, and from the 2MASS All-Sky catalogue for J, H, KS. Metallicity and surface gravity were taken as fixed parameters in the searching of the best fit because, as we demonstrated, changes due to variations in [M/H] and log g in the synthetic flux are negligible for the purposes of these study in the R-J regime. Thus, we acquired the metallicity and surface gravity for each star in the samples from the PASTEL Catalogue (Soubiran et al., 2010) and Extrasolar Planets Encyclopedia web page∗.

∗http://exoplanet.eu 3.2. PHOTOSPHERE FITTING AND SYNTHETIC PHOTOMETRY 35

SED, T=7000K, log(g)=4.5 SED, T=7000K, [M/H]=0.0

8 10 108

7 10 7 10

) 106 ) 1 1 6

− − 10 105 1 1 5 − − 10 s 4 s

2 10 2

m m 4

c 3 c 10 / 10 [M/H]=-2.5 / log(g)=0.5 g g

r [M/H]=-2.0 r 3 log(g)=1.0

e 2 e 10 ( 10 [M/H]=-1.5 ( log(g)=1.5

x x 1 [M/H]=-1.0 2 log(g)=2.0 u 10 u l l 10

F [M/H]=-0.5 F log(g)=2.5 0 10 1 [M/H]=0.0 10 log(g)=3.5 [M/H]=+0.2 log(g)=4.5 10-1 [M/H]=+0.5 100 log(g)=5.0

10-1 100 101 10-1 100 101 Wavelength (µm) Wavelength (µm)

SED, T=5000K, log(g)=4.5 SED, T=5000K, [M/H]=0.0 107 107

6 10 6 10 ) ) 1 1

− − 5 105 10 1 1 − − s s 104 2 104 2 m m c c

/ [M/H]=-2.5 / log(g)=0.5 103 g g

r [M/H]=-2.0 r log(g)=1.0 103 e e

( [M/H]=-1.5 ( log(g)=1.5 102 x [M/H]=-1.0 x log(g)=2.0 u u l 102 l F [M/H]=-0.5 F log(g)=2.5 101 [M/H]=0.0 log(g)=3.5 1 [M/H]=+0.2 log(g)=4.5 10 100 [M/H]=+0.5 log(g)=5.0

10-1 100 101 10-1 100 101 Wavelength (µm) Wavelength (µm)

Figure 3.4: Comparison of ATLAS9 model spectra with same Teff =7000 K (upper panels) and Teff =5000 K (lower panels). Vertical lines show the position of WISE band wavelengths W1 (black); W2 (green), W3 (blue) and W4 (red). When log g=4.5 and metallicty varies (left panels), [M/H]=0.0 and log g varies (right panels).

Aimed at finding the best fit spectra and identifying IR excesses, we require the set of synthetic photometric fluxes at the relevant wavelength bands. For this, we used the response curves of the Johnson† and 2MASS‡ filter bands (see Figure 3.5). These response curves are convolved to the synthetic spectrum and then we applied equation (3.6) for getting the synthetic photometry.

R F (ν)R(ν)dν P = (3.6) ν R R(ν)dν with F (ν) the model spectra and R(ν) the filter response curve. The values of the fitted parameters are reported in Appendix C. After finding the best fit of the photosphere for each star in the sample, the next step was to calculate the synthetic photometry for the WISE passbands. The WISE filters response curves are also shown in Figure 3.5§. †http://voservices.net/filter/ ‡http://www.ipac.caltech.edu/2mass §http://wise2.ipac.caltech.edu 36 CHAPTER 3. METHODOLOGY

Johnson filter response curves 1.0 U B V 0.8 R I

0.6

0.4 Transmission

0.2

0.0 3000 4000 5000 6000 7000 8000 9000 10000 Wavelength ( )

2MASS filter response curves 1.0

0.8

0.6

0.4 Transmission

0.2 J H

KS 0.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Wavelength (µm)

WISE filter response curves 1.0 W1 W2 W3 0.8 W4

0.6

0.4 Transmission

0.2

0.0 0 5 10 15 20 25 30 Wavelength (µm)

Figure 3.5: Response curves for five Johnson filters (upper panel). Solid lines depict the curves of B and V. In the middle and lower panels we show, respectively, the curves for 2MASS and WISE filters.

Figure 3.6 shows, as an example, the fit of the star HD108874, with a Teff =5563 K, 2 log g=4.44 and [Fe/H]=0.26. In Figure 3.7, we show the histograms of the reduced χν of the fits for all stars. The histograms of stars with and without planets peak at χ2 1.4 ν ∼ 3.2. PHOTOSPHERE FITTING AND SYNTHETIC PHOTOMETRY 37

2 and 70% of the stars of the samples have χν 3.0. We can conclude, therefore, that the bulk∼ of the photospheric emission is well reproduced≤ by our fits.

HD108874 Synthetic photometry Best fit 100 BVJHK photometry WISE photometry

10-1 Flux (Jy)

10-2

100 101 Wavelength (µm)

Figure 3.6: Best fit of the Synthetic Spectral Energy Distribution for the star HD108874 found with MPFIT algorithm. In blue solid line we show the best fit synthetic spectrum, in green dots the synthetic photometry for B, V, J, H, KS, W1, W2, W3, W4 bands, in black stars the observed BVJHK and in red stars the WISE photometry.

160 stars without planets 140 stars with planets

120

100

80 Number 60

40

20

0 0 2 4 6 8 10 12 14 16 Reduced χ2

2 Figure 3.7: χν distributions for the stars with and without planets (orange and blue respectively) studied in this work, obtained by MPFIT algorithm. 38 CHAPTER 3. METHODOLOGY 3.3 Searching for Infrared Excesses.

In the present work, the search for IR excesses is conducted through a comparison of the reddest WISE bands with the fluxes expected from the stellar photosphere, as described in the previous chapter. Since, to date, there are a number of investigations using WISE data, we considered convenient to also incorporate a description of the most relevant methods and compare our results with those of other authors. This comparison will serve to find potential discrepancies and to discuss the validity of the different procedures.

3.3.1 Method 1 (This work)

In this work, we compared W4/W3 observed flux ratio and the expected ratio of the stellar contribution, taken into account the associated flux uncertainties. This can be done applying the following equations:

W 4  W 4  q W 3 obs − W 3 syn 2 2 2 E = , σtot = σobs + σcal + σsyn (3.7) σtot

W 4 W 4 where ( W 3 )obs is the observed flux ratio, ( W 3 )syn is the synthetic flux ratio. σtot is the quadratic sum of 3 uncertainties: 1.- The photospheric contribution σobs (obtained from the WISE catalogue). 2.- The calibration uncertainty in WISE bands σcal of 2.4%, 2.8%, 4.5% and 5.7% for W1, W2, W3, W4, respectively (Jarrett et al., 2011). 3.-The uncertainty due to the stellar parameters σsyn. This value is obtained by first constructing a family of synthetic spectra, whose parameters were a combination of Teff σT eff and the normalization factor with its uncertainty. Then, the synthetic flux is± calculated for each band of the spectra and,± finally, the standard deviation of those fluxes is taken as σsyn.

Besides, the three uncertainties (σobs, σcal, σsyn) share the same form of the propagation error equation, thus, doing the partial derivation, the equation that must be applied is:

 2  2 2 dW 4 W 4 σsyn,cal,obs = + 2 dW 3 (3.8) W 3 syn,cal,obs W 3 syn,cal,obs

An infrared excess is considered significant when E 3.0. This method is similar as the one used by Cruz-Saenz de Miera et al.(2014), that≥ is explained in what follows. 3.3. SEARCHING FOR INFRARED EXCESSES. 39

3.3.2 Method 2: Cruz-Saenz de Miera et al.(2014)

Cruz-Saenz de Miera et al.(2014) searched for infrared excesses in a sample of dwarf stars brighter than V=15 mag using the WISE All-Sky survey database for over 9000 sources. They compared the observed W4/W2 flux ratio with the expected photos- pheric level and identified 197 excesses beyond 3σ threshold. In their candidates they estimated the dust temperature and dust fractional luminosities, finding more than 80% of the sample with disk temperatures higher than 120 K.

The methodology used by Cruz-Saenz de Miera et al.(2014) is the same as the one adopted in this work, with the only difference that the flux ratio taken into account is W4/W2.

3.3.3 Method 3: Kennedy & Wyatt(2012)

Kennedy & Wyatt(2012) analyzed 180 000 stars observed by the Kepler and WISE 1 missions, finding 8000 stars with excess emission at 12 µm. After a cut of 5 MJysr− in the IRAS 100 µm emission, the number of excesses decreased to 271 stars. They found that both 12 µm and 22 µm excesses had the same distribution as extra-Galactic counts and might be produced by alignments with background galaxies. Only one exception was found, the A-type star KIC 7345479. They did not find warm disks around stars with planet candidates in the Kepler field.

To detect the IR excess, they used the difference of the observed flux in a WISE band (W4 for example), minus the expected flux in the same band, divided by the total error. The excess is therefore defined as

W i W i E = obs − phot (3.9) σtot

with Wi any of the 4 WISE bands, σtot the quadratic sum of the observed uncertainty σobs and the uncertainty of the expected stellar flux σphot, the latter equivalent to the uncertainty produced by the stellar parameters, which we call σsyn.

At first, they considered an IR excess when E 3. However, when they applied equa- tion 3.9 to W3 band, they found that there was≥ a large number of W3 excesses. They concluded that these W3 excesses were not produced by debris disk and they finally adopted a 4σ threshold instead for reducing the number of IR excesses in W3. 40 CHAPTER 3. METHODOLOGY

3.3.4 Method 4: Morales et al.(2012)

Morales et al.(2012) used data from WISE and explored exoplanet-host stars in sear- ching for the presence of warm dust. They had 591 stars in their sample taken from the Extrasolar Planet Encyclopedia up to date to January 2012. They found 9 planet- bearing stars with excesses at 12 µm and 22 µm in young, MS and giant stars.

The method employed by these authors is explained as follows: to detect IR excess after obtaining the best fit of the photosphere synthetic spectrum, they proceeded to calculate the significance of the excess using the total signal-to-noise ratio defined as:

      q S Fobs S S 2 2 = = + , σ = σobs + σcal (3.10) N σ N N d ∗ with Fobs = F + Fd, where F is the expected stellar flux form the best fit, Fd is the ∗ ∗ flux due to the presence of a debris disk in any of the WISE bands, and σ defined with the uncertainty of the WISE photometry (σobs ) and the uncertainty in the WISE band calibration (σcal).

Some assumptions were considered using this method. The most important one was that the observed uncertainties were much greater than the uncertainties of the best fit. For this reason, the uncertainties due to the stellar parameters were not taken into account. Finally, an infrared excess was found when (S/N) 3. d ≥

3.3.5 Method 5: Patel et al.(2014)

The last work we analyzed is from Patel et al.(2014), where they searched excesses in WISE W3 and W4 wavelengths in Hipparcos MS stars within 75 pc from the Sun. Since they were dealing with many bright objects, they apply corrections for properly handling saturated objects in the W1 and W2 bands. They found 379 stars with W4 excesses.

The method they devised for detecting infrared excesses is quite different than the previous ones. Patel et al.(2014) based their searching process on empirical relations found in color-color diagrams of Tycho-2 B V vs. (Wi Wj), with i, j representing two different WISE bands. They did not carried− out a fitting− on the star SED like the previous methods. This fitting is used in a latter step to only confirm the validity of the detected excess. 3.3. SEARCHING FOR INFRARED EXCESSES. 41

The authors have calibrated the relations Wi Wj vs B V removing iteratively the largest colors W W for each color B V bin− of 0.1 mag− wide, until half of the data i − j − points within the bin are rejected. The different relations Wi Wj vs B V are traced in steps of 0.02 mag in B V color. Thus, the mean W − W corresponding− to a − i − j certain B V color is referred as Wij(B V ). The Table A.1 given in the Appendix A lists the− mean W (B V ) with its respective− standard error for the WISE color ij − combinations. In Figure 3.8 we show some color Wi Wj vs B V relations that Patel et al.(2014) found for their sample stars. − −

Figure 3.8: Top half of each panel: WISE vs Tycho-2 B-V color-diagrams of Patel et al.(2014) sample stars (red). Green diamonds follow the running mean of the parent sample. In the bottom half panel of each graph, the scattering at 1σ is shown with black dots, while the excesses found in the sample are presented in blue circles. Figure from Patel et al.(2014).

Taking into account the color color dependencies, an excess E[Wi Wj] in the color W W for a certain B V is defined as: − i − j −

E[W W ] = W W W (B V ) (3.11) i − j i − j − ij − Also, the S/N ratio of this excess is:

S E[W W ] W W W (B V ) = i − j = i − j − ij − (3.12) N σij σij 42 CHAPTER 3. METHODOLOGY

where σij is the propagation of the photometric uncertainties of Wi and Wj, together with the standard error W (B V ) shown in Table A.1, thus, ij −

q 2 2 2 σij = σW i + σW j + σW ij (3.13)

Using the empirical S/N distribution, the ratio of detecting false positives (FPR) can be calculated. The FPR ratio is the number of stars beyond the threshold in which the outliers are considered as reliable excesses. This enables to detect excesses as a function of the threshold beyond which the redder objects can be considered as reliable excesses. Nevertheless, it is not possible to determine empirically the FPR beyond the limit where the number of false positives drops to zero; for this, an upper limit is needed. To define this limit, the distributions of S/N, which involved W4 as Wj, are constructed and the threshold is located between 99.8% and 99.9% for considering a possible excess. Thus, the minimum is the 3σ threshold of the S/N ratio distribution for W W 4 colors that are used in this work. i − Having described what parameters are considered in each detection method, we proceed to search for IR excesses in the samples of stars with and without planets and see which significance excesses are beyond the thresholds adopted in this work. Chapter 4

Results

In Chapter 3 we described several works that used WISE data for searching IR excesses in stars (Cruz-Saenz de Miera et al.(2014), Patel et al.(2014), Morales et al.(2012) and Kennedy & Wyatt(2012) ). In these works the authors defined different methods to carry out the task and obtained quite different results. In order to try to understand which method provides the most reliable results, we decided to apply all these algo- rithms to a homogeneous data set, which is formed by our two stellar samples of stars with and without planets. Since in these works they also choose different significance thresholds, for sake of homogeneity we assumed both 3σ and 4σ as detection limits. In what follows, we first present, in Table 4.1 the number of excesses that we obtained with every method for the two stellar samples and then we discuss the possible causes of the discrepancies.

Table 4.1: Number and percentage of IR excesses in stars with and without planets, using 3σ (top) and 4σ (bottom) threshold. 3σ threshold Method Stars with planets Stars without planets Number % Number % This work 1 0.49 0 0 Cruz-Saenz de Miera et al. 2014 1 0.49 1 0.11 Kennedy & Wyatt 2012 13 6.4 69 7.6 Morales et al. 2012 2 0.98 8 0.87 Patel et al. 2014 3 1.5 8 0.87 4σ threshold This work 1 0.49 0 0 Cruz-Saenz de Miera et al. 2014 1 0.49 0 0 Kennedy & Wyatt 2012 4 1.97 16 1.75 Morales et al. 2012 2 0.98 3 0.33 Patel et al. 2014 1 0.49 6 0.65

43 44 CHAPTER 4. RESULTS

If we exclude the Kennedy & Wyatt(2012) method (see discussion in Section 4.3), all other methods detect very few IR excesses; the extreme case is the method defined in this work which finds just one IR excess in all examined objects. Comparing detection rate of . 1% of warm debris disks with that of cold debris disks (10% in FEPS, 17% in DEBRIS and 20% in DUNES), we conclude that warm debris disks are rare phenomena. Wyatt(2008) mentioned, in fact, that the rare finding of warm debris disks in FGK MS stars is due to a combination of their long lifetimes and the short periods of time in which dust is produced by collisional cascades of rocky bodies ( 10 Myr). ≤

4.1 Comparing the two stellar samples

The results presented in table 4.1 do not show significant differences in the percentage of stars with excess in W4 WISE band (22 µm) between the two stellar samples. The larger percentage difference is the case of Kennedy & Wyatt(2012) method with the significance threshold set at 3σ, where the percentage in stars without planets is 1.2% larger than in stars with planets. Note, however, that using the same method but with a threshold of 4σ (which is the value used by Kennedy & Wyatt(2012) in their work) the difference is reversed.

It might be somehow surprising to detect such a small percentage of Mid-IR excesses, in particular in the sample of stars with planets, as one might think that the presence of planets would have a positive correlation with the presence of dust in the terrestrial zone, as we discussed in Section 1.3. Nevertheless, we can not make a decisive con- clusion with the small number statistics of IR excesses found in this (and most of the other) work(s). The interpretation is also complicated by the stochastic nature of some of the production and depletion mechanisms of the warm dust (e.g. planetary-scale collisions). This lack of statistical significance of our results seriously affects the possi- bility of determine whether the production mechanisms of warm dust would dominate over the destruction ones (or vice versa) in stars with planetary systems. It also makes difficult to understand which would be the preferred mechanism that generates warm debris disks.

Further studies, possibly with much larger stellar samples, are needed to improve the statistics of warm dust disks and shed more light on this issue. 4.2. COMPARISON AMONG THE METHODS 45 4.2 Comparison among the methods

4.2.1 This work vs. Cruz-Saenz de Miera et al.(2014)

To identify IR excesses, both methods consider flux ratios (i.e. colors). However, while in this work we used the W4/W3 ratio, Cruz-Saenz de Miera et al.(2014) adopted W4/W2 flux ratio. The uncertainty sources that are used to derive the error on the flux ratio are the same (photometric, calibration, photospheric error). By observing table 4.1, we found 1 excess in the stellar sample of stars with planets: the F5V star named HD106906, with a significance of 10.3σ (for more details on this stars see section 4.5.1). On the other hand, we obtained zero excesses in the sample of stars without planets. This means that 0.49% of the stars with planets was found having an IR excess. The same object is also found with the Cruz-Saenz de Miera et al.(2014) method. However, these latter method also finds a star with IR excess in the sample of stars without planets, the F8 star HD136544, with a significance excess of 3.5σ and represents the 0.11% of the total sample of stars without planets at 3σ threshold. Of course, this object has no excess under the 4σ threshold assumption.

4.2.2 Kennedy & Wyatt(2012) vs. Morales et al.(2012)

In the case of Kennedy & Wyatt(2012) and Morales et al.(2012), the way they calculated the infrared excesses is very similar because they calculate the difference in the W4 band between the observed and the synthetic photospheric flux, divided by the total error composed by two uncertainties sources. However, the difference between these methods lies in the fact that Morales et al.(2012) takes into account the photometric and calibration error, while Kennedy & Wyatt(2012) only use the photometric and the photospheric error. The number of IR excesses detected using the two methods are quite different. With Morales et al.(2012) method, we found 2 IR excesses in stars with planets (about 1% of the sample). They are HD106906 and a the F0V star V342Peg (HR 8799), with excess significances of 13.4σ and 5.2σ respectively. We also found 8 stars with IR excess in the sample of star without planets, i.e. 0.76%. However, only three objects have a significance 4σ: HD107146, HD85301, HD136544, this latter also found in Cruz-Saenz de Miera et≥ al.(2014) (more details on these stars in section 4.6.1, 4.6.2, 4.6.3. Using the Kennedy & Wyatt(2012) method, the number of IR excesses notably increases; in fact, this method is the one that detects the larger number of IR excesses by far. However, it is relevant to note that the majority of objects have an excess between 3 and 4σ. In the case of stars without planets this method provides the 7.6% of IR excesses, which is the largest percentage of all cases. For both samples and both significance thresholds, the Kennedy & Wyatt(2012) IR 46 CHAPTER 4. RESULTS excesses include all the objects detected with the other methods. The star with the highest significance is again HD106906, while the second in rank is V342Peg.

4.2.3 Patel et al.(2014) vs. Morales et al.(2012)

Observing the results in table 4.1 we can see that Patel et al.(2014) and Morales et al. (2012) methods provide quite similar number for both stellar samples, in particular when considering the 3σ threshold. It seems that they are an intermediate case between the results of this work/Cruz-Saenz de Miera et al.(2014) and Kennedy & Wyatt (2012). The two objects with IR excess found with the Morales et al.(2012) method (at 3σ) are included in those found with the Patel et al.(2014) method, which allow to find an extra star: K3V type BD-103166, with an excess significance of 3.35σ. Both methods provide 8 stars with IR excess (at 3σ), however, these objects are not the same. Only 4 stars are in common. The only excess obtain with the Patel et al.(2014) method is HD106906 which in fact is the only object with IR excess that is found in all cases.

4.3 Explaining differences among the methods

One of the sources that causes the discrepancies among the number of significant IR excesses in the different methods is the type of uncertainties taken into account in each method. The photometric, calibration and photospheric error is taken into account in our method as well as in Cruz-Saenz de Miera et al.(2014) method. On the other hand, Morales et al.(2012) used the photometric and calibration error, while Kennedy & Wyatt(2012) used the photometric and the photospheric error. We show in Figure 4.1 the individual contribution of three error types to the total error of the flux ratio W 4/W 3 as a function of the flux in W4 band. We noticed that the photospheric (blue dots) is the lowest source of error in both samples and has a constant behavior along the W4 flux range. This result was expected by Morales et al.(2012) and they concluded that the photospheric error was negligible in comparison with the other uncertainties sources. The photometric error (marked with green dots) decreases as the sources become brighter in W4. This is reflecting that brighter sources have better S/N ratio. However, calibration error (shown with orange dots) dominates over the other two uncertainties for a flux beyond 20 mJy in W4 and remains constant along W4 flux range. The effect of using the different∼ error types is demonstrated since the three stars (HD107146, HD85301, HD136544) with the largest excesses significance found with Kennedy & Wyatt(2012) and Morales et al.(2012) methods were found with excess significances in the range of 2.6-2.9σ in this work, even though, Spitzer 4.3. EXPLAINING DIFFERENCES AMONG THE METHODS 47 photometry obtained from Chen et al.(2014) clearly shows that these three stars have 24 µm excesses (see Section 4.5).

photometry error calibration error 10-1 photospheric error total error

10-2 W4/W3 propagated uncertainties

10-2 10-1 W4 Flux (Jy)

Figure 4.1: Distribution of uncertainties in the flux ratio W4/W3 in dependence of W4 flux. In green dot symbols the photometry; in blue the photospheric error; in orange the calibration error and in gold color the total uncertainties obtained by the formula of propagation error theory.

Since Kennedy & Wyatt(2012) and Morales et al.(2012) methods do not use colors (flux ratios) for detecting IR excesses, but weighted differences between the observed and the expected photospheric flux, we plot in Figure 4.2 the total errors that are used in each method. What we find, comparing both total errors, is that total uncer- tainties in Morales et al.(2012), marked with blue dots in the plot, is always larger than Kennedy & Wyatt(2012) method shown in gold dots, most notably for W4 flux & 25 mJy. Besides, the plot of the absolute error, as expected, shows an increasing value with increasing W4 flux. However, the derivative of the total error in Morales et al.(2012) method is higher at the brighter end, since it is determined by the calibra- tion error (assumed to be 5.7% of W4 flux). This behavior in the total fluxes explains why the Morales et al.(2012) method detects less IR excesses.

To further explore how the inclusion of different combinations of uncertainties sources affect the number of IR excesses, we carried out the following experiments. First, we consider in our method a total error given by the sum in quadrature of only the 48 CHAPTER 4. RESULTS photometric and calibration error, as in Morales et al.(2012). Then, a second test is done with again changing the uncertainty sources by using the photometric and photospheric error, as in Kennedy & Wyatt(2012). The first test obtains the result where we found HD106906 as the only star in excess and zero excesses in the sample of stars without planets. The second test provides a result in which considering the total error without the calibration error, two stars in the sample of stars with planets are found in excess (HD106906 and V342Peg) and four stars without planets show the excess in 22 µm (HD107146, HD85301, HD136544 and HD60491) at 3σ threshold. These tests confirms the fact that calibration error, as seen in Figure 4.1, is dominating above the other errors, causing the number of excesses to significantly decrease.

Total error (Kennedy and Wyatt method) -2 10 Total error (Morales et al. method)

Uncertainties (Jy) 10-3

10-2 10-1 W4 Flux (Jy)

Figure 4.2: Distribution of total uncertainties propagated in the different IR-excess detection meth- ods. In blue stars the propagation error used in Morales et al.(2012), in gold stars the propagation error used by Kennedy & Wyatt(2012).

A global picture of the sensitivity of each method to IR excess is provided by the distri- bution of the excess significance, in units of σ, shown in Figure 4.3. The red histograms correspond to the significance excesses found in this work using the flux ratio W4/W3, the blue histogram corresponds to excess significances found with Cruz-Saenz de Miera et al.(2014) method, the purple histogram is derived from Kennedy & Wyatt(2012) method, the yellow histogram is generated from Morales et al.(2012) method and the green histogram shows the results with the Patel et al.(2014) method. As we can 4.3. EXPLAINING DIFFERENCES AMONG THE METHODS 49 see, two histograms are peaking at negative excess significances ( -0.2σ): the red and blue histograms, which corresponds to the significances found with∼ our method and Cruz-Saenz de Miera et al.(2014) method. The other three excess significance distri- butions are peaking at positive levels, being the purple histogram with the larger peak significance 1.8σ, while the yellow distribution peaks at 1σ and the green at 0.2σ. This behavior∼ is unexpected since we think that most of∼ the objects should have∼ their flux emission in W4 band in the levels of their photospheric emissions, so that all distributions should peak at the value of zero. We also note that the distribution obtained from our method has tails that decrease faster than the other methods while Kennedy & Wyatt(2012) excess significances decrease more slowly.

This work 120 Cruz-Saenz de Miera et al. 2014 Kennedy and Wyatt 2012 Morales et al. 2012 100 Patel et al. 2014

80

60 Number

40

20

2 0 2 4 6 Excess significance (σ)

Figure 4.3: Excess significance distribution of stars with and without planets. In different colors are shown the excess significances obtained by different detection methods. In red is shown the significance obtained for the samples by our method.

In order to understand the anomalies found in Figure 4.3, we proceeded to make a com- parison between the observed W4 and W3 photometry with respect to their respective synthetic photometry of the stars in both samples using the ratios W 4obs/W 4syn and W 3obs/W 3syn. In Figure 4.4 we plotted the flux ratios vs. W4 flux for all objects. We found that both W4 and W3 observed fluxes are about 10% in excess with respect to the synthetic photometry acquired from the fitted photosphere spectrum for each star. This is visible since the perfect match between the observed and the synthetic photometry is represented with a black dashed line (W4,3obs/W4,3syn = 1), and most of the blue dots (W4obs/W4syn) and yellow dots (W3obs/W3syn) are above this line. The 50 CHAPTER 4. RESULTS median of the blue dots is 1.08 and the median of the yellow dots is 1.11.

We are finding with this analysis that the 10% excess observed in W4 photometry is the reason why Kennedy & Wyatt(2012) and Morales et al.(2012) methods, which use the comparison between the observed and expected photometry, are detecting more IR excesses than the other methods, where colors are used. Making linear fits on the flux ratio distributions, after deleting the sources with flux ratios beyond 3σ, for avoiding the influence of the true infrared excesses, we obtained a slope of 0.93 for the W 4obs/W 4syn and -0.21 for the W 3obs/W 3syn flux ratios. Assuming that these best fits represent the true observed photometry for W4, W3 respectively, we see that W3 flux is 3% larger than W4 flux for sources with W4 fluxes below 0.02 Jy, and, for W4 fluxes above 0.09 Jy, W3 and W4 fluxes are considering the same. The W3 excess with respect to the synthetic photometry was also noted by Kennedy & Wyatt(2012) since they realized that there were more W3 excesses than W4 and this outcome made them choose a 4σ threshold instead of 3σ in their work. Since W4 and W3 are above the expected stellar photosphere, this result shows that Kennedy & Wyatt(2012) and Morales et al.(2012) methods are overestimating the excess significances, and, in consequence the purple and gold histograms in Figure 4.3 peak at a positive excess significance.

1.6

1.4

1.2 Flux ratio

1.0 W4obs/W4syn W3obs/W3syn linear fit 0.8 linear fit

0.02 0.04 0.06 0.08 0.10 W4 flux (Jy)

Figure 4.4: Comparison between W4 and W3 observed and synthetic photometry as a function of W4 flux for each star in the combined samples of stars with and without planets. In yellow dots W3obs/W3syn flux ratio is shown and in blue dots the W4obs/W4syn. In dashed line is marked the perfect match between the observed and synthetic photometry and in continuous lines the best linear fits. 4.3. EXPLAINING DIFFERENCES AMONG THE METHODS 51

Adding to this analysis the W2obs/W2syn flux ratio, we present Figure 4.5, where the observed W2obs/W2syn ratio is increasing with W4 flux increasing. The linear fit of these data gives a slope of 2.95. Comparing with the other lines, W2obs/W2syn flux ratio slope is larger than the other two slopes, indicating that the brighter the sources is, the brighter W2 flux is. This result indicates that searching for IR excesses using the W4/W2 flux ratio is not recommended because of the increasing W2 observed flux that can cause an underestimation of the IR excesses.

W4obs/W4syn W3obs/W3syn W2obs/W2syn linear fit 2.0 linear fit linear fit

1.5 Flux ratio

1.0

0.02 0.04 0.06 0.08 0.10 W4 flux (Jy)

Figure 4.5: The same as Figure 4.4 with the exception that green dots represent W2obs/W2syn flux ratio, continuous lines are the linear fits of each distribution with the same color as the respective dots.

4.3.1 So, which is the best method?

The previous analysis (see Figure 4.5) makes evident that the use of the ratio W 4/W 3, adopted in this work is the best indicator of WISE W4 excesses since both bands show a similar discrepancy with respect to the photospheric value, minimizing, therefore the systematic error. In fact, the slight overestimation of the W 3obs/W 3syn ratio over the W 4obs/W 4syn ratio for W4 flux . 0.09 Jy explains the slightly negative peak of our excess significance distribution (red histogram in Figure 4.3). Nevertheless, we must remember that our method takes into account a large calibration error (5.7% for W4 52 CHAPTER 4. RESULTS and 4.5% for W3) determined by Jarrett et al.(2011), comparing Spitzer and WISE fluxes. If we examine the SEDs of the stars HD107146 and V342Peg (see Figures 4.6.1, 4.5.2), we observe that Spitzer data at 24 µm, from the Chen et al.(2014) catalogue, are very consistent with the WISE W4 fluxes, showing a reliable excess over the photosphere on the Wien side of black bodies peaking at longer wavelengths. These two objects have W4 fluxes of 70 mJy and 95 mJy respectively, placing them in the region where the calibration error dominates (see Figure 4.1). The failure of our method to detect these excesses may imply an overestimation of the calibration error.

The method of Patel et al.(2014) also uses, among their color combination, the ratio W4/W3 and it indeed detects the IR excess in HD107146 and V342Peg. However, this method needs to use a color-color calibration obtained from their stellar sample, which includes only MS stars. This limits the use of the Patel et al.(2014) method only to this class of stars, while our method is more general and can be applied to any object for which a good photospheric model is determined. Furthermore, even though the WISE calibration error may be overestimated, the fact that they do not consider it in their error budget may make this method prone to detect spurious IR excesses. Thus, we consider that the method devised in this work is the most convenient for searching WISE W4 excesses.

4.4 Comparison between WISE data releases

In the analysis of the methods that have been used to detect IR excess, it is also interesting to see if the number of detection also depends on the WISE survey data used. As presented in Section 2.1 the WISE team released in 2013 a newer version of the source catalogue called AllWISE, that we have used in this work. All original works by Cruz-Saenz de Miera et al.(2014), Kennedy & Wyatt(2012), Morales et al.(2012), and Patel et al.(2014) instead used the older All-Sky catalogue. We therefore carried out a test using the 196 stars with IR excesses that Cruz-Saenz de Miera et al.(2014) found in their work. We obtained the photometry of these stars from both WISE catalogues and then we applied Cruz-Saenz de Miera et al.(2014) method.

We recovered only the 41% (82 stars) of the Cruz-Saenz de Miera et al.(2014) IR excesses using W4/W2 flux ratio of the AllWISE catalogue at 3σ threshold. On the contrary, if we use the same All-Sky data that Cruz-Saenz de Miera et al.(2014) used, we detect 98% (192) of the stars with IR excesses. The four missing stars that we did not recovered have an excess significance between 2.94σ to 2.99σ and we might explain the lack of detection of these stars by the different synthetic spectra library that we used, since Cruz-Saenz de Miera et al.(2014) used NEXTGEN spectra while we used 4.4. COMPARISON BETWEEN WISE DATA RELEASES 53

ATLAS9 spectra in this work.

With this test, we demonstrated that the differences in the WISE photometry of both catalogues change considerably the number of Mid-IR excesses that we can find. In Figure 4.7 we present the flux ratio between the fluxes in the WISE bands in the new catalogue and the old catalogue vs. the newer AllWISE W4 band in Cruz-Saenz de Miera et al.(2014) sample of stars, showing that, the distribution of the W4 data is skewed towards values smaller than 1. For the other bands, the difference between the two catalogues is less pronounced.

W1*/W1 1.2 W2*/W2 W3*/W3 1.1 W4*/W4

1.0

0.9

0.8

0.7 AllWISE/All-sky-WISE (flux ratio)

0.6

0.5 0.02 0.04 0.06 0.08 AllWISE W4 flux (Jy)

Figure 4.6: Flux comparison in the WISE bands between the WISE catalogues available, of Cruz- Saenz de Miera et al.(2014) sample of stars. In green color the flux ratio between W1 flux in the AllWISE and the All-Sky WISE catalogue; in red the flux ratio in W2; in blue the flux ratio of W3 and in purple the flux ratio of W4. 54 CHAPTER 4. RESULTS

In the next two subsections, we will review the most prominent infrared excesses found with all the methods, as well as the special case that was eliminated in the final count of excesses, and the relevant properties of those systems.

4.5 Comments on some stars with planets

In this section we show the most relevant stars which have planets, with infrared excesses detected in this work. We also review the information of what it is known about each system.

4.5.1 HD106906

HD106906 is a F5V star located in the Lower (LLC) association at a distance of 96 pc from the Sun. Pecaut et al.(2012) have calculated an isochronal age of 13 2 Myr and a mass of 1.5 M . It has been reported that this star carries a cold debris± disk with Spitzer observations at 24 µm and 70 µm (e.g. Sierchio et al. 2014). They estimated a dust temperature of 95 K. The inner radius of the disk has been estimated to be 20 AU and an outer edge at 120 AU. In 2014, a planetary ≈ ≤ companion of 11 2 MJ was discovered by Bailey et al.(2014), with a projected separation of 650± AU. It is considered one of the farthest planets found in a planetary system (only exceeded by HIP 78530 with a separation of 710 AU; by HN Peg with 795 AU and by USco1610-1913 with a separation of 840 AU)∗. This is the only star with planets for which all methods indicate the presence of IR excess. Actually, this is the star that shows the largest excess significance using our method of W4/W3 flux ratio (10.13σ). In Figure 4.7 the SED of this star is presented: the W4 photometric point (in red) is clearly in excess with respect to the photosphere and the Spitzer data from Chen et al.(2014) (in yellow) show that this excess peaks at λ & 70 µm, which correspond to a temperature of 100 K. ≤

∗Data from the Exoplanet Encyclopedia 4.5. COMMENTS ON SOME STARS WITH PLANETS 55

HD106906 Best fit BVJHK photometry 100 WISE photometry Spitzer photometry

10-1 Flux (Jy)

10-2

10-3 100 101 Wavelength (µm)

Figure 4.7: Spectral energy distribution of HD 106906. In black dots we show the BVJHK photom- etry, while in red stars, the four band WISE photometry. Spitzer data from Chen et al.(2014) are marked with yellow squares.

4.5.2 V342Peg (HR 8799)

Another case is HR8799. This star is an A-type MS star which has an age of 60 Myr and a mass of 1.5 M . It is located at a distance of 39 pc from the Sun. The star has four planets detected and observed by direct imaging. These planets, named with lower case alphabet letters following the order of discovery, are located at distances of 14 AU (e), 24 AU (d), 38 AU (c) and 68 AU (b) which have masses of 14 MJ , 10 MJ , 10 MJ and 7 MJ respectively (Marois et al., 2010; Bowler et al., 2010). Su et al.(2009) have detected a warm inner disk similar to the solar system asteroid belt located at a radius between 6 AU and 15 AU and an outer belt of radius from 90 AU to 300 AU using MIPS images at 24 µm, 70 µm and 160 µm. Thus, it is important to say that the planets in this system are located in the gap between de two disk components, so that the morphology of this planetary system seems quite similar as our Solar System. Recent works (e.g. Barman et al. 2015) have studied the atmosphere of planet HR8799b and have found molecules of water, methane and . Using the W4/W3 flux ratio, we did not found this star with an infrared excess because the excess significance was 2.87σ, while with Morales et al.(2012) and Kennedy & Wyatt(2012) methods, we obtained a significance of 5.2σ and 10.72σ respectively (see Figure 4.8). 56 CHAPTER 4. RESULTS

V*V342Peg Best fit 1 10 BVJHK photometry WISE photometry Spitzer photometry

100 Flux (Jy) 10-1

10-2

100 101 Wavelength (µm)

Figure 4.8: Spectral energy distribution of V342Peg (HR7899). In black dots we show the BVJHK photometry, while in red stars, the four band WISE photometry. Spitzer data from Chen et al.(2014) are marked with yellow squares.

4.5.3 BD-10 3166

This MS star has a spectral type of K3 and is located at a distance of 65 pc from the Sun. Bonafanti et al.(2015) have calculated an age of 5.2 3.4 Gyr with the isochrone ± method and estimated a mass of 0.94 M . It has a planet of 0.46 MJ at 0.046 AU from the star, discovered by Butler et al.(2000 ) with the radial velocity method. Lodieu et al.(2014) have found a possible M5 dwarf star with a projected physical separation in the range of 150,000-200,000 AU. This star is mentioned because it is shown in table 4.1 that the difference in stars with excesses is 1 between Morales et al.(2012) and Patel et al.(2014) detection methods and this is the star that Patel et al.(2014) method found with excess at 22 µm and Morales et al.(2012) method did not, at 3 σ threshold. With our method the significance of the IR excess is just 2.2σ and looking to Figure 4.12 we can observe that W4 flux has a large uncertainty, that is why we did not find this star with infrared excess with our flux ratio (W4/W3) detection method. 4.5. COMMENTS ON SOME STARS WITH PLANETS 57

BD-103166 Best fit BVJHK photometry WISE photometry

10-1 Flux (Jy)

10-2

100 101 Wavelength (µm)

Figure 4.9: Spectral energy distribution of BD-10 3166. In black dots we show the BVJHK pho- tometry, while in red stars, the four band WISE photometry.

4.5.4 CD-301812 (WASP-79)

CD-301812, better known as WASP-79, is a F5 star with V=10.1 mag, located in the of Eridanus in the Southern hemisphere. It has a distance of 240 50 pc from the Sun and a mass of 1.38 M . Smalley et al.(2012) have found a transiting± planet of 0.9 MJ at a radius orbit of 0.05 AU. At 24 arcsec of separation from the star, there is a galaxy named 6dFGS gJ042530.8-303554 with a magnitude V=16 mag and a z=0.069 (Jones et al., 2009). An infrared excess has been detected in this star with all detection methods analyzed in this work, with a significance of 3.05σ in our method as shown in Figure 4.9. However, inspecting the pixel intensity of the W4 image of this star, we have found that most of the brightness at 22 µm is due to the nearby galaxy. Furthermore, WASP-79 has a W4 magnitude of 8.06 mag while the galaxy is much brighter (7.06 mag). The 3D image of the W4 observation (Figure 4.11) clearly shows the galaxy contamination. For this reason, we concluded that the infrared excess detected is because of extragalactic contamination and it is not taken into account in the final count of infrared excesses. In Figure 4.12, WISE images of W2, W3 and W4 are shown. As can be seen, the star, marked with a blue circle, decreases in brightness with increasing wavelength while the nearby galaxy shows a more constant brightness. 58 CHAPTER 4. RESULTS

CD-301812 Best fit BVJHK photometry WISE photometry

10-1 Flux (Jy) 10-2

10-3 100 101 Wavelength (µm)

Figure 4.10: Spectral energy distribution of CD-301812. In black dots we show the BVJHK pho- tometry, while in red stars, the four band WISE photometry.

Figure 4.11: WISE W4 pixel intensity distribution of the region around CD-301812. The larger peak is the pixel intensity of the galaxy 6dFGS gJ042530.8-303554 and the medium bump next to the larger peak is the contribution of WASP-79. 4.6. COMMENTS ON SOME STARS WITHOUT PLANETS 59

Figure 4.12: WISE 2, W3, W4 images of CD-301812.

4.6 Comments on some stars without planets

In this section we describe three examples of stars without planets for which we did not find a significant infrared excess at 22 µm with the main detection method of this work (W4/W3 flux ratio). However, these cases represent the most prominent W4 excesses using the other methods.

4.6.1 HD107146

This star is a , with spectral type G2V, at a distance of 28 pc from the Sun. It harbor a cold debris disk marginally resolved at 450 µm by Williams et al.(2004) who also estimated an age in the range 80 Myr - 200 Myr for this star. The disk around HD 107146 has been also studied at other wavelengths and Ertel et al.(2011) made an analysis from optical to mm wavelengths using data of the literature; they used also HST images to conclude that the disk is a broad dust ring with a peak in density surface at 131 AU. Also, they found strong evidence for a inner component of the disk near the≈ habitable zone of the star (few AU) with different dust composition and dragged from the outer disk component by the P-R drag, and they did not find evidence of a planet orbiting the star and proposed a birth ring scenario to explain the ring shape of the disk. However, other works, (e.g. Hughes et al. 2011) found that at 880 µm data have a peak brightness at a distance of 115 AU implying a ring extending from 50 AU to 170 AU. Recently, Ricci et al.(2015≈) found that in the 1.25 mm wavelength observations, using the Atacama Large Millimeter Array (ALMA), the disk extends from 30 AU to 150 AU with a decrease in the dust surface density around 70- 80 AU implying the presence of a gap in the disk. As it can be seen in Figure≈ 4.13, 60 CHAPTER 4. RESULTS the WISE W4 point at 22 µm is clearly above the photosphere. Using our detection method, we found that this star has only a significance in its excess at 2.76σ, below the threshold. However, the detection methods used by Morales et al.(2012), Kennedy & Wyatt(2012) and Patel et al.(2014) found that this excess have a significance of 4.85σ, 10.16σ and 8.82σ respectively, being this, the most prominent excess at 22 µm found within the stars without planets sample. The Spitzer photometry clearly shows a rising excess toward wavelengths larger than 30 µm.

HD107146 101 Best fit BVJHK photometry WISE photometry Spitzer photometry 100

10-1 Flux (Jy)

10-2

100 101 Wavelength (µm)

Figure 4.13: Spectral energy distribution of HD107146. In black dots we show the BVJHK pho- tometry, while in red stars, the four band WISE photometry. Spitzer data from Chen et al.(2014) are marked with yellow squares.

4.6.2 HD85301

HD85301 is classified as a G5V star located in the region of the constellation of at a distance of 32 pc from the Sun. A debris disk was found by Carpenter et al. (2009) that calculated a dust temperature of 150 K at a distance of 3 AU from the star. Vican & Scheider(2014) have calculated an age of 724 Myr and confirmed the existence of the infrared excess at 22 µm. This star did not show an excess beyond 3σ with Cruz-Saenz de Miera et al.(2014) method and ours, however, this star presents a significant excess with Kennedy & Wyatt(2012), Patel et al.(2014) and Morales et al. (2012) methods at 7.33σ, 7.25σ and 4.53σ respectively. Figure 4.12 shows the SED of this star showing W4 photometry in excess and Spitzer data confirms an excess beyond 4.6. COMMENTS ON SOME STARS WITHOUT PLANETS 61

70 µm.

HD85301 Best fit BVJHK photometry WISE photometry 0 10 Spitzer photometry

10-1 Flux (Jy)

10-2

100 101 Wavelength (µm)

Figure 4.14: Spectral energy distribution of HD85301. In black dots we show the BVJHK photom- etry, while in red stars, the four band WISE photometry. Spitzer data from Chen et al.(2014) are marked with yellow squares.

4.6.3 HD 136544

It is a F8 star which is located at 74 pc from the Sun. This star is worth to mention because it is the only one that appeared with excess at 22 µm in Cruz-Saenz de Miera et al.(2014) method with a significance of 3 .55σ. With our method, however, the significance decreases to just 2.57σ. Kennedy & Wyatt(2012), Patel et al.(2014), and Morales et al.(2012) methods also found this star with a significant excess at 6 .3σ, 5.61σ and 4.21σ, respectively. As It can be seen in Figure 4.15, W4 flux is above the stellar photosphere model. 62 CHAPTER 4. RESULTS

HD136544 Best fit BVJHK photometry WISE photometry

100 Flux (Jy)

10-1

100 101 Wavelength (µm)

Figure 4.15: Spectral energy distribution of HD136544. In black dots we show the BVJHK pho- tometry, while in red stars, the four band WISE photometry. Chapter 5

Summary and Conclusions

In this work we searched for Mid-infrared excesses at 22 µm in stars with and with- out planets, with the goal of understanding if there exists a correlation between the presence of warm dust and planets and to contribute in the understanding of the mechanism(s) of warm dust production and destruction in mature stellar systems. We analyzed a sample of 1634 stars for which planets have not been detected, observed by the high resolution spectrographs HIRES, UCLES and Hamilton Echelle of Keck, Lick and AAT Planet Search Programs (Valenti & Fischer, 2005) and by CORALIE, HARPS spectrographs (Sousa et al., 2008, 2011). The sample of stars with planets was composed by 763 stars obtained from the Exoplanet Encyclopedia web page as of April 2015. We did not consider objects in the Kepler field as the analysis of Kennedy & Wyatt(2012) demonstrated that no reliable Mid-IR excess were present in the sample, except in one A type star. The photometry was taken from WISE at 3.4 µm, 4.6 µm, 12.0 µm and 22.0 µm, which are known as W1, W2, W3, W4 respectively (Cutri, 2013), considering a 5σ detection threshold in W4. We excluded objects that showed saturation or contamination in W3 and W4. 2MASS photometry at 1.25 µm, 1.65 µm and 2.76 µm (J, H, Ks bands; Cutri et al. 2003), and B and V bands from SIMBAD were also collected. Furthermore, since the WISE catalog was known to include spu- rious detections (e.g., Cruz-Saenz de Miera et al. 2014), we proceeded to carefully inspect each image and excluded false detections. Pre-main sequence stars and bina- ries, as well as giant stars, were also eliminated from the final sample. Thus, we ended up with a final library of 910 stars without planets and 202 stars with planets. In order to identify the excess at 22 µm, we used the following procedure, that we briefly describe: we corrected all fluxes for extinction, using the -spectral type cali- bration of Pecaut et al.(2012) and the extinction curve of Rieke & Lebofsky(1985); we computed the stellar photospheric synthetic photometry on the Castelli & Kurucz (2003) SEDs; and, finally, we searched for W4 excesses by comparing the observed and photospheric W4/W3 ratio, taking into account the corresponding error. An excess

63 64 CHAPTER 5. SUMMARY AND CONCLUSIONS

is present when (W 4/W 3WISE W 4/W 3phot)/σtot 3, where σtot was defined con- sidering three different sources:− photometric, calibration≥ and photospheric-parameter q 2 2 2 uncertainties (σtot = σphot + σcal + σpar).

We found just 1 IR excess in the sample of stars with planets and no excesses in stars without planets. This very low number of W4 excesses induced us to investigate the excess rate considering methods implemented by other authors, namely Cruz-Saenz de Miera et al.(2014), Kennedy & Wyatt(2012), Morales et al.(2012) and Patel et al. (2014), that also used WISE data. Thus, we conducted a comparison among the Mid-Infrared excesses found using these approaches. We did not found a significant difference in the numbers of IR excesses in both samples of stars, with and without planets, and the very small number of detected 22µm excesses can not allow us to provide a meaningful physical interpretation.

We can resume some other important results in the following points:

There is not a clear correlation between the presence of warm debris disks and • planets around isolated MS stars.

The calibration error of 5.7% in W4 band surpass the photospheric and photo- • metric error for W4 fluxes & 20mJy and it is probably overestimated.

Cruz-Saenz de Miera et al.(2014) and our method underestimate the number of • IR excesses in the brighter stars (W4&20 mJy), where the total error is dominated by the calibration error.

WISE photometry in W4 and W3 seems to be in excess of 10% with respect to • the expected photometry. The excess of the W3 flux is 3% larger than W4 flux for sources with W4 . 0.02Jy while the flux calibration of the two bands is in agreement for W4 flux & 0.09Jy.

Since it uses the W 4obs/W 4syn ratio, Kennedy & Wyatt(2012) method overesti- • mates the number of IR excesses.

The use of W4/W3 flux ratio decreases the effects of having the WISE bands • (W4, W3, W2) in excess with respect to the synthetic photometry, detecting more reliable IR excesses. 5.1. FUTURE WORK 65 5.1 Future work

We will further investigate the causes of the systematic differences of WISE pho- • tometry with respect to the photospheric fluxes (see Figure 4.5) as this differences may imply a systematic error of the WISE calibration. We intend to repeat our analysis using a much larger stellar sample.

To better understand which of the different methods for detecting IR excesses • provides more reliable and robust results (i. e. identify all true W4 excesses and do not include any spurious detection), we intend to test them on a set of simulated data, with varying dust temperature Tdust, fractional luminosity fd and noise.

We will further investigate on the possible physical scenarios that produce a lack • of correlation between the presence of warm dust and of planets in MS stars. We plan to increase the size samples to increase their statistical significance. 66 CHAPTER 5. SUMMARY AND CONCLUSIONS Appendix A

In this section we show the empirical relation of WISE vs. B-V photospheric color trends for all six WISE colors obtained from the parent stellar sample used in Patel et al.(2014).

67 The Astrophysical Journal Supplement Series,214:14(2pp),2014September doi:10.1088/0067-0049/214/1/14 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ⃝

ERRATUM: “A SENSITIVE IDENTIFICATION OF WARM DEBRIS DISKS IN THE SOLAR NEIGHBORHOOD THROUGH PRECISE CALIBRATION OF SATURATED WISE PHOTOMETRY” (2014, ApJS, 212, 10)

Rahul I. Patel1,StanimirA.Metchev1,2,andArenHeinze1 1 Department of Physics and Astronomy, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794–3800, USA 2 Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada Received 2014 July 30; published 2014 September 3

In Section 2.5, we used the surviving 2/3ofdatapointsinthetrimmedmeantocalculatetheWij(BT VT )relationsinsteadof − the stated 50% of data points. The uncertainties in the Wij(BT VT )relationsinTable3 were underestimated because we did not include a systematic component. The systematic errors for the− relations are calculated by rms-deviation of trimmed means from a combination68 of three BT VT bin sizes (0.05 mag, 0.1 mag, and 0.2 mag) and threeAPPENDIX data rejection A. fractions APENDIX (30%, 40%, and 50%), and are added in quadrature− to the standard error. A corrected version of Table 3 is included below.

Table 3 Photospheric WISE Colors of 0.17

BT VT W1 W4 W2 W4 W3 W4 W1 W3 W2 W3 W1 W2 − − − − − − − (mag) (mag) (mag) (mag) (mag) (mag) (mag) 0.16 0.070 0.013 0.001 0.010 0.050 0.007 0.117 0.011 0.059 0.011 0.045 0.007 − − ± − ± ± − ± − ± − ± 0.14 0.070 0.013 0.001 0.010 0.050 0.007 0.117 0.011 0.059 0.011 0.045 0.007 − − ± − ± ± − ± − ± − ± 0.12 0.070 0.014 0.001 0.007 0.050 0.007 0.117 0.011 0.059 0.010 0.045 0.007 − − ± − ± ± − ± − ± − ± 0.10 0.065 0.011 0.006 0.008 0.046 0.006 0.115 0.010 0.059 0.009 0.047 0.007 − − ± − ± ± − ± − ± − ± 0.08 0.056 0.012 0.003 0.006 0.044 0.006 0.105 0.009 0.056 0.007 0.049 0.003 − − ± − ± ± − ± − ± − ± 0.06 0.054 0.010 0.001 0.008 0.043 0.007 0.104 0.008 0.051 0.006 0.050 0.004 − − ± − ± ± − ± − ± − ± 0.04 0.043 0.009 0.009 0.010 0.049 0.008 0.091 0.008 0.044 0.005 0.044 0.007 − − ± ± ± − ± − ± − ± 0.02 0.035 0.008 0.011 0.010 0.051 0.008 0.087 0.007 0.041 0.002 0.047 0.005 − − ± ± ± − ± − ± − ± 0.00 0.026 0.011 0.018 0.012 0.054 0.009 0.078 0.009 0.037 0.002 0.042 0.003 − ± ± ± − ± − ± − ± 0.02 0.019 0.013 0.023 0.014 0.059 0.010 0.071 0.005 0.038 0.002 0.041 0.003 − ± ± ± − ± − ± − ± 0.04 0.019 0.012 0.018 0.011 0.056 0.008 0.070 0.006 0.036 0.002 0.035 0.003 − ± ± ± − ± − ± − ± 0.06 0.024 0.013 0.009 0.011 0.049 0.009 0.067 0.005 0.036 0.002 0.036 0.004 − ± ± ± − ± − ± − ± 0.08 0.026 0.008 0.009 0.007 0.045 0.006 0.068 0.006 0.034 0.002 0.035 0.002 − ± ± ± − ± − ± − ± 0.10 0.032 0.005 0.002 0.005 0.043 0.004 0.067 0.004 0.034 0.002 0.034 0.002 − ± ± ± − ± − ± − ± 0.12 0.026 0.006 0.003 0.005 0.047 0.004 0.064 0.003 0.034 0.001 0.032 0.003 − ± ± ± − ± − ± − ± 0.14 0.027 0.005 0.005 0.005 0.045 0.004 0.060 0.003 0.032 0.002 0.033 0.002 − ± ± ± − ± − ± − ± 0.16 0.021 0.005 0.006 0.006 0.049 0.005 0.059 0.002 0.035 0.002 0.031 0.002 − ± ± ± − ± − ± − ± 0.18 0.022 0.005 0.004 0.007 0.045 0.005 0.058 0.002 0.032 0.002 0.030 0.002 − ± ± ± − ± − ± − ± 0.20 0.017 0.004 0.012 0.004 0.049 0.003 0.056 0.002 0.031 0.002 0.030 0.001 − ± ± ± − ± − ± − ± 0.22 0.018 0.005 0.011 0.003 0.048 0.003 0.055 0.002 0.030 0.002 0.031 0.002 − ± ± ± − ± − ± − ± 0.24 0.017 0.006 0.015 0.004 0.048 0.003 0.057 0.002 0.030 0.001 0.030 0.002 − ± ± ± − ± − ± − ± 0.26 0.012 0.004 0.019 0.003 0.049 0.003 0.056 0.002 0.028 0.001 0.029 0.002 − ± ± ± − ± − ± − ± 0.28 0.007 0.006 0.025 0.005 0.052 0.003 0.055 0.004 0.027 0.001 0.028 0.002 − ± ± ± − ± − ± − ± 0.30 0.004 0.003 0.025 0.003 0.056 0.003 0.054 0.002 0.026 0.001 0.027 0.001 − ± ± ± − ± − ± − ± 0.32 0.004 0.004 0.033 0.003 0.061 0.002 0.049 0.002 0.025 0.001 0.026 0.001 ± ± ± − ± − ± − ± 0.34 0.009 0.005 0.037 0.004 0.065 0.002 0.047 0.001 0.023 0.001 0.026 0.001 ± ± ± − ± − ± − ± 0.36 0.009 0.006 0.038 0.005 0.065 0.003 0.047 0.001 0.021 0.001 0.027 0.001 ± ± ± − ± − ± − ± 0.38 0.012 0.006 0.039 0.005 0.066 0.003 0.046 0.001 0.020 0.001 0.027 0.001 ± ± ± − ± − ± − ± 0.40 0.010 0.005 0.039 0.004 0.065 0.003 0.046 0.001 0.020 0.001 0.028 0.001 ± ± ± − ± − ± − ± 0.42 0.001 0.003 0.034 0.002 0.059 0.003 0.046 0.001 0.019 0.001 0.029 0.001 ± ± ± − ± − ± − ± 0.44 0.002 0.002 0.030 0.002 0.054 0.002 0.045 0.001 0.019 0.001 0.029 0.001 − ± ± ± − ± − ± − ± 0.46 0.005 0.003 0.028 0.002 0.051 0.002 0.045 0.001 0.018 0.001 0.030 0.001 − ± ± ± − ± − ± − ± 0.48 0.010 0.002 0.024 0.002 0.047 0.002 0.045 0.002 0.016 0.001 0.032 0.001 − ± ± ± − ± − ± − ± 0.50 0.012 0.002 0.023 0.002 0.046 0.002 0.045 0.002 0.015 0.000 0.033 0.001 − ± ± ± − ± − ± − ± 0.52 0.012 0.002 0.023 0.001 0.045 0.001 0.046 0.002 0.014 0.001 0.035 0.000 − ± ± ± − ± − ± − ± 0.54 0.014 0.003 0.024 0.002 0.043 0.001 0.044 0.002 0.012 0.001 0.037 0.000 − ± ± ± − ± − ± − ± 0.56 0.016 0.003 0.023 0.002 0.041 0.002 0.044 0.002 0.011 0.000 0.039 0.001 − ± ± ± − ± − ± − ± 0.58 0.015 0.003 0.025 0.002 0.042 0.002 0.044 0.001 0.009 0.001 0.040 0.001 − ± ± ± − ± − ± − ± 0.60 0.013 0.002 0.027 0.001 0.042 0.002 0.043 0.001 0.007 0.001 0.042 0.001 − ± ± ± − ± − ± − ± 0.62 0.011 0.002 0.029 0.002 0.041 0.001 0.043 0.002 0.005 0.001 0.042 0.001 − ± ± ± − ± − ± − ± 0.64 0.010 0.004 0.029 0.003 0.042 0.001 0.043 0.002 0.004 0.001 0.043 0.001 − ± ± ± − ± − ± − ± 0.66 0.010 0.003 0.034 0.003 0.044 0.001 0.042 0.002 0.002 0.001 0.044 0.000 − ± ± ± − ± − ± − ± 0.68 0.011 0.002 0.034 0.003 0.042 0.001 0.042 0.001 0.000 0.001 0.046 0.001 − ± ± ± − ± ± − ±

1 69 The Astrophysical Journal Supplement Series,214:14(2pp),2014September Erratum: 2014,ApJS,212, 10

Table 3 (Continued)

BT VT W1 W4 W2 W4 W3 W4 W1 W3 W2 W3 W1 W2 − − − − − − − (mag) (mag) (mag) (mag) (mag) (mag) (mag) 0.70 0.015 0.002 0.035 0.002 0.041 0.001 0.041 0.001 0.002 0.001 0.047 0.001 − ± ± ± − ± ± − ± 0.72 0.016 0.004 0.036 0.001 0.041 0.001 0.040 0.001 0.003 0.001 0.050 0.001 − ± ± ± − ± ± − ± 0.74 0.014 0.003 0.039 0.002 0.042 0.002 0.040 0.001 0.005 0.001 0.050 0.002 − ± ± ± − ± ± − ± 0.76 0.014 0.002 0.040 0.003 0.041 0.001 0.041 0.001 0.005 0.001 0.052 0.001 − ± ± ± − ± ± − ± 0.78 0.012 0.004 0.043 0.004 0.041 0.002 0.040 0.001 0.006 0.001 0.053 0.001 − ± ± ± − ± ± − ± 0.80 0.012 0.005 0.044 0.004 0.041 0.003 0.040 0.001 0.008 0.001 0.053 0.001 − ± ± ± − ± ± − ± 0.82 0.014 0.003 0.042 0.003 0.039 0.005 0.040 0.001 0.010 0.001 0.055 0.001 − ± ± ± − ± ± − ± 0.84 0.018 0.004 0.040 0.003 0.038 0.002 0.039 0.001 0.012 0.001 0.057 0.001 − ± ± ± − ± ± − ± 0.86 0.019 0.005 0.041 0.004 0.039 0.003 0.038 0.001 0.014 0.002 0.058 0.001 − ± ± ± − ± ± − ± 0.88 0.019 0.004 0.042 0.004 0.040 0.003 0.038 0.001 0.017 0.002 0.059 0.001 − ± ± ± − ± ± − ± 0.90 0.018 0.002 0.045 0.003 0.041 0.002 0.038 0.001 0.020 0.002 0.061 0.001 − ± ± ± − ± ± − ± 0.92 0.018 0.005 0.048 0.005 0.038 0.003 0.037 0.002 0.020 0.004 0.062 0.001 − ± ± ± − ± ± − ± 0.94 0.014 0.006 0.054 0.005 0.043 0.002 0.037 0.001 0.023 0.002 0.063 0.001 − ± ± ± − ± ± − ± 0.96 0.019 0.008 0.047 0.007 0.035 0.004 0.038 0.002 0.022 0.001 0.064 0.001 − ± ± ± − ± ± − ± 0.98 0.013 0.004 0.054 0.004 0.035 0.003 0.038 0.001 0.022 0.001 0.064 0.001 − ± ± ± − ± ± − ± 1.00 0.016 0.005 0.051 0.005 0.034 0.006 0.037 0.003 0.024 0.001 0.063 0.001 − ± ± ± − ± ± − ± 1.02 0.011 0.005 0.056 0.006 0.033 0.006 0.038 0.002 0.025 0.001 0.065 0.001 − ± ± ± − ± ± − ± 1.04 0.008 0.006 0.060 0.006 0.040 0.006 0.036 0.001 0.026 0.002 0.067 0.002 − ± ± ± − ± ± − ± 1.06 0.005 0.004 0.064 0.007 0.045 0.004 0.033 0.001 0.026 0.001 0.070 0.002 − ± ± ± − ± ± − ± 1.08 0.005 0.005 0.066 0.007 0.050 0.005 0.032 0.002 0.030 0.002 0.070 0.002 − ± ± ± − ± ± − ± 1.10 0.006 0.008 0.067 0.008 0.050 0.005 0.032 0.002 0.031 0.002 0.071 0.003 − ± ± ± − ± ± − ± 1.12 0.005 0.008 0.063 0.006 0.050 0.006 0.031 0.001 0.031 0.001 0.072 0.002 − ± ± ± − ± ± − ± 1.14 0.011 0.007 0.060 0.005 0.040 0.007 0.031 0.001 0.032 0.001 0.071 0.002 − ± ± ± − ± ± − ± 1.16 0.005 0.008 0.063 0.008 0.041 0.007 0.031 0.002 0.032 0.001 0.071 0.003 − ± ± ± − ± ± − ± 1.18 0.002 0.006 0.062 0.006 0.035 0.007 0.030 0.002 0.034 0.001 0.071 0.004 − ± ± ± − ± ± − ± 1.20 0.003 0.006 0.065 0.005 0.037 0.007 0.030 0.002 0.037 0.001 0.073 0.004 − ± ± ± − ± ± − ± 1.22 0.003 0.006 0.067 0.005 0.036 0.004 0.030 0.002 0.038 0.002 0.073 0.002 − ± ± ± − ± ± − ± 1.24 0.005 0.007 0.069 0.005 0.038 0.004 0.031 0.003 0.043 0.002 0.074 0.002 − ± ± ± − ± ± − ± 1.26 0.004 0.007 0.069 0.005 0.037 0.006 0.030 0.002 0.046 0.004 0.073 0.002 − ± ± ± − ± ± − ± 1.28 0.003 0.008 0.073 0.005 0.042 0.005 0.032 0.002 0.044 0.004 0.073 0.002 ± ± ± − ± ± − ± 1.30 0.006 0.008 0.073 0.005 0.046 0.005 0.032 0.002 0.047 0.004 0.073 0.002 ± ± ± − ± ± − ± 1.32 0.015 0.008 0.085 0.006 0.048 0.005 0.030 0.002 0.048 0.003 0.073 0.002 ± ± ± − ± ± − ± 1.34 0.019 0.013 0.098 0.011 0.053 0.011 0.029 0.003 0.046 0.003 0.073 0.002 ± ± ± − ± ± − ± 1.36 0.019 0.011 0.098 0.010 0.053 0.009 0.029 0.003 0.046 0.002 0.073 0.002 ± ± ± − ± ± − ± 1.38 0.019 0.011 0.098 0.010 0.053 0.009 0.029 0.003 0.046 0.002 0.073 0.002 ± ± ± − ± ± − ±

Note. Empirically determined WISE versus BT VT photospheric color–color trends for all six WISE colors obtained from the parent − Figuresample as A.1: describedEmpirically in Section 2.5 determined and shown in Figure WISE 3. vs. B-V photospheric color-color trends for all six WISE colors obtained from the parent sample used by Patel et al.(2014).

We apply these corrected Wij(BT VT )relationstoouranalysis,andfindthatsixstarsdropslightlybelowtheformalexcess thresholds: HIP 6490, HIP 8987, HIP− 47792, HIP 66257, HIP 82887, and HIP 105891. However, we find 13 additional excesses. Six of these have 10–30 µmexcessesreportedintheliterature:HIP2072,HIP12198,HIP21091,HIP42438,HIP92024,HIP115527. The remaining seven are new detections: HIP 2852, HIP 18837, HIP 20094, HIP 39947, HIP 50191, HIP 66322, HIP 110365. These 13 stars are not included in the final tally in this paper here but will be discussed in a later study. In addition, there were several minor numerical inconsistencies in the counting statistics in the abstract, Section 5, and conclusion of the paper. The total number of excesses detected is 214, not 220. The total number of new excesses never previously reported at any wavelength is 106, not 108. Among the 214 detections, 108 have previously reported mid to far-IR excess emission instead of the stated 114. An additional 10 out of the 214 detections are for the first time found to possess 10–30 µm excesses, although they were already known to have excess emission at longer wavelengths. Therefore, the total number of new 10–30 µmdiskidentificationsis 106 + 10 116, instead of 108 + 10 118. The overall= scientific conclusions in= the original manuscript are unaffected by any changes reported here.

2 70 APPENDIX A. APENDIX Appendix B

In this appendix we show the SEDs of the stars in the samples with and without planets that show signficance IR excesses of 3σ threshold at 22µm. The order of appearance is from the largest to the lowest. ≥

B.1 Stars with planets SEDs

These 13 stars with planets SEDs are the ones with the larges significance IR excesses found with all the methods, specially all the stars with significant IR excess from Kennedy & Wyatt(2012) method.

HD106906 V*V342Peg Best fit Best fit 1 BVJHK photometry 10 BVJHK photometry 100 WISE photometry WISE photometry Spitzer photometry Spitzer photometry

100

10-1 Flux (Jy) Flux (Jy) 10-1

10-2

10-2

10-3 100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.1: SEDs of HD106906 (right panel) & V342Peg (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry. Spitzer data from Chen et al. (2014) are marked with yellow squares.

71 72 APPENDIX B. APENDIX

HD45184 HD113337 Best fit Best fit 101 BVJHK photometry 101 BVJHK photometry WISE photometry WISE photometry

0 10 100 Flux (Jy) Flux (Jy)

-1 10-1 10

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.2: SEDs of HD45184 (right panel) & HD113337 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry.

HD114729A HR6907

101 Best fit Best fit BVJHK photometry BVJHK photometry 101 WISE photometry WISE photometry

100

100 Flux (Jy) Flux (Jy)

10-1 10-1

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.3: SEDs of HD114729A (right panel) & HR6907 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry.

HD11506 HD224693 Best fit Best fit BVJHK photometry BVJHK photometry

WISE photometry 0 WISE photometry 10

100

10-1 Flux (Jy) Flux (Jy)

10-1

10-2

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.4: SEDs of HD11506 (right panel) & HD224693 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry. B.1. STARS WITH PLANETS SEDS 73

HD130322 HD98649 Best fit Best fit BVJHK photometry BVJHK photometry WISE photometry WISE photometry

0 0 10 10 Flux (Jy) Flux (Jy) 10-1 10-1

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.5: SEDs of HD130322 (right panel) & HD98649 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry.

HD168443 HD33643 1 10 Best fit Best fit BVJHK photometry 100 BVJHK photometry WISE photometry WISE photometry

100 10-1 Flux (Jy) Flux (Jy)

10-1 10-2

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.6: SEDs of HD168443 (right panel) & HD33643 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry.

HD4113 Best fit BVJHK photometry WISE photometry

100 Flux (Jy) 10-1

100 101 Wavelength (µm)

Figure B.7: SED of HD4113. In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry. 74 APPENDIX B. APENDIX B.2 Stars without planets SEDs

In this part we present the 16 stars without planets that have the largest significance IR excess found by all the methods. In particular, these stars are the 4σ significance excess found by Kennedy & Wyatt(2012) method.

HD107146 HD85301 101 Best fit Best fit BVJHK photometry BVJHK photometry WISE photometry WISE photometry 0 Spitzer photometry 10 Spitzer photometry 100

10-1 10-1 Flux (Jy) Flux (Jy)

10-2 10-2

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.8: SEDs of HD107146 (right panel) & HD85301 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry. Spitzer data from Chen et al.(2014) are marked with yellow squares.

HD60491 HD125040 Best fit Best fit 101 BVJHK photometry BVJHK photometry WISE photometry WISE photometry

100

100 Flux (Jy) Flux (Jy)

10-1

10-1

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.9: SEDs of HD60491 (right panel) & HD125040 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry. Spitzer data from Chen et al.(2014) are marked with yellow squares. B.2. STARS WITHOUT PLANETS SEDS 75

V*AFLep HD136544 Best fit Best fit 1 10 BVJHK photometry BVJHK photometry WISE photometry WISE photometry

100

100 Flux (Jy) Flux (Jy)

10-1

10-1

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.10: SEDs of AFLep (right panel) & HD136544 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry.

HD29137 HD34745 Best fit Best fit BVJHK photometry BVJHK photometry WISE photometry WISE photometry

100 100 Flux (Jy) Flux (Jy)

10-1 10-1

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.11: SEDs of HD29137 (right panel) & HD34745 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry.

HD8907 V*LQHya 1 10 Best fit Best fit BVJHK photometry BVJHK photometry WISE photometry WISE photometry

100 100 Flux (Jy) Flux (Jy)

-1 10-1 10

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.12: SEDs of HD 8907 (right panel) & LQHya (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry. 76 APPENDIX B. APENDIX

HD96418 HR1981 101 Best fit Best fit 101 BVJHK photometry BVJHK photometry WISE photometry WISE photometry

100 100 Flux (Jy) Flux (Jy)

10-1 10-1

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.13: SEDs of HD966418 (right panel) & HR1981 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry.

HD205294 HD44821 101 Best fit Best fit BVJHK photometry BVJHK photometry WISE photometry WISE photometry

100 100 Flux (Jy) Flux (Jy)

10-1 10-1

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.14: SEDs of HD205294 (right panel) & HD44821 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry.

HD85683 HD209253 1 Best fit 10 Best fit BVJHK photometry BVJHK photometry WISE photometry WISE photometry

100

100 Flux (Jy) Flux (Jy)

10-1

10-1

100 101 100 101 Wavelength (µm) Wavelength (µm)

Figure B.15: SEDs of HD85683 (right panel) & HD209253 (left panel). In black dots we show BVJHK photometry, while with red stars, the four band WISE photometry. Appendix C

Table C.1: Stellar parameters of the sample of stars with planets. We show the SIMBAD name and spectral type, log g and [Fe/H] from PASTEL catalogue, the Teff and scalar value fitted, with their 2 respective reduced χν for each star.

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × BD-05 5432 4.49 0.00 5487 42 125 3 0.821 BD-06 1339 K7V/M0V 4.55 -0.14 3967 ± 18 571 ±13 8.880 BD-08 2823 K3V 4.43 -0.06 4875 ± 18 156± 3 4.696 BD-10 3166 K3.0V 4.46 0.45 5347 ± 43 62 ±2 2.502 BD-13 2130 GIV/V 2.49 0.00 6512 ± 61 149± 3 13.226 BD-17 63 K4Vk: 4.19 0.01 4503 ± 12 251 ± 4 7.089 BD+01 316 F8 4.35 0.00 6561 ± 49 47 ±1 2.223 BD+14 4559 K5 4.53 0.10 4884 ± 27 146± 2 3.893 BD+15 2940 K0 2.80 -0.28 5379 ± 25 301 ± 4 2.783 BD+20 2457 K2 1.51 -1.00 4843 ± 29 383 ± 7 2.665 BD+20 274 K5 1.99 -0.46 4592 ± 24 498 ± 9 1.286 BD+20 518 G5 4.32 0.29 5878 ± 26 195 ± 4 3.263 BD+31 2290 K4V 4.52 0.09 4560 ± 12 425 ± 6 7.277 BD+47 2936 K4V 4.59 0.33 4962 ± 23 200 ± 3 5.126 BD+48 738 K0 2.24 -0.20 5047 ± 21 599 ±10 1.594 BD+49 828 K0 2.85 -0.19 5262 ± 23 301± 5 0.813 BD+61 1762 G5 4.48 0.23 5949 ± 25 182 ± 3 5.638 CD-30 1812 F5 4.33 0.03 6787 ± 41 21 ±0 0.975 CD-50 777 F8 4.36 0.21 6022 ± 31 58 ± 1 0.307 G 268-114 K5 4.32 0.17 4651 ± 15 118± 2 5.050 GJ 9482 K7Vk 4.55 0.00 4018 ± 12 363 ± 8 8.971 HD 100777 K0 4.33 0.25 5550 ± 22 222 ± 4 1.152 HD 10180 G1V 4.35 0.07 5907 ± 19 459 ± 7 3.243 HD 102117 G6V 4.29 0.28 5664 ± 22 494 ± 9 4.408 HD 102195 K0V 4.49 0.04 5301 ± 16 398 ± 6 4.672 HD 102272 K2 2.57 -0.49 5011 ± 15 402 ± 5 2.428 HD 102329 K0 4.48 0.30 5366 ± 18 826 ±13 3.214 HD 103197 K1Vp... 4.45 0.22 5210 ± 28 126± 3 4.194 HD 103774 F5V 4.33 0.26 6498 ± 31 361 ± 6 1.782 HD 104067 K3Vk: 4.56 0.02 4891 ± 17 710 ±12 4.646 HD 106252 G0 4.35 -0.06 5957 ± 34 428 ± 10 2.677 HD 106270 G5 4.48 0.08 5527 ± 20 503 ± 10 2.316 HD 106906 F5V 4.33 0.00 6560 ± 37 190± 4 0.625 HD 107148 G5 4.39 0.31 5782 ± 24 266 ± 5 2.396 HD 108147 F8/G0V 4.51 0.18 6265 ± 27 482 ± 7 2.873 HD 108341 K2V 4.45 0.04 5123 ± 24 141 ± 3 3.148 HD 108874 G9V 4.44 0.26 5563 ± 22 163 ± 3 0.067 ± ± 77 78 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 109246 G0V 4.38 0.10 5804 21 134 2 2.135 HD 109271 G5V 4.28 0.10 5771 ± 22 265 ± 5 0.796 HD 111232 G8VFe-1.0 4.47 -0.40 5579 ± 26 476 ± 9 0.844 HD 113337 F6V 4.20 0.07 6719 ± 32 884 ±13 2.825 HD 114386 K3V 4.47 -0.05 5053 ± 20 364± 6 6.499 HD 114729A G0V 4.17 -0.27 5843 ± 27 885 ±16 4.092 HD 114783 K1V 4.51 0.13 5104 ± 18 775 ± 12 3.242 HD 11506 G0V 4.42 0.32 6088 ± 18 332± 5 3.153 HD 116029 K1IV 4.44 0.18 5268 ± 16 738 ± 9 1.599 HD 117207 G7IV-V 4.28 0.24 5683 ± 23 587 ±10 2.775 HD 117618 G0V 4.34 0.01 5971 ± 21 506± 8 3.308 HD 118203 K0 3.95 0.21 5770 ± 22 260 ± 5 2.904 HD 126525 G4V 4.37 -0.10 5665 ± 23 350 ± 6 1.253 HD 12661 K0V 4.39 0.37 5691 ± 26 492 ± 8 2.095 HD 128311 K3V 4.54 0.09 4888 ± 16 1097 ± 16 5.371 HD 129445 G6V 4.48 0.25 5620 ± 22 149 ± 3 6.268 HD 130322 K0V 4.47 0.04 5437 ± 25 356 ± 7 1.218 HD 131496 K0 4.48 0.25 5445 ± 20 797 ±13 4.306 HD 132406 G0 4.10 0.11 5752 ± 13 186± 3 1.939 HD 134060 G0VFe+0.4 4.36 0.09 5924 ± 24 1175 ± 23 4.626 HD 134606 G6IV 4.31 0.23 5558 ± 17 935 ±16 3.780 HD 13908 F8 4.36 0.01 6179 ± 20 320± 4 1.135 HD 13931 G0 4.30 0.03 5855 ± 26 374 ± 8 2.712 HD 141399 K0 4.48 0.18 5587 ± 21 675 ± 9 3.551 HD 142245 K0 3.65 0.17 5521 ± 17 1059 ± 15 6.899 HD 143567 B9V 4.08 0.00 10925 ± 141 101 ± 3 1.105 HD 145934 K0 3.19 0.15 5510 ± 18 415 ± 5 5.960 HD 147018 G9V 4.48 0.10 5500 ± 20 265 ± 5 2.368 HD 147506 F8V 4.14 0.08 6525 ± 28 85 ±2 2.180 HD 149026 G0IV 4.33 0.30 6130 ± 22 181± 3 4.062 HD 149143 G0 4.31 0.45 6254 ± 26 261 ± 5 2.407 HD 1502 K0 4.48 0.09 5316 ± 12 423 ± 6 4.672 HD 15082 A5 4.28 0.10 8160 ± 35 78 ±1 0.572 HD 152581 K0 4.48 -0.46 5238 ± 16 420± 5 5.200 HD 154857 G5V 4.01 -0.23 5529 ± 15 696 ±10 0.628 HD 155358 G0 4.21 -0.60 5986 ± 21 480± 7 1.162 HD 156668 K3V 4.20 -0.06 4770 ± 12 525 ± 8 5.511 HD 157172 G8.5V 4.46 0.14 5491 ± 22 399 ± 7 2.557 HD 159243 G0 4.38 0.05 6096 ± 24 120 ± 2 1.636 HD 159868 G5V 4.01 -0.04 5540 ± 23 682 ±12 0.488 HD 16175 G0 4.02 0.31 5920 ± 21 466± 8 2.054 HD 164509 G5V 4.48 0.21 5842 ± 26 239 ± 5 0.242 HD 166724 K0IV/V 4.43 -0.09 5086 ± 23 155 ± 3 2.605 HD 168443 G6V 4.13 0.08 5596 ± 20 871 ±11 3.888 HD 170469 G5 4.32 0.31 5861 ± 22 215± 3 2.231 HD 171238 G8V 4.48 0.17 5404 ± 24 212 ± 3 0.877 HD 17156 G0 4.16 0.17 6004 ± 22 197 ± 3 3.388 HD 175167 G5IV/V 3.51 0.19 5868 ± 15 325 ± 4 10.241 HD 181720 G1V 4.12 -0.66 5778 ± 28 327 ± 6 0.848 HD 183263 G2IV 4.39 0.27 5944 ± 25 271 ± 5 2.698 HD 187085 G0V 4.28 0.09 6085 ± 22 445 ± 8 1.831 HD 18742 G9IV 3.35 -0.04 5407 ± 23 697 ±14 3.838 HD 189733 K0V+M4V 4.45 -0.03 5406 ± 24 721 ± 14 2.801 HD 190647 G5V 4.18 0.23 5976 ± 29 353± 7 6.788 HD 190984 F8V 4.02 -0.49 6037 ± 25 119 ± 2 1.330 ± ± 79

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 20003 G8V 4.41 0.04 5531 19 240 4 4.875 HD 202206 G6V 4.54 0.35 5742 ± 22 263 ± 4 2.565 HD 2039 G2/G3IV/V 4.35 0.29 5930 ± 28 96 ±2 2.445 HD 204313 G5V 4.38 0.18 5752 ± 20 276± 4 1.165 HD 205739 F7V 4.35 0.19 6255 ± 27 116 ± 2 1.315 HD 206610 K0 4.48 0.14 5454 ± 22 481 ± 9 6.134 HD 208487 G2V: 4.51 0.06 6180 ± 30 331 ± 6 0.855 HD 20868 K3/K4IV 4.26 0.05 5160 ± 30 121 ± 2 2.974 HD 210277 G8V 4.38 0.23 5463 ± 25 1296 ± 24 3.730 HD 211847 G5V 4.48 -0.08 5744 ± 26 162 ± 3 1.317 HD 212771 G8IV 3.39 -0.21 5533 ± 18 737 ±11 3.350 HD 215152 K3V 4.40 -0.10 4812 ± 14 650 ± 11 6.632 HD 215456 G0.5V 4.10 -0.09 5846 ± 27 934 ± 17 2.805 HD 215497 K3V 4.40 0.20 5000 ± 20 240± 5 2.090 HD 216536 K0 2.36 -0.17 5486 ± 27 316 ± 5 4.764 HD 216770 G9VCN+1 4.33 0.26 5444 ± 24 331 ± 6 3.361 HD 21693 G9IV-V 4.37 0.00 5490 ± 19 371 ± 5 5.619 HD 217786 F8V 4.35 -0.14 5974 ± 26 293 ± 5 1.002 HD 219415 K 3.51 -0.04 5186 ± 20 340 ± 6 0.152 HD 219828 G0IV 4.21 0.18 6226 ± 26 241 ± 4 4.651 HD 220773 G0 4.37 0.09 5935 ± 22 557 ± 9 0.669 HD 222155 G0 3.93 -0.26 5719 ± 26 663 ±11 1.360 HD 224693 G2V 4.23 0.27 5953 ± 27 193± 4 2.136 HD 23127 G2V 4.08 0.14 5870 ± 20 150 ± 2 11.000 HD 233604 K5 2.55 -0.36 4847 ± 40 80 ±2 3.495 HD 233731 G5 4.37 0.29 5946 ± 36 78 ± 1 1.299 HD 24040 G0 4.36 0.21 5765 ± 25 434± 8 1.714 HD 25171 F8V 4.43 -0.11 6231 ± 28 244 ± 4 2.912 HD 2638 G5 4.36 0.14 6111 ± 37 123 ± 2 7.285 HD 27631 G3IV/V 3.57 0.00 5695 ± 23 236 ± 4 1.396 HD 28185 G6.5IV-V 4.43 0.24 5669 ± 28 357 ± 8 1.142 HD 285507 K4 4.52 0.13 4840 ± 18 120 ± 3 11.983 HD 28678 K0 4.48 -0.11 5036 ± 21 628 ±13 0.836 HD 290327 G0 4.41 -0.14 6449 ± 44 122± 3 7.335 HD 30177 G8V 4.28 0.35 5573 ± 25 227 ± 5 6.198 HD 30669 G9V 4.37 0.13 5419 ± 22 134 ± 3 4.134 HD 31253 F8 4.10 0.16 6077 ± 20 482 ± 7 2.665 HD 33283 G4V 4.00 0.31 6014 ± 18 217 ± 4 1.163 HD 33643 F2 4.33 0.14 6674 ± 39 87 ±2 0.777 HD 34445 G0 4.26 0.19 5787 ± 21 509± 9 1.191 HD 37605 K0 4.32 0.29 5333 ± 21 215 ± 4 1.383 HD 38283 F9.5V 4.21 -0.20 6000 ± 21 780 ±13 1.465 HD 38801 K0 3.31 0.26 5198 ± 20 363± 7 0.552 HD 40979 F8 4.43 0.20 6182 ± 22 641 ±11 1.638 HD 4113 G5V 4.30 0.24 5694 ± 22 325± 5 2.344 HD 4203 G5 4.23 0.40 5615 ± 25 165 ± 3 2.516 HD 4208 G7VFe-1CH-0.5 4.47 -0.25 5680 ± 29 367 ± 7 0.895 HD 4313 G5 4.48 0.14 5956 ± 27 630 ±12 8.965 HD 43197 G9IV/V 4.30 0.36 5465 ± 26 144± 3 3.369 HD 43691 G0 4.15 0.28 6111 ± 28 207 ± 4 1.059 HD 45184 G1.5V 4.40 0.09 5859 ± 25 1145 ± 17 2.586 HD 45350 G5 4.21 0.29 5602 ± 21 354 ± 5 1.825 HD 45364 G8V 4.38 -0.17 5497 ± 23 334 ± 6 2.938 HD 45652 K5 4.20 0.29 5322 ± 19 364 ± 6 0.784 HD 47186 G6V 4.34 0.25 5643 ± 19 424 ± 8 3.577 ± ± 80 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 49674 G0 4.44 0.32 6210 24 266 4 2.668 HD 50499 G1V 4.32 0.50 6044 ± 21 458 ± 7 0.297 HD 50554 F8V 4.43 -0.01 6061 ± 23 649 ±10 1.083 HD 51608 K0IV-V 4.36 -0.07 5415 ± 18 324± 5 4.979 HD 5319 G5IV 3.51 0.15 5821 ± 26 581 ±11 6.998 HD 564 G2/G3V 4.53 -0.20 6037 ± 22 174± 3 6.496 HD 5891 G5 4.48 -0.02 5717 ± 21 655 ± 9 3.132 HD 63454 K3Vk: 4.27 0.09 4809 ± 20 207 ± 4 5.457 HD 63765 G9V 4.42 -0.16 5484 ± 26 326 ± 6 3.035 HD 66428 G5 4.35 0.29 5693 ± 25 231 ± 5 0.953 HD 67087 F8 4.36 0.25 6376 ± 23 169 ± 2 1.855 HD 6718 G0 4.44 -0.07 5773 ± 21 185 ± 3 1.011 HD 68988 G0 4.40 0.35 5925 ± 24 203 ± 3 1.951 HD 70642 G6VCN+0.5 4.40 0.17 5686 ± 27 628 ±11 1.522 HD 73267 K0V 4.37 0.05 5404 ± 21 171± 3 1.923 HD 73534 G5 3.51 0.16 5860 ± 21 460 ± 7 5.468 HD 74156 G0 4.26 0.10 6024 ± 22 325 ± 5 0.793 HD 7449 F9.5V 4.51 -0.11 6025 ± 28 370 ± 8 2.916 HD 75289A F9VFe+0.3 4.37 0.25 6140 ± 29 932 ±16 6.138 HD 75898 G0 4.18 0.26 5992 ± 29 223± 4 4.843 HD 76700 G6V 4.16 0.31 5652 ± 27 266 ± 5 2.103 HD 77338 K0IV 4.68 0.31 5375 ± 18 223 ± 3 9.364 HD 81040 G0V 4.54 -0.03 5757 ± 14 363 ± 5 3.565 HD 82886 G0 4.37 -0.31 6010 ± 19 719 ±10 4.558 HD 83443 K0V 4.40 0.35 5452 ± 25 291± 5 2.409 HD 8535 G0V 4.42 0.04 6146 ± 21 274 ± 4 4.637 HD 85390 K1.5V 4.41 -0.07 5139 ± 22 302 ± 6 1.615 HD 86081 F8 4.16 0.18 6467 ± 35 114 ± 2 3.699 HD 86226 G2V 4.42 -0.04 5924 ± 26 262 ± 5 3.897 HD 86264 F7V 4.22 0.26 6381 ± 29 298 ± 5 2.236 HD 87883 K0V 4.47 0.05 5456 ± 22 896 ±16 5.803 HD 88133 G5IV 3.89 0.34 5847 ± 24 360± 5 1.610 HD 89307 G0V 4.46 -0.13 5964 ± 19 595 ± 9 2.125 HD 90156 G5V 4.56 -0.23 5645 ± 28 841 ±17 2.477 HD 93083 K2IV-V 4.35 0.12 4992 ± 21 435± 8 2.220 HD 93385 G2/G3V 4.38 -0.02 5980 ± 21 377 ± 6 2.304 HD 9446 G5V 4.53 0.10 5829 ± 26 189 ± 3 1.529 HD 95089 K0 3.31 0.05 5261 ± 16 669 ±10 2.082 HD 95127 K0 3.82 0.34 5409 ± 20 1230± 20 9.588 HD 9578 G1V 4.52 0.11 6026 ± 26 189 ± 4 0.941 HD 96063 K0 4.48 -0.30 4991 ± 23 478 ±10 0.554 HD 96167 G5 4.48 0.34 5750 ± 27 257± 6 3.792 HD 97658 K1V 4.54 -0.31 5209 ± 20 603 ± 9 4.864 HD 98649 G4V 4.46 0.00 5760 ± 20 284 ± 5 0.791 HD 99109 K0 4.32 0.38 5562 ± 33 152 ± 3 1.124 HD 99706 K0 4.48 0.14 5447 ± 19 868 ±13 5.867 HR 5910 B6Vp 4.03 0.00 17686 ± 453 106± 4 1.510 HR 6907 F7V 4.14 0.15 6357 ± 30 1226 ± 20 1.568 HR 7291 F8V 4.43 0.19 6218 ± 33 990 ±19 3.731 TYC 1422-614-1 2.85 -0.20 5205 ± 47 101± 2 0.624 V* CS Pyx G8IV-VFe+0.5 4.42 0.25 5450 ± 18 343 ± 6 2.555 V* PR Vir K3V 4.43 -0.02 4972 ± 22 152 ± 3 3.797 V* V342 Peg F0+VkA5mA5 4.33 -0.47 7416 ± 29 647 ± 9 0.790 V* V376 Peg G0V 4.43 0.00 6104 ± 28 302 ± 6 2.811 V* V478 Hya G1/2V 4.35 -0.05 5867 ± 28 136 ± 3 0.619 ± ± 81

Table C.2: Stellar parameters of the sample of stars without planets. The same as Table C.1.

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × * 12 Psc G1V 4.34 0.12 5907 27 695 11 1.14 * 14 Cet F5IV 3.97 -0.16 6521 ± 29 1088± 18 1.74 * 24 LMi G0V 4.13 0.03 5774 ± 19 1157 ± 18 1.47 * 40 Cet F8 4.30 0.11 6125 ± 25 819 ±14 1.52 BD-01 184 K5 4.34 -0.34 4629 ± 18 237± 5 3.93 BD-03 4797 K4 4.21 0.06 4750 ± 24 279 ± 6 2.33 BD-04 4138 K5+V 4.39 -0.11 4737 ± 21 150 ± 3 14.41 BD-05 3176 K4 4.39 -0.09 4735 ± 48 130 ± 3 3.36 BD-05 484 K4 4.42 -0.39 4774 ± 36 146 ± 3 1.32 BD-05 578 G0 4.39 0.09 5831 ± 37 106 ± 2 1.05 BD-06 3481 K8 4.36 -0.14 4760 ± 14 185 ± 3 2.48 BD-06 4196 K3V 4.30 -0.03 4673 ± 17 157 ± 3 1.92 BD-06 904 K2V 4.46 -0.17 5042 ± 24 112 ± 3 0.90 BD-08 2534 G0 4.43 -0.78 5869 ± 34 81 ±2 1.56 BD-09 2670 K3+Vk: 4.46 -0.08 4905 ± 20 169± 3 4.80 BD-09 872 K4Vk: 4.35 -0.19 4726 ± 19 194 ± 4 11.29 BD-11 2763 K2.5Vk: 4.44 -0.26 4962 ± 20 106 ± 2 0.36 BD-12 327 K5 4.35 -0.34 4506 ± 27 161 ± 3 4.58 BD-12 3458 K7V 4.86 -0.83 4113 ± 22 222 ± 7 1.10 BD-13 1161 G5 4.37 0.09 5907 ± 37 118 ± 3 3.56 BD-13 321 K4Vk: 4.41 0.02 4472 ± 16 235 ± 4 3.41 BD-14 184 K3V 4.32 -0.38 5000 ± 16 132 ± 2 9.49 BD-16 308 G5 4.48 -0.41 5901 ± 40 87 ±2 2.93 BD-16 931 K2V 4.38 -0.11 5098 ± 23 112± 3 2.43 BD-17 3242 K5V 4.48 -0.29 4315 ± 36 145 ± 4 2.46 BD-21 3153 K4.5Vk: 4.38 -0.17 4635 ± 17 203 ± 4 7.69 BD-22 3528 K3.5Vk: 4.28 -0.17 4888 ± 29 166 ± 4 1.77 BD+09 1617 K0 4.47 0.20 5315 ± 24 159 ± 3 0.67 CD-23 15543 K3V 4.47 -0.15 5008 ± 18 102 ± 2 8.07 CD-25 8473 K3V 4.51 -0.18 5009 ± 20 96 ±2 2.58 CD-26 2288 K3+Vk: 4.41 0.02 4772 ± 14 271± 5 5.98 CD-27 6378 K3.5V 4.46 -0.12 4625 ± 16 191 ± 4 2.01 CD-28 8692 K5V 4.43 -0.22 4600 ± 14 174 ± 3 17.72 CD-30 18090 K3V 4.32 -0.28 5542 ± 24 128 ± 2 47.75 CD-36 1303 K5V 4.44 -0.04 4814 ± 18 158 ± 3 2.12 CD-36 866 K2V 4.40 -0.15 5342 ± 25 118 ± 3 10.07 CD-38 2136 K3.5Vk: 4.48 -0.54 4691 ± 18 243 ± 4 3.29 CD-39 5624 K5Vk: 4.22 -0.24 4299 ± 12 193 ± 4 8.65 CD-43 14916 K6Vk: 4.42 -0.27 4199 ± 46 206 ± 8 1.75 G 266-98 G5 4.39 -0.44 5537 ± 26 92 ±2 1.31 HD 10002 G9V 4.43 0.21 5566 ± 23 364± 6 2.67 HD 100167 F8 4.38 0.06 6131 ± 23 467 ± 7 0.94 HD 100289 G9V 4.42 0.03 5501 ± 23 142 ± 2 0.63 HD 100508 K1IV 4.42 0.39 5437 ± 23 464 ± 8 2.33 HD 10086 G5V 4.39 0.12 5649 ± 20 1105 ± 17 0.48 HD 101339 G5 4.48 -0.10 5767 ± 27 133 ± 2 1.91 HD 101367 K0 4.38 0.29 5601 ± 23 184 ± 3 1.74 HD 101472 F7V 3.33 -0.11 6194 ± 26 345 ± 6 2.29 HD 101612 F5/F6V 4.41 -0.36 6324 ± 37 291 ± 7 0.28 HD 10166 G9V 4.48 -0.39 5276 ± 21 123 ± 2 1.51 HD 101959 F9V 4.39 -0.11 6090 ± 23 560 ± 9 1.29 HD 102071 K0.5V 4.53 0.01 5321 ± 18 431 ± 7 1.79 HD 102136 G9V 4.43 -0.09 5370 ± 25 111 ± 2 2.25 HD 102300 F7V 4.23 -0.31 6250 ± 34 312 ± 6 1.97 HD 102357 F7V 4.33 -0.06 6314 ± 26 490 ± 8 0.91 ± ± 82 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 102843 K0 4.35 0.16 5437 30 115 3 0.79 HD 103829 F8 4.36 0.12 6233 ± 22 92 ±2 1.66 HD 103891 G0 3.83 -0.24 6035 ± 20 839 ± 14 2.81 HD 103949 K3V 4.48 -0.07 4774 ± 13 395± 6 5.21 HD 104263 G5 4.34 0.02 5690 ± 21 285 ± 4 2.33 HD 104982 G2V 4.44 -0.19 5717 ± 28 348 ± 6 0.77 HD 105328 G0V 4.15 0.11 5954 ± 23 777 ±14 1.86 HD 105405 F8 4.23 -0.21 6233 ± 20 371± 5 2.42 HD 105631 K0V 4.47 0.15 5361 ± 15 649 ± 8 4.08 HD 105779 G3V 4.51 -0.25 5826 ± 26 149 ± 3 1.62 HD 105837 G0VFe-0.9 4.57 -0.79 6013 ± 28 373 ± 7 0.68 HD 106156 G8V 4.68 0.18 5428 ± 23 399 ± 8 1.87 HD 106275 K2V 4.47 -0.09 5015 ± 15 317 ± 5 2.55 HD 106290 G1V 4.55 0.13 6000 ± 30 156 ± 3 3.47 HD 106589 G5V 4.37 -0.23 5676 ± 28 129 ± 3 1.12 HD 107094 G5V 4.54 -0.51 5564 ± 23 120 ± 2 1.15 HD 107146 G2V 4.47 -0.03 5920 ± 25 617 ± 9 1.86 HD 107692 G1.5V 4.33 0.06 5856 ± 18 839 ±12 3.52 ± ± HD 108510 G1VF e-0.7 4.44 -0.01 6023 19 723 11 3.71 HD 108768 G6V 4.45 0.14 5837 ± 32 135± 3 4.02 HD 10895 G3V 4.52 -0.27 5720 ± 32 156 ± 4 2.23 HD 109098 G0 4.14 0.06 5857 ± 21 488 ± 7 2.66 HD 109368 K4.5Vk: 4.36 -0.23 4705 ± 28 222 ± 4 3.47 HD 109423 K2V 4.44 -0.07 5024 ± 19 266 ± 5 4.41 HD 109723 G5V 4.47 -0.04 5609 ± 31 133 ± 3 1.38 HD 109988 K0IV/V 4.46 0.14 5170 ± 19 212 ± 3 3.72 HD 11020 G9V 4.62 -0.28 5269 ± 18 178 ± 3 1.71 HD 110537 G0 4.40 0.12 6054 ± 23 337 ± 5 1.77 HD 110557 K0 4.36 -0.06 5299 ± 29 92 ±2 2.24 HD 110668 G4V 4.45 0.17 5854 ± 25 198± 4 2.42 HD 111031 G5V 4.39 0.28 5795 ± 26 755 ±15 1.95 HD 11112 G3V 4.11 0.07 5870 ± 24 562 ± 10 4.72 HD 111564 G0V 4.37 0.07 5973 ± 30 337± 6 1.13 HD 112257 G6V 4.39 -0.03 5690 ± 24 360 ± 6 0.43 HD 11226 F8 4.29 0.05 6122 ± 24 500 ± 8 4.58 HD 112283 F5 4.84 -0.13 6403 ± 31 245 ± 4 0.37 HD 112540 G7V 4.52 -0.17 5527 ± 20 288 ± 5 1.64 HD 112914 K3V 4.63 -0.28 4771 ± 13 447 ± 7 2.97 HD 113513 G5V 4.54 0.17 5664 ± 26 149 ± 3 0.86 HD 113569 K2V 4.41 -0.22 5264 ± 29 117 ± 2 1.73 HD 114260 G8V 4.49 -0.09 5495 ± 25 634 ±13 0.79 HD 114561 G3V 4.50 -0.07 5904 ± 26 177± 3 6.26 HD 114853 G1.5V 4.51 -0.22 5724 ± 31 780 ±16 1.17 HD 11505 G0 4.38 -0.16 5804 ± 25 467± 8 0.83 HD 115341 G0 4.55 -0.01 6020 ± 26 268 ± 5 1.71 HD 115499 G5/G6V 4.45 0.07 5772 ± 24 108 ± 2 2.86 HD 115585 G5/G6IV/V 4.26 0.35 5921 ± 32 498 ±11 1.73 HD 115589 G8IV 4.55 0.31 5771 ± 35 97 ± 2 1.13 HD 115674 G5VFe-0.7 4.48 -0.17 5745 ± 22 322± 5 3.37 HD 115773 F6V 4.23 -0.08 6188 ± 31 645 ±11 1.02 HD 115902 G5 4.39 -0.01 5664 ± 26 154± 3 1.82 HD 11608 K1/K2V 4.45 0.31 5362 ± 23 176 ± 3 1.45 HD 116259 G5/G6V 4.21 0.11 5667 ± 26 280 ± 6 3.62 HD 116284 K0IV 3.87 -0.01 5166 ± 21 963 ±20 3.36 HD 116410 G3V 4.43 0.23 5940 ± 25 207± 3 5.47 HD 116883 K3V 4.36 -0.20 4940 ± 29 142 ± 3 1.11 ± ± 83

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 1171 G8V 4.47 -0.53 5383 23 78 1 0.87 HD 117105 F9.5V 4.39 -0.29 5913 ± 28 526± 9 0.69 HD 117126 G5 4.34 -0.03 5747 ± 24 479 ± 8 0.78 HD 117359 K0V 4.43 -0.13 5289 ± 24 119 ± 2 1.64 HD 117938 K3.5Vk: 4.27 -0.13 4899 ± 21 216 ± 4 2.27 HD 118466 K2V 4.34 0.20 5035 ± 20 163 ± 3 1.23 HD 118475 F9VFe+0.3 4.36 0.10 6297 ± 23 592 ± 9 3.79 HD 118563 G8V 4.45 -0.04 5538 ± 28 120 ± 3 1.24 HD 118914 G0 4.30 0.15 6137 ± 21 117 ± 2 3.46 HD 119173 G5 4.41 -0.63 5980 ± 31 113 ± 2 1.49 HD 119291 K7V 4.22 -0.10 4368 ± 14 443 ± 8 9.43 HD 11938 K4Vk: 4.25 0.01 4450 ± 27 211 ± 5 1.70 HD 119503 K2V 4.40 -0.04 5046 ± 18 161 ± 3 1.26 HD 119629 F7V 4.17 -0.17 6192 ± 36 642 ±14 0.54 HD 119638 F8.5V 4.42 -0.15 6110 ± 34 597 ± 13 1.18 HD 119782 K1.5Vk: 4.44 -0.07 5165 ± 23 269± 6 7.47 HD 120362 G5V 4.51 0.10 5927 ± 32 98 ±2 5.03 HD 120491 K4.5V 4.49 -0.34 4459 ± 22 287± 6 2.98 HD 121320 G5V 4.54 -0.25 5620 ± 21 357 ± 6 4.66 HD 121560 F6V 4.33 -0.41 6601 ± 27 1099 ± 17 10.30 HD 122474 G5 4.37 0.13 5660 ± 29 156 ± 4 1.45 HD 122676 G7V 4.43 -0.06 5383 ± 13 884 ±11 2.73 HD 123265 G8 4.29 0.19 5676 ± 29 276± 6 1.82 HD 123619 F6V 4.45 -0.32 6216 ± 33 255 ± 5 0.80 HD 123651 G0/G1V 4.55 -0.48 5989 ± 30 206 ± 3 3.82 HD 124106 K1V 4.52 -0.15 5090 ± 19 555 ± 9 2.94 HD 12414 F2 4.04 -0.34 6840 ± 24 427 ± 7 3.26 HD 124292 G8V 4.52 -0.11 5514 ± 24 841 ±17 1.02 HD 124364 G5V 4.48 -0.27 5659 ± 23 251± 4 1.10 HD 125040 F8V 4.26 0.04 6485 ± 25 816 ±11 3.57 HD 125271 K3+Vk: 4.33 -0.22 4550 ± 19 207± 4 4.52 HD 125522 K3V 4.45 -0.46 4724 ± 24 122 ± 3 7.85 HD 12617 K3V 4.46 0.10 4807 ± 16 290 ± 5 5.39 HD 126681 G3V 4.59 -1.18 5625 ± 29 97 ±2 0.36 HD 126803 G5V 4.49 -0.61 5580 ± 26 140± 3 0.91 HD 126829 K4+Vk: 4.51 -0.14 4539 ± 13 200 ± 4 6.26 HD 127334 G5VCH0.3 4.15 0.18 5662 ± 14 1365 ± 18 3.69 HD 128113 K2IV-V 4.28 -0.17 5039 ± 28 140 ± 3 0.71 HD 128428 G0 4.34 0.47 6273 ± 21 378 ± 5 6.00 HD 128431 G8V 4.43 -0.34 5563 ± 25 114 ± 2 3.44 HD 12846 G2V 4.39 -0.27 5731 ± 24 809 ±14 2.69 HD 129010 G0V 4.01 0.10 6031 ± 23 378± 7 0.80 HD 129191 G0 4.40 0.24 6096 ± 30 214 ± 5 0.45 HD 129814 G5V 4.41 0.00 5816 ± 20 417 ± 6 2.72 HD 129829 G1V 4.66 -0.16 6122 ± 31 177 ± 4 0.19 HD 130087 G2IV 4.34 0.27 6029 ± 21 351 ± 5 3.30 HD 130307 G8V 4.48 -0.22 5576 ± 20 664 ±11 5.31 HD 13060 K1V 4.34 0.02 5262 ± 18 189± 3 1.56 HD 130930 K2V 4.45 0.01 4978 ± 21 311 ± 6 2.85 HD 130989 F6V 4.27 -0.23 6384 ± 34 688 ±13 0.14 HD 131117 G1V 4.04 0.12 5997 ± 26 1114± 19 2.73 HD 131183 G5V 4.24 0.09 5629 ± 26 349 ± 8 3.33 HD 131565 G5V 4.47 -0.16 5700 ± 22 169 ± 3 2.84 HD 1320 G2V 4.49 -0.27 5747 ± 30 294 ± 6 2.23 HD 132173 G0V 4.50 0.05 6037 ± 21 310 ± 4 1.34 ± ± 84 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 132411 K3V 4.32 -0.29 4578 14 149 2 2.20 HD 13252 G8V 4.33 -0.25 5445 ± 33 110 ± 3 1.69 HD 132569 K1V 4.49 -0.26 5365 ± 22 110 ± 2 6.50 HD 132648 G8.5V 4.49 -0.37 5468 ± 21 462 ± 8 1.72 HD 133161 G2V 4.24 0.21 5964 ± 26 587 ±11 0.36 HD 133295 F9VCH-0.4 4.43 0.01 6062 ± 25 478± 8 0.81 HD 134664 G1.5V 4.52 0.10 6148 ± 27 318 ± 6 4.31 HD 134985 K1 4.59 -0.60 5229 ± 27 142 ± 3 1.15 HD 135468 F6V 4.25 -0.02 6329 ± 25 766 ±15 1.87 HD 135625 G3IV/V 4.32 0.12 6000 ± 27 302± 6 1.45 HD 136118 F9V 4.23 -0.04 6145 ± 29 559 ±11 0.57 HD 136544 F8 4.19 0.17 6456 ± 32 280± 6 1.36 HD 136580 F5 4.22 -0.11 6545 ± 20 526 ± 7 2.25 HD 136713 K3IV-V 4.54 0.15 4946 ± 19 648 ±12 3.73 HD 136923 G9V 4.51 -0.05 5362 ± 16 885 ± 12 6.20 HD 136925 G0 4.35 -0.34 5782 ± 23 308± 6 1.24 HD 13724 G4V 4.52 0.23 5855 ± 23 287 ± 5 5.03 HD 137676 G8V 3.93 -0.53 5279 ± 18 585 ± 8 2.10 HD 13789 K3.5V 4.33 -0.06 4882 ± 18 512 ± 9 5.11 HD 138549 G8IV-V 4.44 0.00 5550 ± 24 350 ± 7 0.15 HD 138776 K0 4.26 0.43 5631 ± 24 155 ± 3 1.43 HD 138799 K1/K2V: 4.36 0.02 5255 ± 18 162 ± 3 4.50 HD 138914 K2V 4.38 -0.12 5166 ± 26 149 ± 3 2.98 HD 139324 G5 4.26 0.15 5925 ± 18 390 ± 6 2.54 HD 139332 K3V 4.30 0.00 4848 ± 26 140 ± 3 0.59 HD 139457 F8V 4.05 -0.51 6039 ± 16 532 ± 7 1.96 HD 139536 K1/K2V: 4.71 -0.04 5045 ± 28 78 ±2 0.87 HD 139590 G0V 4.49 0.13 6145 ± 31 327± 6 0.32 HD 139879 G0 4.61 0.30 6134 ± 24 218 ± 3 5.98 HD 140785 G5V 4.13 -0.03 5759 ± 24 503 ±10 1.26 HD 140913 G0V 4.61 0.10 5965 ± 26 226± 4 0.63 HD 141103 F5 4.01 -0.31 5803 ± 24 589 ±11 16.55 HD 141128 F5 4.67 0.07 6648 ± 37 375± 8 1.49 HD 141598 G3V 4.37 -0.10 5590 ± 22 159 ± 2 1.07 HD 142229 G5 4.50 0.05 5910 ± 26 231 ± 4 0.79 HD 142709 K5V 4.52 -0.26 4472 ± 17 1109 ± 20 4.64 HD 143006 G8e 4.23 0.22 4631 ± 33 132 ± 4 73.08 HD 143114 G0+V 4.50 -0.40 5819 ± 21 503 ± 9 2.73 HD 143295 K2V 4.43 -0.03 4955 ± 22 234 ± 5 2.49 HD 14374 G0V 4.39 -0.07 6139 ± 29 212 ± 4 2.56 HD 144009 G8IV-VFe+0.5 4.48 0.06 5587 ± 22 644 ±13 1.59 HD 144342 G9IV 4.47 0.07 5399 ± 23 156± 3 2.20 HD 144411 K3V 4.39 -0.32 5030 ± 18 156 ± 3 10.80 HD 144497 K2.5Vk: 4.50 -0.12 4955 ± 20 217 ± 4 0.24 HD 14452 K0V 4.50 -0.16 5371 ± 29 115 ± 3 1.01 HD 144628 K1V 4.55 -0.39 5070 ± 18 1215 ± 19 2.39 HD 144628 K1V 4.55 -0.39 5063 ± 14 1221 ± 18 3.30 HD 144846 G1V 4.52 0.13 6022 ± 22 188 ± 3 0.64 HD 144880 F7V 4.38 -0.30 6122 ± 30 362 ± 6 0.69 HD 144988 G1/G2V 3.86 -0.18 5871 ± 19 562 ± 9 0.80 HD 145229 G0 4.37 -0.16 5948 ± 28 410 ± 8 1.32 HD 145435 F5 4.15 0.03 6415 ± 24 699 ±13 1.32 HD 145666 G2V 4.53 -0.04 5968 ± 23 291± 4 1.15 HD 14635 K4-V 4.45 -0.03 4634 ± 17 351 ± 6 4.64 HD 146481 G3Vw... 4.24 -0.44 5646 ± 21 724 ±13 0.47 ± ± 85

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 147044 G0V 4.41 -0.02 5910 18 392 6 4.77 HD 147147 K5V 4.51 -0.17 4723 ± 19 109 ± 2 2.53 HD 147231 G5 4.51 0.00 5569 ± 17 373 ± 5 4.29 HD 14744 K2V 4.45 -0.13 4912 ± 19 171 ± 3 2.79 HD 14745 F8V 4.72 -0.14 6291 ± 31 240 ± 5 2.29 HD 14747 G7VFe-0.9 4.43 -0.39 5608 ± 22 290 ± 5 1.56 HD 148211 F9V 4.21 -0.61 5937 ± 32 338 ± 7 0.45 HD 148303 K2.5V 4.55 -0.03 5065 ± 18 347 ± 6 4.30 HD 148577 G5V 4.29 -0.09 5692 ± 27 310 ± 6 0.74 HD 14868 G1V 4.44 0.02 5942 ± 34 191 ± 5 0.39 HD 149200 F5 4.40 0.13 6650 ± 27 361 ± 7 1.72 HD 149652 F5 4.23 -0.06 6675 ± 28 366 ± 6 2.66 HD 149724 G5 4.27 0.39 6060 ± 25 324 ± 6 8.48 HD 150437 G2V 4.30 0.30 5802 ± 29 307 ± 7 1.07 HD 150474 G8V 4.07 0.03 5391 ± 23 844 ±17 1.70 HD 150698 G2/3V 4.12 0.24 5854 ± 21 837 ± 13 2.14 HD 151504 G9IV-V 4.45 0.07 5454 ± 24 336± 6 2.27 HD 151692 K4Vk: 4.40 -0.07 4517 ± 11 248 ± 3 5.90 HD 151772 F4V 4.81 -0.36 6506 ± 23 348 ± 6 1.93 HD 151877 K7V 4.50 -0.17 5193 ± 16 329 ± 5 2.61 HD 151995 K3.5V 4.72 0.04 4905 ± 13 372 ± 5 8.44 HD 152433 F8V 4.49 -0.10 6127 ± 27 285 ± 5 2.27 HD 152446 F8IV 4.12 -0.07 6226 ± 24 598 ± 9 2.47 HD 152533 K3V 4.36 -0.04 4656 ± 15 185 ± 3 3.82 HD 152555 F8/G0V 4.46 0.05 6265 ± 26 276 ± 5 2.12 HD 153075 G2VFe-0.8CH-0.5 4.33 -0.56 5829 ± 20 683 ±10 2.55 HD 153276 G3V 4.48 0.04 5910 ± 26 204± 4 0.50 HD 15337 K1V 4.39 0.06 5156 ± 23 180 ± 3 4.29 HD 153458 G5V 4.55 0.15 5807 ± 21 275 ± 4 1.62 HD 153627 F8 4.27 -0.35 5961 ± 21 428 ± 7 4.19 HD 155060 F8 4.37 -0.11 6034 ± 20 473 ± 8 2.08 HD 155423 F8 4.22 0.32 6137 ± 21 641 ±11 0.73 HD 155717 K3V 4.48 -0.13 4932 ± 18 109± 2 10.25 HD 155968 G5 4.42 0.20 5790 ± 22 187 ± 3 1.73 HD 156079 G3V 4.24 0.28 5827 ± 21 404 ± 6 2.14 HD 15612 G9V 4.49 -0.11 5324 ± 26 109 ± 2 1.83 HD 156365 G3V 4.04 0.27 5846 ± 17 924 ±13 6.39 HD 156517 K3V 4.45 0.03 4979 ± 24 158± 4 2.12 HD 157466 F8V 4.35 -0.38 6055 ± 24 651 ±11 2.26 HD 157668 K0V 4.49 -0.23 5179 ± 38 94 ± 2 4.64 HD 158783 G4V 4.15 0.04 5667 ± 19 700 ± 12 0.74 HD 15906 K0 4.49 -0.01 5528 ± 37 121± 2 1.54 HD 159063 G0V 4.18 0.22 6266 ± 19 480 ± 7 1.74 HD 16008 G5V 4.44 -0.07 5820 ± 25 156 ± 3 2.52 HD 160836 K3.5Vk: 4.49 -0.16 4812 ± 18 183 ± 4 2.54 HD 161050 F9V 4.09 -0.10 5956 ± 20 529 ± 8 3.35 HD 161098 G5 4.38 -0.27 5641 ± 27 426 ± 9 1.28 HD 161256 G6V 4.27 0.14 5632 ± 21 228 ± 4 4.10 HD 161555 G5 4.08 0.12 5808 ± 24 486 ± 9 1.34 HD 161566 F6V 4.20 -0.28 6189 ± 23 637 ±11 1.50 HD 16270 K3.5Vk: 4.41 0.11 4908 ± 17 611 ± 10 3.35 HD 16275 G5 4.39 0.34 5865 ± 27 136± 2 2.38 HD 16297 G9V 4.47 -0.01 5457 ± 24 262 ± 5 5.16 HD 163102 F5 4.41 -0.02 6304 ± 26 350 ± 6 0.32 HD 163153 G5 4.35 0.49 5857 ± 23 833 ±15 2.01 ± ± 86 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 163436 K3V 4.43 -0.07 4924 18 141 2 3.21 HD 163489 K2 3.13 0.30 5021 ± 15 1139 ± 20 1.42 HD 164595 G2V 4.37 -0.07 5733 ± 22 677 ±10 0.43 HD 16536 G5 4.39 -0.08 6080 ± 34 128± 3 6.46 HD 16623 G2V-VI 4.49 -0.45 5826 ± 28 130 ± 3 1.42 HD 166435 G1IV 4.40 -0.01 5868 ± 21 753 ±11 0.81 HD 16714 G5V 4.42 -0.20 5573 ± 27 253± 5 1.21 HD 167389 F8V: 4.35 0.01 5928 ± 21 436 ± 6 1.49 HD 168769 K0V 4.45 -0.01 5206 ± 25 134 ± 2 1.99 HD 168870 K0V 4.43 -0.32 5409 ± 32 118 ± 3 0.58 HD 168871 G1/G2V 4.37 -0.12 6013 ± 28 969 ±19 0.98 HD 169586 G0V 4.13 0.23 6146 ± 20 652 ± 10 0.42 HD 17037 F5 4.32 0.08 6598 ± 29 438± 7 1.11 HD 170493 K3V 4.51 0.21 4958 ± 20 844 ±15 4.99 HD 170778 G5 4.37 0.00 5913 ± 18 388± 6 0.37 HD 171067 G6V 4.48 -0.03 5641 ± 20 653 ±11 4.45 HD 171665 G4V 4.45 -0.03 5669 ± 26 500± 9 5.28 HD 171825 K2.5Vk: 4.48 -0.12 5108 ± 25 179 ± 4 1.99 HD 17190 K2IV 4.40 -0.11 5250 ± 20 526 ±10 5.65 HD 171942 G5V 4.42 -0.10 5677 ± 28 161± 4 5.56 HD 172513 G8V 4.46 -0.03 5558 ± 21 355 ± 6 5.92 HD 172568 G3V 4.58 -0.37 5757 ± 21 175 ± 3 1.23 HD 173701 G8V 4.47 0.28 5750 ± 16 590 ± 8 5.44 HD 173885 F6V 4.37 -0.20 6210 ± 20 585 ± 8 0.56 HD 174153 F7V 4.49 -0.08 6205 ± 34 308 ± 6 1.17 HD 17439 G5V 4.44 0.08 5742 ± 30 158 ± 4 0.78 HD 174457 F8 4.08 -0.18 5800 ± 18 425 ± 6 2.24 HD 174545 K2IV 4.40 0.22 5185 ± 20 330 ± 6 2.87 HD 174912 F8 4.34 -0.45 5914 ± 20 556 ± 8 3.08 HD 17548 F8 4.35 -0.51 6058 ± 35 199 ± 4 0.19 HD 175518 K0IV-V 4.58 0.31 5514 ± 19 569 ±10 0.16 HD 176535 K3.5Vk: 4.36 -0.15 5250 ± 20 172± 3 19.30 HD 176666 F6V 4.63 -0.37 6138 ± 31 166 ± 3 2.51 HD 176986 K2.5V 4.45 0.00 4980 ± 22 398 ± 9 2.26 HD 177122 G2V 4.52 -0.10 6045 ± 24 187 ± 3 4.53 HD 177409 G1VCH-0.4 4.49 -0.04 5870 ± 17 399 ± 5 2.79 HD 178904 G4IV 4.41 0.09 5772 ± 23 200 ± 4 2.29 HD 179346 F8 4.76 -0.03 6145 ± 29 202 ± 4 2.68 HD 17970 K2V 4.39 -0.45 5083 ± 21 491 ± 9 1.22 HD 18001 G3V 4.44 -0.07 5854 ± 25 160 ± 3 0.82 HD 180684 F8V 4.07 0.05 6121 ± 18 518 ± 7 2.15 HD 18083 G0/G1V 4.70 0.03 6095 ± 28 197 ± 4 2.35 HD 181144 F7V 4.28 -0.14 6127 ± 20 536 ± 8 0.95 HD 181234 G5 4.42 0.41 5950 ± 26 221 ± 4 5.22 HD 181249 K0 4.25 -0.13 5332 ± 28 159 ± 3 1.18 HD 181428 G0IV 4.33 0.05 6071 ± 29 501 ± 9 0.86 HD 18144 G8V 4.48 0.07 5483 ± 25 618 ±13 1.37 HD 181655 G5V 4.54 0.11 5677 ± 18 1428± 18 3.82 HD 1832 F8 4.27 -0.03 6204 ± 24 389 ± 6 1.71 HD 183341 G5 4.32 0.02 5973 ± 26 395 ± 7 3.38 HD 183650 G5 4.24 0.31 5637 ± 19 804 ±12 3.33 HD 18386 G8IV/V 4.39 0.14 5483 ± 21 210± 3 2.75 HD 183870 K2V 4.59 -0.01 4953 ± 22 922 ±19 1.09 HD 184385 G8V 4.49 0.12 5507 ± 13 968 ± 14 3.06 HD 185283 K3V 4.37 -0.06 4752 ± 14 305± 5 5.92 ± ± 87

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 185295 G5 3.83 -0.10 5603 22 274 5 0.49 HD 185615 G6IV/V 4.34 0.08 5588 ± 22 291 ± 5 1.61 HD 185720 G0 4.36 0.24 6317 ± 21 472 ± 7 1.19 HD 186061 K2.5Vk: 4.51 -0.02 4907 ± 17 329 ± 5 1.11 HD 186302 G4V 4.44 -0.03 5727 ± 28 145 ± 3 0.63 HD 18709 G0VFe-0.4 4.42 -0.25 5903 ± 22 443 ± 8 1.70 HD 18719 G5 4.41 -0.08 5847 ± 30 173 ± 3 4.26 HD 187237 G2IV-V 4.45 0.10 5814 ± 21 755 ±12 2.02 HD 187456 K3+V 4.33 0.02 4862 ± 19 550 ± 12 3.15 HD 187760 K5Vk 4.45 -0.32 4516 ± 12 336± 5 7.20 HD 18777 K1/K2V: 4.39 0.01 5325 ± 30 111 ± 2 1.34 HD 187897 G5 4.30 0.09 5929 ± 19 538 ± 8 2.47 HD 18822 K0V 4.43 -0.07 5340 ± 27 115 ± 2 2.93 HD 18838 G6V 4.48 -0.17 5552 ± 24 113 ± 2 0.88 HD 188510 G5V: 4.48 -1.58 5631 ± 22 154 ± 3 0.83 HD 188559 K3+V 4.33 -0.11 4869 ± 16 486 ± 7 5.56 HD 188641 G2V 4.07 -0.08 5796 ± 22 500 ± 9 1.04 HD 188748 G4V 4.43 -0.12 5683 ± 17 269 ± 4 3.43 HD 188815 F5V 4.34 -0.55 6255 ± 31 325 ± 6 1.18 HD 189004 K1V 4.36 -0.07 5150 ± 24 139 ± 3 2.89 HD 189067 G0 4.25 -0.02 5849 ± 17 550 ± 9 0.79 HD 189242 K2+V 4.46 -0.38 4920 ± 20 208 ± 4 2.41 HD 189625 G5V 4.44 0.20 5845 ± 22 480 ± 8 1.15 HD 189987 K5V 4.25 -0.06 4668 ± 19 201 ± 4 12.42 HD 190204 G6V 4.63 -0.02 5640 ± 30 84 ±1 0.49 HD 190228 G5IV 3.81 -0.26 5529 ± 15 820 ± 10 0.83 HD 19034 G5 4.55 -0.49 5569 ± 25 311± 6 0.65 HD 190524 G3V 4.50 -0.13 5887 ± 25 169 ± 3 1.81 HD 190613 G4V 4.33 0.00 5822 ± 20 239 ± 3 2.30 HD 190954 G7V 4.46 -0.41 5458 ± 23 259 ± 5 1.64 HD 191022 G0 4.21 0.09 5765 ± 17 469 ± 8 1.20 HD 191033 F7V 4.47 -0.19 6247 ± 29 307 ± 5 2.19 HD 191285 K3/4V 4.41 -0.28 4884 ± 18 227 ± 4 5.65 HD 191797 K0V 4.50 -0.06 5001 ± 23 150 ± 3 0.52 HD 191847 K1/K2V 4.45 -0.12 5100 ± 23 134 ± 3 1.65 HD 191902 K2/K3V 4.25 -0.18 5046 ± 18 147 ± 2 2.08 HD 192117 G8IV-V 4.48 -0.04 5571 ± 19 229 ± 3 7.84 HD 192961 K5.5V 4.31 -0.35 4358 ± 13 710 ±11 16.08 HD 193017 F6V 4.32 0.03 6551 ± 26 385± 6 3.15 HD 193193 G2V 4.36 -0.07 5983 ± 21 498 ± 8 1.84 HD 193307 F9V 4.20 -0.30 6075 ± 21 1089 ± 16 3.10 HD 193406 K4Vk: 4.50 -0.34 4557 ± 28 146 ± 3 3.72 HD 193795 G4IV 4.36 0.19 5840 ± 22 165 ± 3 2.21 HD 193844 K2V 4.44 -0.30 4980 ± 29 188 ± 5 1.35 HD 194035 G5 4.24 0.27 5612 ± 20 700 ±11 2.54 HD 19423 G2V 4.23 -0.09 5783 ± 22 307± 5 0.88 HD 19467 G3V 4.38 -0.15 5724 ± 31 734 ±15 0.21 HD 194717 G8V 4.26 -0.28 5375 ± 18 145± 2 2.19 HD 195104 F8 4.32 -0.17 6261 ± 27 460 ± 9 2.73 HD 195145 G5V 4.41 0.17 5992 ± 25 154 ± 3 7.37 HD 195200 F8 4.33 -0.16 6192 ± 31 289 ± 6 0.57 HD 19632 G5V 4.42 0.05 5746 ± 23 541 ±10 5.44 HD 196384 F5V 4.79 -0.13 6574 ± 30 274± 5 1.36 HD 196390 G1.5V 4.46 0.06 5915 ± 27 461 ± 9 2.18 HD 196397 G9V 4.41 0.34 5395 ± 27 158 ± 3 0.94 ± ± 88 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 19641 G2V 4.39 -0.01 5803 22 219 4 1.12 HD 196800 G1/G2V 4.32 0.13 5955 ± 28 490 ± 8 1.63 HD 197210 G0 4.42 -0.03 6030 ± 20 444 ± 8 2.94 HD 197300 G3V 4.69 0.02 5940 ± 24 135 ± 2 1.05 HD 197823 K0IV-V 4.41 0.12 5387 ± 21 301 ± 5 1.55 HD 197921 K3V 4.42 0.18 4856 ± 19 222 ± 3 1.70 HD 198075 G0.5V 4.56 -0.24 5851 ± 24 259 ± 4 0.16 HD 198089 F8 4.33 -0.28 5854 ± 23 447 ± 7 0.50 HD 199086 G0 4.65 0.18 6102 ± 24 254 ± 4 2.62 HD 199289 F5V 4.36 -1.01 6378 ± 36 180 ± 4 0.45 HD 199509 G1V 4.62 -0.30 5788 ± 19 705 ±10 1.76 HD 199868 F7V 4.45 -0.13 6161 ± 27 293± 6 0.78 HD 199933 K3.5Vk: 4.32 -0.15 5167 ± 26 244 ± 4 5.51 HD 200083 K3.5V 4.42 -0.09 4962 ± 23 187 ± 4 6.32 HD 200143 G8V 4.46 0.02 5867 ± 45 97 ±2 2.98 HD 20029 F7V 4.28 0.12 6174 ± 24 483± 9 1.85 HD 200349 K3+Vk: 4.50 -0.26 4696 ± 19 227 ± 5 2.03 HD 200505 K2Vk: 4.47 -0.45 5067 ± 17 330 ± 6 2.72 HD 200538 G0V 4.36 0.11 5995 ± 28 296 ± 6 0.70 HD 200565 G5 4.37 -0.06 5735 ± 26 198 ± 4 0.20 HD 200633 G5 4.51 0.05 5840 ± 22 191 ± 3 2.41 HD 201161 K0 4.36 -0.04 5489 ± 44 132 ± 3 1.64 HD 201203 F9V 4.29 0.27 6394 ± 29 191 ± 3 1.87 HD 201219 G5 4.57 0.15 5695 ± 23 293 ± 5 6.64 HD 2014 K2V 4.37 -0.07 5028 ± 18 130 ± 2 1.79 HD 201422 G5V 4.57 -0.16 5847 ± 21 161 ± 2 5.69 HD 201496 G1V 4.44 -0.04 5962 ± 28 230 ± 4 1.34 HD 20201 F9.5V 4.37 0.10 6019 ± 22 443 ± 7 1.26 HD 202108 G3V 4.36 -0.21 5746 ± 18 528 ± 7 2.62 HD 202389 K2/K3V: 4.43 -0.25 5164 ± 37 144 ± 3 1.16 HD 202575 K3V 4.68 -0.01 4854 ± 13 899 ±13 7.28 HD 202819 K4+Vk: 4.40 -0.26 4461 ± 19 211± 5 5.69 HD 202871 G0V 4.54 -0.09 6067 ± 23 183 ± 3 3.30 HD 203335 F8V 4.56 -0.04 6251 ± 20 317 ± 5 4.61 HD 203384 K0 4.35 0.26 5553 ± 18 323 ± 5 3.36 HD 203413 K3Vk: 4.39 0.01 4892 ± 14 417 ± 6 7.08 HD 203432 G8IV 4.39 0.29 5615 ± 23 448 ± 9 4.45 HD 203771 K1V 4.43 0.13 5241 ± 24 106 ± 2 1.13 HD 203897 K1V 4.42 -0.18 5206 ± 36 113 ± 3 3.06 HD 20407 G5VFe-1.2CH-1 4.39 -0.50 5924 ± 28 798 ±12 1.94 HD 204277 F8V 4.37 -0.02 6246 ± 28 640 ± 11 1.26 HD 204287 G3V 4.15 -0.04 5755 ± 22 528 ± 10 1.01 HD 204385 G0VCH-0.3 4.33 0.03 6036 ± 18 488± 7 3.64 HD 20492 K3.5V 4.30 0.02 4848 ± 16 196 ± 3 3.96 HD 205294 F5V 4.13 -0.30 6298 ± 21 546 ± 9 1.01 HD 205536 G9V 4.45 -0.05 5449 ± 20 863 ±16 3.17 HD 205591 F5V 4.75 -0.08 6478 ± 25 356± 6 2.99 HD 206116 F8 4.57 0.24 6473 ± 33 290 ± 6 3.17 HD 206163 G8IV-V 4.43 0.01 5556 ± 20 243 ± 4 5.99 HD 206172 DA: 4.49 -0.24 5684 ± 28 182 ± 3 1.39 HD 20619 G2V 4.41 -0.25 5766 ± 25 681 ±12 1.50 HD 206332 G0V 4.33 0.27 5999 ± 23 399± 6 2.63 HD 206374 G6.5V 4.49 -0.07 5574 ± 18 544 ± 8 2.82 HD 206395 F8.5IV-V 4.25 0.24 6281 ± 22 635 ± 9 3.34 HD 206630 K3V 4.48 -0.41 4791 ± 21 142 ± 3 1.00 ± ± 89

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 207190 F6V 4.33 -0.42 6217 37 281 7 1.09 HD 207583 G7V 4.46 0.01 5508 ± 20 266 ± 5 1.56 HD 207699 K3V 4.36 -0.12 4903 ± 21 198 ± 3 2.31 HD 207874 K2 4.50 0.11 5163 ± 21 406 ± 9 2.94 HD 207970 G7V 4.38 0.07 5586 ± 22 382 ± 7 2.75 HD 208068 G1/G2V 4.64 -0.38 6019 ± 24 143 ± 2 5.41 HD 208272 G9.5Vk: 4.42 -0.08 5469 ± 21 293 ± 5 3.18 HD 20852 F2V 4.76 -0.35 6704 ± 29 405 ± 7 0.49 HD 208573 K2V 4.41 0.00 5278 ± 20 248 ± 4 3.82 HD 208672 G5 4.61 0.13 5906 ± 24 184 ± 3 1.01 HD 208704 G1V 4.38 -0.09 5863 ± 27 561 ±10 0.14 HD 208776 G0V 4.00 -0.05 5927 ± 26 651 ± 12 2.99 HD 208998 G0V 4.21 -0.36 5945 ± 26 551 ± 10 1.29 HD 209253 F6.5V 4.30 -0.10 6300 ± 22 665 ± 11 0.98 HD 209566 G8V 4.38 0.12 5560 ± 25 198± 4 4.59 HD 209653 G0V 4.24 -0.13 5976 ± 22 604 ±10 4.49 HD 209742 K2V 4.49 -0.16 5147 ± 22 334± 6 1.43 HD 209875 F8 4.11 -0.11 6155 ± 24 414 ± 6 1.73 HD 210272 G3V 4.13 -0.22 5660 ± 26 632 ±11 0.50 HD 210312 G5 4.47 0.28 5738 ± 26 159± 3 3.57 HD 210320 G6V 4.31 0.11 5626 ± 24 175 ± 4 3.60 HD 210329 K0V 4.40 -0.18 5430 ± 25 134 ± 2 5.05 HD 210507 K3V 4.42 0.07 4979 ± 27 133 ± 3 4.06 HD 210573 K3V 4.48 -0.07 4743 ± 20 160 ± 3 6.12 HD 210667 G9V 4.53 0.17 5326 ± 15 803 ±11 3.62 HD 210752 G0 4.44 -0.59 6124 ± 34 383± 8 0.64 HD 210975 K4.5V 4.37 -0.43 4550 ± 15 249 ± 5 3.69 HD 211080 G0 4.19 0.39 6316 ± 29 311 ± 6 4.65 HD 211188 K2V 4.41 -0.12 4993 ± 25 128 ± 3 1.08 HD 21132 F5/F6V 4.60 -0.37 6283 ± 29 223 ± 4 1.23 HD 211369 K2.5Vk: 4.44 0.04 5118 ± 16 423 ± 6 3.35 HD 211583 K4Vk: 4.39 0.05 4533 ± 13 176 ± 3 8.98 HD 211681 G5 4.32 0.45 5986 ± 26 248 ± 4 4.14 HD 212036 G5V 4.41 -0.01 5766 ± 20 180 ± 3 3.78 HD 212231 G2V 4.18 -0.30 5801 ± 26 314 ± 6 0.85 HD 212291 G5 4.56 -0.12 5640 ± 24 336 ± 7 1.92 HD 21251 K2V 4.41 -0.09 5142 ± 20 152 ± 3 2.69 HD 212563 K2V 4.52 -0.02 5010 ± 16 146 ± 2 1.83 HD 212580 K1Vk: 4.44 -0.11 5164 ± 20 236 ± 5 5.38 HD 212708 G6IV 4.31 0.25 5599 ± 23 514 ± 8 1.78 HD 212801 G6V 3.98 0.12 5729 ± 25 557 ±10 2.72 HD 212918 K2V: 4.48 -0.21 5043 ± 19 115± 2 1.33 HD 21313 G0 4.30 0.19 6035 ± 22 193 ± 3 1.87 HD 213519 G5 4.44 0.00 5785 ± 15 370 ± 5 3.16 HD 213575 G2V 4.22 -0.07 5686 ± 23 789 ±13 1.87 HD 213628 G8V 4.49 0.02 5591 ± 27 387± 8 1.17 HD 213852 K2V 4.24 0.15 5336 ± 27 155 ± 3 3.80 HD 213941 G8VFe-1.3 4.41 -0.46 5582 ± 28 488 ±10 0.58 HD 214094 F8V 4.28 -0.01 6200 ± 31 629 ± 11 0.60 HD 214385 G8VFe-1.2 4.43 -0.34 5750 ± 24 324± 5 1.53 HD 214557 F8 4.08 -0.02 6088 ± 20 526 ± 7 4.37 HD 214759 K0IV-V 4.36 0.18 5475 ± 23 621 ±10 3.47 HD 214867 G3V 4.66 0.01 5779 ± 26 114± 2 0.33 HD 214954 G4IV/V 4.48 0.14 5790 ± 24 214 ± 4 4.45 HD 214998 K2 4.37 0.06 5227 ± 36 170 ± 3 0.94 ± ± 90 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 215625 G0V 4.58 0.10 6262 28 209 4 1.97 HD 215722 K4Vk: 4.40 -0.10 4898 ± 20 149 ± 3 18.80 HD 215902 G8V 4.46 -0.25 5537 ± 25 119 ± 2 2.87 HD 215906 F6/F7V 4.56 -0.28 6305 ± 22 240 ± 4 2.31 HD 216008 G2/G3V 4.38 -0.04 5826 ± 24 220 ± 4 2.64 HD 216215 K0V 4.45 -0.20 5250 ± 29 83 ±2 1.74 HD 216275 G0 4.38 -0.16 5988 ± 20 488± 7 3.81 HD 216625 F8 4.33 0.05 6240 ± 24 487 ± 7 1.14 HD 217165 G0 4.39 0.01 5934 ± 20 335 ± 6 1.35 HD 217221 K0V 4.45 0.01 5422 ± 31 134 ± 3 1.85 HD 217395 G2V 4.52 -0.13 5975 ± 30 191 ± 4 0.36 HD 21759 K0 4.49 -0.61 5167 ± 31 101 ± 2 0.09 HD 217618 K0 4.30 0.35 5689 ± 27 377 ± 8 2.54 HD 21774 G5 4.36 0.26 5625 ± 24 271 ± 6 0.60 HD 217958 G3V 4.27 0.23 5792 ± 22 258 ± 4 1.73 HD 218133 G0 4.23 -0.07 5963 ± 17 547 ± 7 5.05 HD 218168 G5 4.39 -0.01 5975 ± 24 216 ± 3 4.79 HD 218235 F6Vs 4.42 0.24 6619 ± 25 835 ±12 1.24 HD 218249 K0 4.52 -0.40 5162 ± 23 173± 3 0.57 HD 218261 F6V 4.45 0.12 6452 ± 24 799 ±11 3.04 HD 218340 G3V 4.42 0.09 5905 ± 28 166± 3 2.27 HD 218730 G0V 4.35 0.10 6000 ± 27 432 ± 7 1.52 HD 218750 K1V 4.40 0.13 5116 ± 23 159 ± 3 3.15 HD 218885 G5V 4.46 -0.28 5901 ± 31 111 ± 2 0.26 HD 219172 F8V 4.30 0.12 6188 ± 18 357 ± 5 3.23 HD 219249 G7V 4.50 -0.40 5551 ± 22 350 ± 5 1.03 HD 21938 G0V 4.38 -0.47 5859 ± 28 349 ± 6 0.66 HD 219420 F5 4.33 -0.04 6529 ± 29 605 ±12 0.33 HD 219538 K2V 4.47 -0.03 5039 ± 17 516 ± 10 1.66 HD 21977 G0 4.45 0.10 5869 ± 24 216± 4 0.63 HD 220256 K0 4.41 -0.10 5150 ± 20 295 ± 5 1.82 HD 220367 G0V 4.37 -0.21 6130 ± 24 598 ±11 2.08 HD 220456 G2V 4.50 -0.02 5818 ± 25 168± 3 0.50 HD 220507 G5V 4.29 -0.02 5693 ± 25 435 ± 8 3.18 HD 220894 F7V 4.60 0.02 6212 ± 28 314 ± 5 1.02 HD 22104 G3V 4.16 0.25 5843 ± 20 191 ± 3 4.15 HD 221343 G2V 4.54 0.11 5828 ± 23 191 ± 3 2.31 HD 221638 F6V 4.53 -0.21 6328 ± 21 285 ± 4 0.65 HD 22177 G4V 4.26 0.20 5852 ± 23 371 ± 6 2.61 HD 221974 K1V 4.45 0.38 5183 ± 29 140 ± 2 0.78 HD 222033 G0V 4.26 0.19 5947 ± 29 506 ±11 1.77 HD 222335 G9.5V 4.53 -0.16 5281 ± 20 910 ± 16 1.03 HD 222422 G5V 4.48 -0.13 5786 ± 23 493± 9 3.69 HD 222480 G5IV 4.22 0.20 5818 ± 20 600 ±10 0.64 HD 222595 G5V 4.46 0.01 5607 ± 18 319± 5 3.91 HD 222669 G1V 4.46 0.05 5895 ± 20 332 ± 6 1.32 HD 222697 G5 4.41 0.16 6000 ± 39 181 ± 4 3.07 HD 222721 G6V 4.43 -0.31 5381 ± 26 152 ± 3 0.25 HD 22282 G5 4.41 0.14 5846 ± 28 214 ± 4 1.89 HD 223084 F9V 4.33 -0.13 5957 ± 31 495 ±11 1.10 HD 223121 K1V 4.34 0.05 5566 ± 27 150± 2 6.82 HD 223171 G2V 4.15 0.10 5814 ± 23 745 ±11 1.41 HD 223238 G2V 4.39 0.02 5855 ± 25 343± 7 1.79 HD 223282 G8.5V 4.49 -0.41 5446 ± 33 210 ± 5 1.46 HD 223691 G5V 4.08 -0.17 5504 ± 19 409 ± 7 0.54 ± ± 91

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 224047 K0V 4.43 -0.23 5255 21 118 2 2.62 HD 224063 G5 4.27 0.14 5593 ± 28 224 ± 5 73.95 HD 224156 G5 4.58 -0.03 5776 ± 22 450 ± 8 3.39 HD 224230 K3V: 4.53 -0.09 4871 ± 30 113 ± 3 0.67 HD 224287 G8V 4.38 -0.29 5708 ± 32 110 ± 2 4.39 HD 224393 G5VFe-0.9 4.54 -0.38 5824 ± 23 225 ± 4 2.01 HD 224432 K0 4.38 -0.06 5348 ± 45 110 ± 3 0.38 HD 224433 G8V 4.42 0.09 5565 ± 21 152 ± 3 3.06 HD 224578 G1V 4.67 -0.01 6115 ± 30 205 ± 4 0.68 HD 224789 K1V 4.44 -0.03 5178 ± 19 382 ± 7 4.64 HD 225261 G9V 4.34 -0.26 5334 ± 18 493 ± 8 1.52 HD 225297 G0V 4.55 -0.09 6125 ± 31 272 ± 5 1.71 HD 22610 K2V 4.44 -0.22 5045 ± 19 148 ± 3 2.38 HD 22897 K2V 4.44 -0.25 5014 ± 18 193 ± 4 1.11 HD 23030 G0 4.37 0.20 6123 ± 28 233 ± 5 2.77 HD 233641 G0 4.09 -0.08 6133 ± 27 69 ±1 0.44 HD 23472 K3.5V 4.38 -0.19 4904 ± 28 169± 3 2.07 HD 23901 G0 3.93 -0.40 5983 ± 27 559 ±10 5.58 HD 24112 F8V 4.29 0.15 6133 ± 26 419± 7 2.00 HD 24213 G0 4.23 0.09 6055 ± 19 691 ±11 0.83 HD 24238 K2V 4.40 -0.50 5004 ± 14 680 ± 11 1.31 HD 24341 G1V 3.83 -0.61 5841 ± 19 387± 5 3.41 HD 24365 G8V 3.70 -0.21 5433 ± 19 550 ± 9 0.92 HD 24558 G8V 4.40 -0.47 5389 ± 25 94 ±1 0.53 HD 24727 F5 4.10 -0.11 6651 ± 24 430± 7 5.42 HD 24892 K0VFe-1.2CH-0.9 4.06 -0.30 5358 ± 15 1125 ± 17 2.70 HD 25105 K0.5V 4.47 -0.15 5362 ± 18 251 ± 4 3.61 HD 25120 K1Vk: 4.47 -0.18 5153 ± 19 240 ± 4 3.41 HD 25357 K2/K3V 4.72 -0.03 5000 ± 21 137 ± 2 1.37 HD 25565 K0V 4.47 0.03 5449 ± 34 150 ± 4 2.14 HD 25587 F8V 4.38 -0.09 6131 ± 31 371 ± 7 1.30 HD 25665 K2.5V 4.56 -0.03 5111 ± 15 837 ±14 8.60 HD 2567 G0 4.44 0.22 6011 ± 21 282± 4 3.50 HD 25673 K0 4.52 -0.55 5106 ± 32 126 ± 3 4.71 HD 25682 G8 4.53 0.09 5412 ± 23 276 ± 6 1.85 HD 25790 G5 3.94 0.15 5750 ± 17 859 ±14 3.79 HD 25825 G0V 4.43 0.09 6051 ± 23 267± 5 5.18 HD 2587 G6V 4.36 0.26 5614 ± 22 207 ± 4 1.79 HD 25912 G4V 4.52 0.12 5851 ± 26 217 ± 4 3.02 HD 25918 G5 4.52 -0.05 5773 ± 20 428 ± 7 3.25 HD 26430 K2/K3V: 4.37 -0.26 5149 ± 31 112 ± 2 1.19 HD 26729 G5IV 4.17 0.31 5844 ± 25 510 ±10 2.15 HD 26754 F7/F8V 4.33 -0.36 6061 ± 20 495± 8 1.88 HD 26794 K3V 4.62 0.09 4858 ± 13 328 ± 5 4.13 HD 26887 F8 4.46 -0.35 6096 ± 29 146 ± 3 1.22 HD 26990 G0V: 4.37 -0.09 5668 ± 24 484 ± 9 1.22 HD 27063 G0 4.45 0.06 5799 ± 25 255 ± 4 0.96 HD 27471 G2/G3V 4.25 0.11 5861 ± 25 395 ± 6 0.86 HD 2768 G5/G6V 4.40 -0.03 5545 ± 21 126 ± 2 1.12 HD 28187 G3IV/V 4.56 -0.42 5847 ± 23 324 ± 5 3.61 HD 283 G9.5V 4.54 -0.55 5192 ± 22 251 ± 4 2.64 HD 28344 G2V 4.45 0.11 5943 ± 23 282 ± 5 2.97 HD 28676 F5 4.28 0.07 6755 ± 19 546 ± 7 6.14 HD 28701 G2V 4.41 -0.32 5770 ± 22 322 ± 4 2.62 ± ± 92 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 28807 F6V 4.67 0.06 6444 23 371 6 1.28 HD 28821 G3V 4.33 -0.11 5698 ± 25 425 ± 8 2.63 HD 28969 F8 4.68 -0.01 6241 ± 33 181 ± 4 0.57 HD 29137 G5V 4.28 0.30 5729 ± 29 380 ± 7 0.57 HD 29150 G5 4.37 -0.03 5740 ± 27 424 ± 8 5.03 HD 29263 G3V 4.35 0.03 5813 ± 29 226 ± 5 0.56 HD 29303 G2V 4.52 -0.12 5862 ± 32 149 ± 4 2.78 HD 29428 G4V 4.48 -0.06 5767 ± 22 111 ± 2 2.47 HD 29461 G5 4.52 0.25 5861 ± 22 271 ± 5 1.20 HD 29883 K5V 4.60 -0.16 4933 ± 15 628 ± 9 4.25 HD 29985 K6V 4.39 -0.22 4262 ± 11 257 ± 4 4.53 HD 30053 F7/F8V 4.51 -0.22 6191 ± 26 181 ± 3 1.76 HD 30295 K0/K1V 4.31 0.25 5458 ± 24 168 ± 3 1.05 HD 30306 G9V 4.33 0.22 5564 ± 22 412 ± 8 1.97 HD 30339 F8 4.37 0.26 6302 ± 26 180 ± 3 0.88 HD 30523 K5Vk 4.57 -0.16 4617 ± 16 325 ± 6 11.26 HD 30708 G5 4.36 0.19 5692 ± 15 899 ±12 2.27 HD 30736 F7V 3.92 0.36 6196 ± 22 659± 9 2.00 HD 3079 F8 4.22 -0.15 6084 ± 20 386 ± 5 2.49 HD 30858 K0/K1V 4.45 -0.13 5553 ± 24 114 ± 2 6.32 HD 31103 G1V 4.49 0.09 6025 ± 26 212 ± 4 0.57 HD 31560 K3.5Vk: 4.61 0.04 4864 ± 17 800 ±14 3.39 HD 31822 G0 4.57 -0.19 6112 ± 26 231± 4 2.44 HD 31827 G8IV 4.19 0.36 5667 ± 20 235 ± 4 9.48 HD 31966 G5V 4.23 0.13 5716 ± 19 921 ±14 1.57 HD 3220 G3V 4.51 -0.22 5943 ± 27 122± 2 1.47 HD 32724 G0 4.26 -0.17 5826 ± 23 563 ±10 2.41 HD 3277 G8V 4.49 -0.09 5430 ± 20 631 ± 10 1.60 HD 32804 G3V 4.53 0.06 5931 ± 28 176± 4 7.48 HD 32963 G5IV 4.43 0.08 5794 ± 17 400 ± 5 0.85 HD 33636 G0VCH-0.3 4.54 -0.09 5912 ± 22 600 ± 9 0.38 HD 33811 G8IV/V 4.26 0.25 5581 ± 26 166 ± 4 1.96 HD 33822 G5V 4.29 0.26 5755 ± 26 254 ± 6 1.94 HD 34449 G3V 4.50 -0.09 5847 ± 25 232 ± 4 2.24 HD 34688 K0V 4.44 -0.20 5243 ± 27 169 ± 3 2.06 HD 34745 F8V 4.29 -0.10 6197 ± 29 512 ±10 1.96 HD 35627 F8 4.24 0.03 6123 ± 30 335± 7 1.95 HD 3569 K0V 4.54 -0.32 5177 ± 29 161 ± 4 1.48 HD 35854 K3V 4.55 -0.07 4863 ± 17 894 ±16 1.84 HD 358564 K0 4.51 -0.14 5870 ± 26 161± 3 24.61 HD 35974 G1V 3.99 -0.16 5923 ± 21 522 ± 9 1.32 HD 361 G1V 4.60 -0.12 5883 ± 25 619 ±13 2.94 HD 36108 F9V 4.32 -0.22 5938 ± 23 757 ± 14 2.12 HD 36379 G0 4.30 -0.17 6124 ± 30 580 ± 10 1.51 HD 3674 F8 4.28 0.09 6223 ± 28 334± 6 0.38 HD 36889 G4V 4.09 0.16 5797 ± 21 478 ± 8 2.94 HD 37006 G0 4.58 0.02 6140 ± 26 267 ± 4 2.81 HD 37213 G5V 4.04 -0.44 5485 ± 24 296 ± 5 2.55 HD 37216 G5V 4.60 -0.07 5732 ± 27 436 ± 8 2.44 HD 37548 G3V 4.26 -0.04 5931 ± 27 359 ± 7 1.21 HD 37588 F5 4.07 -0.17 6318 ± 22 337 ± 5 2.01 HD 3770 F8 4.10 -0.01 6050 ± 25 379 ± 7 0.32 HD 37962 G2V 4.45 -0.22 5759 ± 25 326 ± 6 0.87 HD 37986 G8+VCN+1 4.39 0.30 5509 ± 20 613 ± 9 1.54 HD 37990 F7/F8V 4.56 0.00 6194 ± 25 234 ± 4 4.42 ± ± 93

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 38078 G6V 4.47 -0.29 5724 30 117 2 2.05 HD 3808 G5V 4.46 -0.17 5636 ± 30 151 ± 3 1.29 HD 38110 G5 4.24 0.17 5810 ± 26 226 ± 5 1.15 HD 38265 G9V+... 4.43 -0.14 5595 ± 22 172 ± 3 1.82 HD 38277 G1V 4.34 -0.07 5830 ± 19 601 ±10 0.81 HD 38355 K0V 4.35 0.09 5270 ± 24 172± 4 1.88 HD 3861 F8V 4.26 0.08 6300 ± 24 731 ±12 0.08 HD 38772 F7V 4.37 -0.23 6089 ± 28 339± 6 1.35 HD 38949 G1V 4.55 -0.05 6053 ± 22 268 ± 5 1.64 HD 38973 G0V 4.37 0.00 6012 ± 19 807 ±13 3.89 HD 39213 K0V 4.25 0.34 5484 ± 23 147± 3 9.56 HD 39427 G6V 4.52 -0.18 5718 ± 29 153 ± 3 2.66 HD 3964 G5 4.50 0.05 5750 ± 21 198 ± 3 3.56 HD 40483 F6V 4.39 -0.06 6271 ± 30 668 ±12 1.31 HD 40503 K3V 4.29 -0.03 4976 ± 21 193± 4 6.66 HD 41087 G6V 4.52 -0.13 5593 ± 21 126 ± 2 1.90 HD 41248 G2V 4.49 -0.37 5788 ± 23 134 ± 2 1.19 HD 42505 K4Vk: 4.40 -0.22 4504 ± 12 302 ± 5 9.45 HD 42618 G4V 4.47 -0.11 5806 ± 20 784 ±12 3.41 HD 42902 G2/G3V 4.23 0.22 5961 ± 27 104± 2 1.30 HD 43947 F8V 4.34 -0.27 6043 ± 17 818 ±11 1.98 HD 4457 K2V 4.53 -0.37 4791 ± 17 151± 3 0.92 HD 44573 K2.5Vk: 4.48 -0.07 5015 ± 15 376 ± 5 4.90 HD 44804 K0IV/V 4.48 0.03 5314 ± 23 131 ± 2 2.98 HD 44821 K0/K1V+... 4.53 0.11 5774 ± 21 498 ± 8 2.18 HD 44985 F8 4.29 -0.09 6080 ± 27 547 ±11 2.02 HD 45391 G1V 4.48 -0.44 5755 ± 13 631± 7 2.22 HD 457 G0V 4.43 0.34 5997 ± 22 291 ± 5 2.24 HD 4597 F7/F8V 4.37 -0.39 6058 ± 29 262 ± 5 1.25 HD 45977 K4+Vk: 4.30 0.03 4536 ± 12 384 ± 6 10.92 HD 48115 G0V 4.48 -0.19 5853 ± 27 127 ± 2 0.70 HD 4838 K4.5Vk: 4.63 -0.21 4563 ± 14 301 ± 5 6.74 HD 48611 G9.5V 4.51 -0.36 5398 ± 30 206 ± 5 2.02 HD 48938 G0VFe-0.8CH-0.5 4.34 -0.40 6079 ± 23 944 ±15 3.95 HD 4903 F8 4.15 -0.03 6120 ± 23 412± 6 1.86 HD 49035 G5/G6IV/V 4.35 0.24 5883 ± 24 181 ± 3 3.68 HD 4915 G6V 4.54 -0.22 5699 ± 30 766 ±16 1.23 HD 49736 F8 4.34 -0.07 6264 ± 18 581± 8 4.17 HD 50590 K3V 4.39 -0.22 4767 ± 15 301 ± 5 2.20 HD 50639 F8.5V 4.29 -0.02 6138 ± 29 505 ±10 2.43 HD 5065 G0 4.08 -0.14 5946 ± 20 756 ± 12 0.38 HD 51419 G5VFe-1 4.25 -0.38 5711 ± 18 793 ± 13 2.58 HD 52449 F8V+... 4.55 0.12 6338 ± 34 254± 5 0.21 HD 52456 K2V 4.37 0.01 5179 ± 20 419 ± 8 3.58 HD 52919 K4V 4.31 -0.11 4607 ± 13 686 ±10 4.90 HD 5349 K0IV 3.88 0.43 5640 ± 22 546± 9 9.47 HD 5372 G5 4.40 0.21 5884 ± 16 387 ± 5 3.77 HD 5388 F6V 4.24 -0.28 6274 ± 21 628 ±10 2.68 HD 5470 G0 4.32 0.24 5944 ± 33 176± 4 1.95 HD 5562 G8IV 4.15 0.22 5707 ± 25 811 ±16 4.57 HD 55693 G1.5V 4.40 0.28 6180 ± 29 519 ± 10 3.53 HD 56124 G0 4.42 -0.01 5847 ± 16 693 ± 10 3.59 HD 56303 G0 4.24 0.13 5918 ± 22 452± 8 2.10 HD 56380 G8V 4.35 -0.42 5301 ± 25 144 ± 3 1.45 HD 56560 G6IV/V 4.24 0.05 5524 ± 16 632 ±10 4.04 ± ± 94 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 57568 K3V 4.51 -0.47 4723 20 159 3 3.53 HD 58489 K3.5V 4.33 0.10 5129 ± 21 158 ± 3 10.18 HD 58781 G5 4.45 0.10 5559 ± 15 667 ±10 1.44 HD 59711 G2V 4.48 -0.11 5766 ± 17 367± 6 1.32 HD 59747 G5V 4.47 -0.08 5755 ± 20 658 ±10 2.16 HD 60491 K2V 4.55 -0.13 5071 ± 14 470± 7 5.37 HD 61051 G8V 4.37 -0.10 5410 ± 22 161 ± 3 4.17 HD 61383 G0 4.07 -0.51 5741 ± 29 436 ± 8 0.76 HD 61447 G5IV/V 4.37 0.17 5896 ± 22 208 ± 3 5.19 HD 61686 G3V 4.44 0.30 5862 ± 25 156 ± 3 3.88 HD 62128 G5 4.22 0.33 5795 ± 21 416 ± 7 2.88 HD 62364 F7V 4.47 -0.11 6223 ± 33 377 ± 8 2.34 HD 62847 G8V 4.48 -0.25 5765 ± 28 96 ±2 5.02 HD 63433 G5IV 4.46 -0.01 5657 ± 21 838 ± 13 2.20 HD 6348 G5 4.51 -0.56 5553 ± 23 164± 3 0.50 HD 63685 G8IV 4.05 0.00 5465 ± 26 633 ±12 1.78 HD 64640 K1V 4.31 0.18 5149 ± 24 160± 3 1.05 HD 65562 K2+V 4.39 -0.10 5022 ± 18 272 ± 5 2.01 HD 6558 F8 4.26 0.26 6465 ± 27 168 ± 3 5.14 HD 66039 G2V 4.52 0.17 6096 ± 25 279 ± 5 3.59 HD 66040 K0V 4.34 0.35 5232 ± 25 150 ± 3 1.81 HD 66168 F8V 4.69 -0.03 6152 ± 32 222 ± 5 1.54 HD 66221 G6V 4.40 0.19 5833 ± 24 292 ± 5 5.10 HD 66340 G8IV 4.36 0.03 5561 ± 28 132 ± 3 1.22 HD 66740 F5V 4.49 0.04 6584 ± 26 330 ± 6 1.93 HD 67 G5V 4.56 0.03 5750 ± 21 136 ± 2 1.29 HD 67199 K2Vk: 4.54 0.05 5130 ± 16 1079 ± 17 3.71 HD 6735 F9V 4.47 -0.07 6115 ± 19 533 ± 7 2.72 HD 67556 F8V 4.32 0.26 6262 ± 17 360 ± 5 2.25 HD 68168 G0 4.37 0.12 6750 ± 24 463 ± 6 39.35 HD 68287 G0 4.63 0.06 6236 ± 29 217 ± 4 1.64 HD 68607 K2V 4.41 0.07 5190 ± 25 222 ± 4 1.25 HD 69655 G1V 4.44 -0.20 6023 ± 27 821 ±14 3.43 HD 69809 G0 4.30 0.27 6203 ± 25 281± 4 2.49 HD 70843 F5 4.17 0.16 6576 ± 19 422 ± 6 0.98 HD 70889 F9.5V 4.45 0.10 6027 ± 20 521 ± 9 2.59 HD 70903 K0 4.52 -0.43 5127 ± 28 137 ± 2 0.84 HD 71148 G1V 4.36 -0.01 5870 ± 21 1220 ± 19 2.92 HD 71334 G2.5V 4.43 -0.08 5704 ± 30 348 ± 7 0.70 HD 7134 G1V 4.41 -0.29 6000 ± 26 384 ± 6 1.75 HD 71479 G0 4.40 0.23 5993 ± 25 490 ± 8 2.62 HD 71835 G9V+ 4.39 -0.04 5489 ± 24 251 ± 5 3.63 HD 72234 G3IV/V 3.89 -0.12 5721 ± 26 625 ±12 1.21 HD 7228 F5 4.08 -0.13 6463 ± 30 343± 6 1.08 HD 72528 F7V 4.22 0.02 6211 ± 27 370 ± 6 0.48 HD 72579 K0V 4.27 0.20 5511 ± 20 287 ± 4 2.51 HD 72760 G5V 4.46 0.02 5821 ± 22 732 ±13 5.71 HD 72769 G8IV-V 4.25 0.25 5600 ± 24 656 ± 12 0.85 HD 72780 F8 4.37 0.15 6273 ± 23 311± 5 2.76 HD 73344 F8 4.20 0.13 6107 ± 17 590 ± 8 2.32 HD 73524 G0Vp 4.40 0.12 5987 ± 33 890 ±18 1.66 HD 73583 K4+Vk: 4.50 -0.21 4816 ± 18 230± 5 16.25 HD 74014 K0 4.38 0.24 5591 ± 22 473 ± 9 2.49 HD 74698 G5V 4.27 0.07 5807 ± 23 334 ± 6 2.39 HD 74868 F9+V 4.27 0.30 6237 ± 25 720 ±11 1.38 ± ± 95

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 74957 G2V 4.54 -0.18 5905 29 230 4 1.10 HD 750 K1V 4.39 -0.29 5044 ± 18 205 ± 4 3.81 HD 75302 G5V 4.48 0.09 5711 ± 23 489 ± 9 2.64 HD 75328 F8V 4.46 -0.23 6015 ± 26 212 ± 4 0.65 HD 75782 G0 3.92 0.24 5969 ± 17 539 ± 7 2.53 HD 75881 F8IV 4.44 0.07 6097 ± 19 637 ± 9 1.69 HD 76188 F7V 4.08 -0.44 6008 ± 22 520 ± 8 0.79 HD 76218 G5V 4.60 -0.05 5749 ± 23 508 ± 8 1.80 HD 76752 G2V 4.29 0.03 5720 ± 20 484 ± 7 1.51 HD 76909 G5 4.39 0.38 5949 ± 23 339 ± 5 3.49 HD 78538 G5 4.50 -0.03 5793 ± 27 233 ± 5 1.23 HD 78612 G4 4.27 -0.24 5811 ± 27 598 ±11 1.24 HD 79601 G2V 4.15 -0.65 5886 ± 29 260± 5 0.46 HD 80133 K0 4.59 0.08 5184 ± 19 590 ±11 5.22 HD 80367 K0 4.51 0.00 5084 ± 18 460± 9 1.11 HD 8038 G5V 4.48 0.17 5716 ± 27 200 ± 4 0.64 HD 80635 G3IV 3.81 0.34 5766 ± 27 133 ± 3 0.85 HD 80883 K0.5V 4.44 -0.25 5091 ± 18 312 ± 6 1.61 HD 81700 G2V 4.53 0.12 5827 ± 31 163 ± 4 0.87 HD 82783 K0V 4.41 0.21 5523 ± 30 112 ± 3 2.38 HD 8328 G5 4.19 0.36 5783 ± 19 210 ± 3 3.74 HD 8331 G5 4.05 -0.01 5654 ± 25 497 ±10 0.44 HD 8406 G3V 4.54 -0.10 5795 ± 26 292± 5 3.14 HD 84305 F9V 4.51 -0.23 5989 ± 35 195 ± 4 1.24 HD 85119 G8V 4.52 -0.20 5487 ± 23 164 ± 3 3.39 HD 85301 G5 4.59 0.15 5625 ± 20 399 ± 7 1.59 HD 85683 F8V 4.28 0.02 6218 ± 31 364 ± 7 1.15 HD 86065 K2.5V 4.56 0.02 5140 ± 24 180 ± 3 0.98 HD 86171 G5 4.47 -0.25 5447 ± 25 229 ± 4 2.50 HD 8638 G3V 4.53 -0.40 5535 ± 24 254 ± 5 2.07 HD 8648 G5 4.28 0.15 5725 ± 24 504 ± 9 2.69 HD 86652 G3V 4.47 0.13 5882 ± 29 216 ± 5 1.11 HD 86819 G1V 4.27 -0.07 6006 ± 19 414 ± 7 3.40 HD 870 K0V 4.42 -0.10 5390 ± 23 793 ±14 1.13 HD 87359 G5 4.49 0.06 5659 ± 24 492± 9 1.25 HD 8765 G5 4.23 0.19 5666 ± 22 262 ± 4 2.94 HD 87836 G5 4.31 0.36 5914 ± 23 461 ± 8 3.35 HD 87838 G0 4.34 -0.41 6142 ± 31 279 ± 6 1.17 HD 88072 G3V 4.40 0.03 5796 ± 21 414 ± 7 0.62 HD 88371 G2V 4.50 -0.31 5690 ± 21 205 ± 3 2.17 HD 8859 G5V 4.41 -0.09 5574 ± 26 226 ± 5 1.45 HD 88656 K2V 4.44 -0.11 5174 ± 24 180 ± 4 1.32 HD 88725 G1V 4.38 -0.64 5776 ± 22 367 ± 6 1.25 HD 88742 G0V 4.46 -0.06 6013 ± 26 1026 ± 17 2.19 HD 88885 K1V 4.46 -0.11 5427 ± 30 128 ± 3 1.91 HD 8907 F8 4.35 -0.02 6311 ± 18 641 ± 8 2.11 HD 8912 K0V 4.43 -0.07 5256 ± 22 156 ± 3 0.87 HD 89147 K0 4.45 -0.09 5665 ± 36 88 ±2 4.91 HD 8930 G5 4.52 -0.23 5682 ± 25 176± 3 1.87 HD 89391 K0V 3.59 -0.09 5176 ± 18 699 ±11 0.45 HD 8941 F8IV-V 4.05 0.19 6284 ± 18 678 ± 10 1.04 HD 89454 G5 4.47 0.12 5698 ± 25 281± 5 2.56 HD 8985 F6/F7V 4.96 -0.01 6343 ± 32 237 ± 4 0.09 HD 89965 K3V 4.48 -0.09 4951 ± 21 162 ± 3 3.34 HD 90081 G1V 4.34 -0.20 5975 ± 26 215 ± 4 0.37 ± ± 96 APPENDIX C. APENDIX

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HD 90133 K0V 4.42 -0.16 5255 26 121 3 0.45 HD 90722 G5/G6IV 4.30 0.34 5675 ± 24 337 ± 6 1.91 HD 90812 K0.5V 4.48 -0.36 5206 ± 27 214 ± 5 1.56 HD 90926 G6V 4.35 0.13 5719 ± 26 196 ± 4 2.02 HD 91345 G0w... 4.34 -1.05 5891 ± 33 103 ± 2 0.36 HD 91379 F6V 4.41 -0.29 6212 ± 30 177 ± 3 0.51 HD 91638 F8 4.23 -0.32 6248 ± 24 671 ±11 2.75 HD 9224 G0V 4.24 0.00 5888 ± 20 482± 6 1.91 HD 9246 K2.5V 4.49 -0.53 4956 ± 22 166 ± 3 1.15 HD 92547 F8V 4.45 -0.37 6061 ± 25 207 ± 3 1.85 HD 92719 G1.5V 4.48 -0.12 5864 ± 31 804 ±17 1.44 HD 9280 G5 4.12 0.26 5659 ± 23 291± 5 2.32 HD 92987 G2/G3V 4.03 -0.02 5839 ± 17 638 ± 9 4.73 HD 9331 G5 4.32 0.13 5632 ± 19 212 ± 3 3.39 HD 93351 K0 4.41 -0.23 5394 ± 27 139 ± 3 0.85 HD 93380 K5Vk: 4.35 -0.72 4297 ± 12 426 ± 8 6.64 HD 93745 G2V 4.23 0.10 5969 ± 31 376 ± 7 1.53 HD 93932 G3V 4.30 0.05 5958 ± 28 368 ± 6 2.38 HD 94151 G8V 4.38 0.04 5669 ± 25 353 ± 6 4.34 HD 94280 F8 4.17 0.07 6071 ± 20 470 ± 8 1.25 HD 9472 G0 4.60 0.01 6111 ± 25 390 ± 7 2.47 HD 94765 K0V 4.52 0.04 5199 ± 19 986 ±15 2.87 HD 94771 G4V 4.03 0.22 5800 ± 15 593± 8 3.13 HD 94964 F8V 4.55 -0.07 6177 ± 29 236 ± 4 3.29 HD 95521 G2V 4.49 -0.15 5790 ± 18 405 ± 6 3.83 HD 95542 G0V 4.52 -0.04 6015 ± 27 180 ± 4 1.06 HD 95922 F8 4.63 -0.06 6309 ± 33 226 ± 5 1.61 HD 9608 G0/G1V 4.43 -0.26 6043 ± 25 192 ± 3 1.89 HD 96116 G3V 4.52 -0.01 5759 ± 26 150 ± 3 0.97 HD 96276 G1V 4.49 -0.02 6080 ± 28 199 ± 4 1.33 HD 96290 F8V 4.56 0.03 6206 ± 30 259 ± 5 1.42 HD 96418 F8IV 4.05 0.01 6296 ± 27 540 ±11 0.14 HD 96423 G5V 4.39 0.07 5697 ± 17 593± 8 4.06 HD 96574 F9V 4.21 0.04 6097 ± 23 404 ± 6 2.00 HD 967 G5 4.45 -0.66 5667 ± 27 221 ± 5 0.32 HD 97004 K0 4.51 0.31 5570 ± 18 429 ± 6 3.48 HD 97037 G0 4.30 -0.12 5828 ± 22 804 ±13 0.93 HD 97343 G8.5V 4.48 -0.05 5432 ± 24 902 ± 16 2.58 HD 9782 F9V 4.41 0.12 6058 ± 27 473± 8 2.82 HD 97998 G1V 4.60 -0.42 5776 ± 25 505 ± 8 1.40 HD 98284 F6V 4.52 -0.84 6311 ± 33 173 ± 3 1.43 HD 98356 K0V 4.41 0.09 5318 ± 21 217 ± 4 5.96 HD 98388 F8V 4.21 0.09 6390 ± 22 394 ± 5 3.85 HD 984 F7V 4.83 0.09 6338 ± 29 342 ± 6 1.38 HD 98553 G2VFe-0.7 4.54 -0.37 5964 ± 27 379 ± 7 0.75 HD 98618 G5V 4.39 0.04 5765 ± 21 390 ± 7 1.09 HD 98697 F8 4.05 -0.03 6158 ± 23 685 ±12 0.80 HD 9986 G2V 4.48 0.08 5804 ± 20 842 ± 13 2.86 HR 1981 F3V 4.61 0.09 6944 ± 35 629± 9 1.59 HR 3404 F9.5V 4.22 0.07 6040 ± 25 946 ±14 1.84 HR 5307 F7V 4.40 0.22 6527 ± 28 687 ± 13 0.63 HR 5630 F8V 4.36 0.09 6214 ± 25 912 ± 14 2.87 HR 6496 F7V 4.10 0.12 6363 ± 23 925 ± 13 2.03 HR 6669 F8V: 4.34 0.06 6181 ± 17 775 ± 10 3.44 HR 6994 F8V 4.14 0.06 5971 ± 31 1043± 20 0.88 ± ± 97

2 Name Spectral type log g [Fe/H] Fitted Teff Fitted scalar value χν (K) 1010 × HR 8250 F7V 4.00 0.02 6253 24 801 14 0.88 L 10-27 K5 4.35 -0.07 5023 ± 26 108± 2 2.91 L 112-126 K7 4.38 -0.01 5228 ± 28 108 ± 2 2.19 L 79-96 K2.5Vk: 4.44 -0.28 4834 ± 15 171 ± 3 3.21 LTT 1850 K5 4.28 -0.20 4582 ± 27 155 ± 3 2.39 LTT 2630 G3 4.44 -0.64 5427 ± 31 99 ±2 0.67 LTT 2661 K0 4.41 -0.02 5237 ± 38 100± 2 0.46 LTT 2697 K 4.54 -0.09 5265 ± 33 101 ± 2 0.92 LTT 3152 K0V 4.38 -0.53 5258 ± 21 112 ± 2 0.69 LTT 4442 G5 4.34 0.00 5685 ± 58 80 ±2 0.75 LTT 4625 K7 4.40 -0.26 4540 ± 14 169± 3 50.90 LTT 8253 K3Vk: 4.43 -0.23 4732 ± 28 169 ± 3 1.65 LTT 826 K7 4.55 -0.10 4469 ± 29 165 ± 4 3.30 LTT 8750 K4.5V 4.53 -0.51 4465 ± 19 206 ± 5 1.82 LTT 9605 K5.5V 4.31 0.01 4284 ± 13 198 ± 4 5.47 NAME Perky G0 4.26 -0.07 6064 ± 19 460 ± 7 2.56 NLTT 13839 K3 4.19 0.03 5086 ± 30 178 ± 3 4.35 V* AF Lep F8V(n)k: 4.71 0.15 6176 ± 27 982 ±17 6.52 V* BZ Cet K2.5Vk 4.47 0.15 5197 ± 20 572 ± 11 6.56 V* EW Cet K0V 4.46 0.06 5430 ± 22 566 ± 10 1.07 V* FT Cet K2.5Vk: 4.58 0.15 5012 ± 15 521 ± 10 4.29 V* LQ Hya K0V 4.99 0.33 4868 ± 15 828 ± 13 1.58 V* NS Aqr K0V 4.47 0.17 5639 ± 21 289± 5 1.32 V* NT Aqr G5V 4.38 0.05 5606 ± 20 473 ± 8 1.25 V* V344 And K0V 4.66 0.32 5480 ± 19 373 ± 6 1.93 V* V417 Hya K2Vk: 4.64 -0.07 5033 ± 15 498 ± 8 4.08 V* V419 Hya K1V 4.63 0.08 5119 ± 16 660 ±11 2.14 V* V443 Lac G5 4.47 -0.19 5650 ± 22 326± 5 2.49 V* V450 And G5V 4.55 0.00 5659 ± 21 637 ±10 1.83 V* V451 And G0V 4.52 0.01 6058 ± 21 552± 7 1.77 V* XZ LMi G8V 4.65 -0.01 5455 ± 18 243 ± 3 0.94 ± ± 98 APPENDIX C. APENDIX Appendix D

99 100 APPENDIX D. APENDIX 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.003 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.001 0.009 0.027 0.0010.001 0.023 0.001 0.028 0.001 0.033 0.001 0.016 0.027 0.001 0.011 0.0010.000 0.015 0.005 0.001 0.013 0.000 0.008 0.001 0.009 0.0010.001 0.019 0.002 0.017 0.002 0.039 0.001 0.040 0.001 0.030 0.003 0.027 0.000 0.063 0.010 0.0000.000 0.005 0.007 0.0010.000 0.015 0.005 0.001 0.015 0.0020.001 0.042 0.024 0.002 0.043 0.0010.001 0.112 0.022 0.0020.002 0.035 0.002 0.049 0.002 0.037 0.041 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.009 0.075 0.0050.002 0.051 0.004 0.015 0.035 0.004 0.045 0.002 0.016 0.0140.004 0.093 0.036 0.003 0.032 0.0020.003 0.017 0.006 0.026 0.007 0.063 0.058 0.0060.001 0.053 0.007 0.011 0.086 0.0190.005 0.091 0.048 0.0200.006 0.107 0.053 0.0390.009 0.138 0.075 0.0080.010 0.066 0.021 0.073 0.146 0.0360.036 0.130 0.022 0.133 0.014 0.099 0.079 0.094 0.003 0.210 0.031 0.032 0.055 0.114 0.030 0.161 0.036 0.119 0.132 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.022 0.232 0.0770.016 0.549 0.004 0.199 0.095 0.013 0.183 0.002 0.041 0.072 0.502 0.0790.030 0.540 0.272 0.035 0.309 0.0990.034 0.605 0.314 0.1370.059 0.815 0.428 0.054 0.421 0.0030.013 0.088 0.196 0.033 0.290 0.1460.195 0.793 0.838 0.0380.177 0.353 0.165 0.821 0.092 0.864 0.078 0.654 0.412 0.576 0.011 1.399 0.144 0.184 0.314 0.789 1.064 0.0080.030 0.144 0.352 0.004 0.097 0.056 0.454 0.123 0.948 0.039 0.371 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.039 0.913 0.026 0.784 0.0100.016 0.165 0.402 0.025 0.560 0.024 0.519 0.0330.016 0.956 0.009 0.405 0.175 0.017 0.379 0.0320.050 0.623 1.412 0.0110.033 0.290 0.648 0.0030.009 0.075 0.183 0.0390.020 0.995 0.532 0.023 0.586 0.0610.025 1.147 0.564 0.0550.034 1.446 0.809 0.043 0.788 0.051 1.516 0.0680.067 1.308 0.034 1.449 0.647 0.0570.038 1.441 0.032 1.055 0.082 0.989 0.018 2.318 0.049 0.362 0.084 1.303 1.826 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.054 2.021 0.061 2.436 0.061 1.270 0.042 1.775 0.017 0.345 0.018 0.775 0.048 1.144 0.076 1.144 0.138 2.004 0.046 0.808 0.018 0.375 0.024 0.749 0.056 1.349 0.124 2.997 0.122 3.095 0.076 2.310 0.023 0.571 0.095 1.318 0.005 0.159 0.017 0.388 0.046 2.040 0.029 1.079 0.037 1.212 0.200 3.290 0.054 1.734 0.099 1.715 0.118 3.432 0.174 2.834 0.155 3.014 0.071 1.415 0.071 2.164 0.175 4.946 0.044 0.714 0.166 2.654 0.108 3.787 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Observed fluxes for stars with planets used in this work. 0.025 1.112 0.054 2.788 0.046 2.800 0.053 3.334 0.047 1.746 0.050 2.511 0.014 0.496 0.030 1.067 0.026 1.583 0.044 1.621 0.037 2.532 0.021 1.073 0.017 0.490 0.040 1.944 0.098 4.332 0.109 4.273 0.079 3.185 0.047 2.970 0.134 7.055 0.014 0.795 0.032 1.685 0.006 0.230 0.014 0.574 0.041 1.505 0.044 1.730 0.088 4.626 0.045 2.437 0.061 2.337 0.168 4.759 0.106 4.017 0.121 4.214 0.073 2.026 0.023 0.934 0.082 3.677 0.091 5.113 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Table D.1: 0.007 2.245 0.024 1.189 0.014 2.626 0.015 1.552 0.037 2.557 0.034 3.005 0.035 2.237 0.035 2.690 0.014 1.121 0.021 0.652 0.007 1.489 0.095 1.841 0.008 1.122 0.014 0.573 0.030 2.196 0.042 5.059 0.037 5.163 0.021 3.555 0.024 3.033 0.047 7.265 0.012 1.087 0.050 4.953 0.005 1.503 0.004 0.777 0.010 0.304 0.011 0.673 0.017 2.091 0.041 4.560 0.031 2.594 0.022 2.879 0.084 6.305 0.060 4.805 0.033 5.045 0.040 2.655 0.036 5.220 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.006 0.564 0.012 0.380 0.004 0.509 0.025 0.868 0.009 1.000 0.015 0.808 0.049 1.351 0.032 1.284 0.021 1.919 0.051 2.619 0.032 1.664 0.037 1.901 0.013 0.525 0.019 0.750 0.005 0.539 0.124 2.592 0.017 1.644 0.026 4.528 0.041 4.017 0.022 2.290 0.020 1.708 0.049 5.078 0.009 0.673 0.071 5.444 0.028 2.603 0.003 0.347 0.003 0.316 0.011 0.619 0.008 0.370 0.021 1.874 0.026 2.376 0.102 6.063 0.064 4.364 0.030 3.564 0.053 2.883 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) GJ 9482 0.113 BD-17 63 0.210 HD 10180 2.819 G 268-114 0.130 CD-50 777 0.396 HD 100777 0.900 HD 102117HD 102195 2.239 HD 102272 1.175 HD 102329 0.835 HD 103197 2.666 HD 103774 0.321 HD 104067 3.856 1.178 HD 107148HD 108147 1.387 4.263 HD 106252HD 106270 2.692 HD 106906 2.007 2.219 BD+20 274BD+20 518 0.503 1.141 BD+48 738BD+49 828 1.376 0.874 BD+01 316 0.512 BD-06 1339 0.164 BD-05 5432 0.456 BD-13 2130 1.682 BD-08 2823BD-10 3166 0.252 0.190 CD-30 1812 0.282 BD+20 2457 0.661 BD+15 2940 0.998 BD+14 4559 0.232 BD+31 2290BD+47 0.393 2936 0.326 BD+61 1762 1.115 101 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.003 0.002 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0000.001 0.009 0.001 0.014 0.011 0.0020.003 0.040 0.001 0.073 0.001 0.011 0.003 0.030 0.001 0.060 0.005 0.016 0.003 0.097 0.071 0.0010.001 0.022 0.028 0.0030.002 0.052 0.002 0.047 0.043 0.0020.004 0.038 0.001 0.090 0.026 0.001 0.022 0.0030.003 0.077 0.001 0.054 0.032 0.0010.001 0.010 0.003 0.032 0.002 0.055 0.002 0.040 0.001 0.034 0.001 0.031 0.011 0.001 0.033 0.0000.001 0.008 0.001 0.015 0.022 0.0010.001 0.028 0.002 0.029 0.004 0.054 0.082 0.0010.002 0.017 0.001 0.032 0.020 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.039 0.133 0.0560.048 0.182 0.037 0.159 0.010 0.143 0.014 0.073 0.093 0.0290.197 0.131 0.012 0.282 0.085 0.0040.005 0.034 0.004 0.043 0.010 0.037 0.073 0.1560.057 0.253 0.019 0.183 0.098 0.0030.018 0.030 0.102 0.0030.007 0.027 0.011 0.054 0.023 0.079 0.107 0.174 0.326 0.0140.023 0.093 0.055 0.103 0.078 0.181 0.281 0.1030.004 0.246 0.018 0.040 0.069 0.093 0.006 0.202 0.052 0.093 0.236 0.0060.018 0.050 0.009 0.110 0.068 0.0650.037 0.182 0.026 0.135 0.031 0.114 0.004 0.105 0.035 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.637 2.135 0.127 0.819 0.066 0.520 0.0140.021 0.200 0.018 0.254 0.055 0.220 0.465 0.5950.291 1.904 0.097 1.239 0.638 0.657 2.298 0.0820.131 0.591 0.305 0.663 0.335 1.204 0.032 1.804 0.305 0.4280.018 1.666 0.080 0.235 0.284 0.604 0.033 1.290 0.305 0.403 1.574 0.0390.059 0.654 0.414 0.189 0.870 0.061 0.571 0.2250.173 1.074 0.057 0.944 0.449 0.340 1.169 0.0890.306 0.619 0.143 1.197 0.146 0.874 0.130 0.695 0.013 0.690 0.206 0.012 0.181 0.100 0.660 0.0380.066 0.325 0.479 0.007 0.158 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.092 2.594 0.067 1.476 0.046 0.971 0.0670.065 1.734 0.034 1.503 0.790 0.104 3.115 0.089 1.404 0.033 0.924 0.063 1.996 0.0150.022 0.377 0.018 0.510 0.040 0.436 0.773 0.1250.067 3.104 0.036 2.010 1.066 0.0320.069 1.068 1.930 0.016 0.348 0.059 1.050 0.0200.044 0.592 0.833 0.186 3.587 0.0420.062 0.964 0.070 1.171 0.185 1.995 0.022 2.838 0.565 0.011 0.287 0.0220.045 0.445 0.079 0.998 0.019 2.072 0.561 0.136 2.514 0.0350.030 1.068 0.777 0.0530.049 1.365 0.066 1.238 0.016 1.097 0.385 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.564 7.754 0.162 6.636 0.088 2.916 0.105 1.983 0.2500.091 4.305 2.274 0.0600.039 0.783 0.023 1.000 0.059 0.866 1.682 0.224 5.882 0.0510.197 2.187 0.092 2.335 0.136 4.210 0.049 6.476 0.058 1.212 0.092 2.503 1.569 0.2210.032 5.850 0.076 0.906 0.279 2.140 0.047 4.771 1.191 0.242 5.664 0.087 3.017 0.095 2.177 0.1800.126 3.664 0.082 3.382 1.610 0.090 4.281 0.0530.209 2.326 0.096 4.172 0.081 3.168 0.054 2.644 0.026 2.461 0.804 0.024 0.711 0.055 2.473 0.0300.091 1.248 1.827 0.031 0.606 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.277 10.035 0.235 9.752 0.168 9.259 0.108 5.137 0.091 4.172 0.062 2.711 0.1090.070 5.769 0.214 3.194 6.074 0.0280.030 1.064 0.037 1.467 0.069 1.236 2.445 0.167 7.840 0.050 1.781 0.0850.077 3.235 0.136 3.286 5.903 0.0590.081 1.838 0.055 3.694 0.030 2.261 0.890 0.1300.033 7.746 0.070 1.297 0.141 3.050 0.043 6.885 1.646 0.196 7.949 0.094 4.486 0.068 3.130 0.1070.056 4.711 2.329 0.0610.111 3.397 0.121 5.958 0.088 4.528 0.139 3.660 0.025 3.467 1.175 0.031 1.066 0.062 3.496 0.062 2.595 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.108 13.088 0.206 13.418 0.0440.048 6.150 0.021 5.798 2.871 0.048 4.691 0.031 2.820 0.0510.035 6.201 0.076 3.975 6.286 0.0130.022 1.141 0.011 1.625 0.021 1.494 2.887 0.112 9.526 0.021 3.745 0.0200.031 2.266 3.369 0.0350.032 4.015 0.070 4.185 0.071 7.022 0.072 10.137 0.042 3.046 0.017 3.812 0.012 2.614 1.214 0.0560.011 7.829 0.032 1.549 0.049 3.294 0.013 7.308 2.007 0.064 9.249 0.056 5.366 0.026 3.539 0.0210.045 3.656 0.044 6.719 0.015 5.486 0.025 3.675 0.012 3.881 1.479 0.027 1.616 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.282 14.925 0.043 4.032 0.056 4.054 0.024 2.779 0.0510.031 4.830 0.025 5.199 2.290 0.049 3.467 0.021 1.675 0.0420.022 3.664 0.039 3.801 4.146 0.0090.013 0.692 0.013 1.202 0.026 1.202 2.312 0.122 8.089 0.0190.026 2.235 4.874 0.026 2.913 0.008 2.498 0.0250.040 2.128 3.385 0.0240.032 3.801 0.069 3.499 0.074 5.057 0.086 7.659 0.038 7.833 0.019 3.007 0.017 1.836 1.282 0.0120.030 1.169 0.044 2.333 0.006 5.331 0.068 1.599 0.036 11.747 6.955 0.0300.013 4.741 0.025 1.644 0.017 2.754 1.330 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 1502 1.311 HD 11506 2.433 HD 13908HD 13931 2.595 2.164 HD 12661 2.323 HD 15082 2.797 HD 108341HD 108874 0.327 HD 109246 0.682 HD 109271 0.728 1.400 HD 128311HD 129445 1.793 HD 130322 0.634 HD 131496 1.265 HD 132406 2.799 HD 134060 0.977 HD 134606 7.347 3.856 HD 126525 1.654 HD 117207HD 117618 2.742 HD 118203 3.327 1.349 HD 111232HD 113337 2.061 HD 114386 11.784 0.749 HD 114783 1.748 HD 116029 2.115 HD 152581HD 154857 1.173 HD 155358 2.871 HD 156668 3.267 HD 157172 0.721 HD 159243 1.497 0.900 HD 149026HD 149143 1.349 2.191 HD 141399HD 142245 2.871 HD 143567 4.021 HD 145934 9.297 HD 147018 1.579 HD 147506 1.005 0.933 HD 114729A 5.083 102 APPENDIX D. APENDIX 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.002 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.003 0.002 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0020.002 0.054 0.039 0.0020.002 0.038 0.002 0.053 0.002 0.056 0.001 0.031 0.001 0.009 0.019 0.001 0.024 0.0010.001 0.019 0.004 0.011 0.001 0.071 0.001 0.020 0.001 0.019 0.001 0.018 0.001 0.026 0.027 0.0030.003 0.060 0.004 0.043 0.001 0.081 0.001 0.017 0.001 0.024 0.026 0.001 0.015 0.0010.000 0.023 0.001 0.009 0.001 0.023 0.002 0.011 0.002 0.035 0.000 0.030 0.005 0.008 0.100 0.0010.001 0.029 0.001 0.025 0.001 0.025 0.002 0.022 0.002 0.044 0.001 0.054 0.001 0.020 0.013 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.041 0.128 0.061 0.180 0.0380.009 0.129 0.004 0.068 0.104 0.037 0.007 0.235 0.006 0.061 0.006 0.054 0.014 0.056 0.013 0.089 0.011 0.088 0.077 0.069 0.199 0.0580.025 0.193 0.004 0.103 0.035 0.053 0.179 0.0080.012 0.064 0.003 0.072 0.010 0.028 0.004 0.078 0.028 0.035 0.019 0.123 0.003 0.101 0.325 0.031 0.005 0.337 0.046 0.1760.006 0.271 0.010 0.056 0.014 0.081 0.086 0.041 0.141 0.0210.013 0.097 0.011 0.083 0.010 0.082 0.047 0.071 0.058 0.157 0.006 0.182 0.005 0.056 0.044 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.294 1.241 0.1410.052 0.834 0.014 0.411 0.415 0.214 0.042 1.593 0.042 0.363 0.315 0.3400.106 1.255 0.010 0.651 0.207 0.250 1.120 0.0510.071 0.389 0.010 0.470 0.060 0.159 0.014 0.457 0.132 0.208 0.747 0.133 0.851 0.0370.113 0.332 0.077 0.548 0.071 0.559 0.485 0.5340.041 1.933 0.060 0.328 0.083 0.452 0.530 0.241 0.896 0.1060.069 0.643 0.062 0.533 0.060 0.485 0.192 0.440 1.011 0.290 1.338 0.095 0.676 0.7640.026 2.697 0.269 0.011 0.168 0.3160.030 1.218 0.336 0.029 0.256 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.093 1.818 0.090 1.949 0.066 1.354 0.0590.030 1.344 0.019 0.706 0.076 0.410 0.023 2.664 0.019 0.656 0.029 0.595 0.035 0.587 0.063 0.932 0.030 0.954 0.867 0.078 1.596 0.073 2.005 0.0810.082 2.395 0.012 1.084 0.386 0.0270.036 0.692 0.015 0.849 0.029 0.314 0.019 0.807 0.071 0.407 0.072 1.258 1.069 0.1480.022 3.752 0.517 0.009 0.343 0.1460.028 2.913 0.031 0.622 0.039 0.887 0.982 0.0350.035 1.066 0.035 0.905 0.028 0.902 0.057 0.811 0.088 1.595 0.023 2.008 0.634 0.016 0.525 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.304 8.023 0.145 4.073 0.1170.124 3.039 0.056 1.547 0.112 0.842 0.062 5.489 0.039 1.384 1.235 0.1800.071 4.201 0.025 2.348 0.788 0.223 4.203 0.0580.036 1.463 0.048 1.698 0.091 0.637 0.041 1.739 0.102 0.802 2.971 0.185 2.975 0.0460.050 1.314 0.079 2.102 0.083 2.025 1.799 0.2100.086 6.092 0.073 1.289 0.066 1.894 1.993 0.120 3.265 0.0690.097 2.222 0.073 1.919 0.053 1.904 0.162 1.672 3.660 0.226 4.420 0.080 2.293 0.039 1.039 0.028 0.672 0.1000.078 4.168 1.261 0.025 0.975 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.202 8.463 0.274 10.654 0.130 6.074 0.1960.074 4.380 0.024 2.210 0.155 1.108 0.045 7.591 0.035 1.989 0.039 1.833 0.062 1.851 3.017 0.1920.090 6.313 0.029 3.367 1.134 0.152 5.774 0.0520.069 2.017 0.019 2.418 0.066 0.890 0.033 2.481 0.077 1.176 0.072 4.096 3.350 0.113 4.265 0.029 0.969 0.0610.068 2.964 2.507 0.0410.062 1.752 0.053 2.736 2.746 0.076 4.491 0.0630.065 3.127 0.047 2.779 0.059 2.724 0.117 2.413 0.156 5.315 0.049 6.008 1.809 0.122 6.458 0.037 1.458 0.030 1.372 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.067 6.700 0.028 2.675 0.043 5.446 0.0640.034 6.504 0.017 4.093 1.362 0.021 2.901 0.041 6.098 0.016 2.332 0.046 5.327 0.0130.090 1.264 0.019 8.833 0.025 2.419 0.019 2.018 0.030 2.347 0.038 3.567 0.025 3.481 3.088 0.119 10.454 0.0190.042 1.849 0.030 2.914 3.175 0.020 4.584 0.024 3.628 0.048 6.958 0.0090.022 1.091 0.014 3.004 0.030 1.474 0.036 4.423 4.090 0.118 12.373 0.013 1.724 0.017 0.999 0.0330.016 3.377 0.028 2.845 0.051 3.039 0.075 6.340 0.018 7.055 2.229 0.013 1.711 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.067 4.874 0.024 2.201 0.010 0.705 0.091 6.545 0.027 4.698 0.058 4.635 0.041 3.725 0.020 1.236 0.024 2.269 0.011 0.973 0.024 2.376 0.040 4.463 0.016 1.722 0.030 5.011 0.022 2.051 0.020 1.330 0.024 2.089 0.018 3.220 0.043 2.754 0.031 2.754 0.129 8.628 0.013 1.009 0.033 2.268 0.028 2.208 0.028 2.967 0.025 1.721 0.018 2.147 0.021 2.558 0.055 5.263 0.018 1.472 0.031 3.231 0.049 3.944 0.118 8.549 0.015 1.367 0.013 0.628 0.036 3.031 0.052 5.545 0.080 5.444 0.022 1.977 0.016 1.459 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 2039 0.589 HD 16175 2.898 HD 18742 2.428 HD 20003 0.942 HD 17156 1.312 HD 21693 1.393 HD 20868 0.281 HD 23127 0.844 HD 187085 3.297 HD 159868 2.793 HD 164509HD 1.383 166724HD 0.355 168443HD 3.820 170469HD 1.219 171238 0.735 HD 175167HD 1.915 181720HD 1.795 183263 1.683 HD 212771 2.971 HD 189733HD 2.432 190647HD 2.215 190984 0.836 HD 202206 1.300 HD 204313HD 1.418 205739HD 0.986 206610HD 1.696 208487 2.643 HD 210277HD 4.944 211847 0.836 HD 215152HD 0.960 215456HD 5.371 215497HD 0.459 216536HD 1.192 216770 1.154 HD 217786HD 1.932 219415HD 0.903 219828HD 1.962 220773HD 3.523 222155HD 3.358 224693 1.208 103 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.003 0.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0020.001 0.046 0.001 0.010 0.001 0.018 0.002 0.011 0.001 0.042 0.000 0.019 0.002 0.012 0.001 0.041 0.015 0.0010.000 0.029 0.008 0.0010.001 0.022 0.001 0.012 0.019 0.002 0.035 0.000 0.006 0.000 0.007 0.0020.001 0.035 0.002 0.024 0.003 0.041 0.001 0.057 0.002 0.026 0.001 0.046 0.002 0.015 0.053 0.001 0.027 0.001 0.027 0.0010.001 0.011 0.004 0.018 0.002 0.101 0.028 0.0030.001 0.067 0.003 0.026 0.058 0.0010.001 0.028 0.001 0.013 0.002 0.028 0.051 0.0010.001 0.014 0.025 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.040 0.150 0.0100.004 0.075 0.008 0.038 0.018 0.064 0.003 0.097 0.027 0.030 0.117 0.002 0.020 0.002 0.023 0.025 0.113 0.013 0.091 0.0040.007 0.038 0.212 0.060 0.015 0.322 0.013 0.094 0.087 0.0070.004 0.060 0.036 0.036 0.008 0.141 0.003 0.064 0.039 0.028 0.006 0.137 0.090 0.054 0.014 0.223 0.067 0.090 0.189 0.004 0.037 0.0150.005 0.090 0.023 0.044 0.057 0.100 0.177 0.0110.035 0.077 0.071 0.134 0.013 0.183 0.086 0.0050.016 0.048 0.086 0.0440.005 0.155 0.048 0.052 0.173 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.005 0.106 0.124 0.735 0.007 0.139 0.0420.013 0.359 0.180 0.204 0.047 0.911 0.010 0.387 0.199 0.167 0.033 0.887 0.377 0.319 0.077 1.496 0.324 0.550 1.322 0.015 0.211 0.0860.027 0.590 0.104 0.262 0.297 0.644 1.126 0.229 0.943 0.0150.045 0.213 0.083 0.385 0.008 0.597 0.147 0.069 0.483 0.0630.178 0.466 0.292 0.858 0.084 1.259 0.551 0.0310.090 0.272 0.526 0.2350.036 1.016 0.240 0.313 1.065 0.112 0.744 0.091 0.563 0.0430.498 0.364 0.082 2.233 0.070 0.586 0.529 0.017 0.222 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.034 0.665 0.022 0.408 0.073 1.622 0.0180.028 0.441 0.060 0.678 0.015 1.022 0.285 0.036 0.825 0.008 0.213 0.050 1.210 0.010 0.291 0.027 0.859 0.066 1.202 0.044 1.010 0.0300.138 0.644 0.034 3.259 0.033 1.016 0.898 0.0210.050 0.392 0.044 1.473 0.015 0.680 0.068 0.308 0.024 1.481 0.125 0.567 0.038 2.363 0.081 0.944 2.022 0.021 0.432 0.0390.027 0.982 0.044 0.519 0.082 1.090 1.965 0.0450.072 1.410 0.033 1.995 0.935 0.0260.038 0.517 0.985 0.0710.023 1.713 0.061 0.570 1.873 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.195 7.508 0.009 0.429 0.152 2.731 0.020 0.518 0.0930.027 1.374 0.091 0.780 0.052 3.215 0.037 1.464 0.117 0.641 0.050 3.221 0.304 1.253 0.101 5.214 0.159 2.053 4.397 0.042 0.876 0.054 0.878 0.0570.028 2.034 0.120 1.012 0.235 2.284 4.226 0.229 3.452 0.0360.066 0.867 0.127 1.464 0.038 2.238 0.611 0.053 1.692 0.0450.121 1.866 0.152 3.087 0.045 4.336 1.962 0.0560.067 1.059 1.984 0.2180.032 3.855 0.131 1.166 4.168 0.099 2.642 0.065 2.083 0.084 1.393 0.0520.087 2.159 1.984 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.216 10.605 0.026 1.265 0.058 2.412 0.023 0.573 0.122 3.936 0.019 0.751 0.057 1.993 0.0710.024 1.900 0.127 1.133 0.069 4.728 0.025 2.083 0.104 0.951 0.036 4.689 0.146 1.753 0.064 7.494 0.215 2.894 6.408 0.030 1.200 0.038 1.237 0.0720.037 2.967 0.104 1.460 0.146 3.259 5.797 0.107 4.691 0.0590.089 2.102 0.020 3.124 0.850 0.0880.097 2.703 0.144 4.536 0.066 6.366 2.691 0.0240.069 1.375 2.713 0.1460.040 5.368 0.109 1.649 6.162 0.092 3.718 0.064 3.047 0.0610.094 3.153 2.873 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.147 13.028 0.0270.018 1.425 0.027 2.473 0.006 3.726 0.844 0.027 3.137 0.014 0.548 0.052 4.908 0.015 0.888 0.022 2.583 0.0370.021 3.696 3.186 0.019 1.378 0.0160.008 2.200 0.050 1.262 0.019 6.005 0.020 2.566 0.041 1.279 0.018 5.671 0.074 1.977 0.017 8.800 0.072 3.037 8.048 0.0250.020 3.417 0.041 1.766 0.060 3.754 6.912 0.033 1.585 0.044 4.837 0.0300.047 3.297 0.065 5.517 0.019 7.800 3.001 0.0130.030 1.459 3.128 0.0750.017 5.864 0.050 2.067 6.588 0.031 4.326 0.034 3.321 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.010 0.294 0.0170.008 1.722 0.052 0.871 0.010 5.394 0.027 2.333 0.051 1.432 0.016 4.487 0.049 1.282 0.017 8.045 0.048 1.888 7.768 0.0280.017 2.703 1.286 0.032 1.813 0.038 2.653 0.0320.018 1.468 0.031 1.940 0.004 2.883 0.428 0.032 2.964 0.055 3.766 0.018 0.800 0.0390.059 3.311 0.085 5.057 0.019 7.046 2.070 0.0110.029 0.692 2.208 0.0780.022 5.444 0.060 1.853 5.454 0.018 3.403 0.020 2.153 0.0290.160 2.376 10.664 0.0360.023 2.703 2.290 0.010 1.009 0.0420.071 2.937 6.502 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 564 1.175 HD 2638 0.874 HD 4113HD 4203 1.535 HD 4208 0.712 HD 4313 1.762 3.870 HD 5319 3.241 HD 5891 3.247 HD 30177HD 30669 0.908 HD 31253 0.455 HD 33283 3.510 HD 33643 1.493 HD 34445 1.112 HD 37605 2.768 HD 38283 0.664 HD 38801 5.322 HD 40979 0.942 5.177 HD 28678 1.392 HD 27631HD 28185 1.160 1.668 HD 25171 2.055 HD 24040 2.281 HD 49674HD 50499 2.144 HD 50554 3.178 HD 51608 4.635 1.125 HD 63454HD 63765 0.290 1.231 HD 47186 1.932 HD 45652 1.112 HD 43691HD 45184 1.563 HD 45350 6.700 HD 45364 1.521 1.265 HD 43197 0.518 HD 290327 1.174 HD 285507 0.173 HD 233604 0.125 HD 233731 0.476 104 APPENDIX D. APENDIX 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.003 0.003 0.002 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.001 0.015 0.002 0.017 0.001 0.050 0.002 0.013 0.001 0.038 0.002 0.028 0.004 0.030 0.079 0.001 0.018 0.001 0.018 0.0010.003 0.028 0.001 0.065 0.002 0.029 0.003 0.051 0.001 0.069 0.001 0.031 0.001 0.032 0.017 0.001 0.023 0.001 0.012 0.0010.001 0.023 0.001 0.025 0.020 0.003 0.057 0.0010.001 0.017 0.001 0.020 0.018 0.001 0.030 0.0030.001 0.064 0.005 0.022 0.004 0.115 0.088 0.0020.001 0.046 0.001 0.025 0.011 0.001 0.020 0.0020.004 0.050 0.001 0.090 0.017 0.002 0.032 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.006 0.051 0.0080.006 0.062 0.052 0.015 0.092 0.011 0.077 0.0110.012 0.076 0.010 0.081 0.004 0.073 0.034 0.075 0.195 0.0070.061 0.058 0.005 0.171 0.029 0.045 0.017 0.121 0.022 0.093 0.205 0.104 0.009 0.278 0.010 0.062 0.007 0.072 0.057 0.019 0.097 0.0440.012 0.147 0.004 0.078 0.103 0.040 0.012 0.222 0.319 0.078 0.408 0.010 0.070 0.0980.016 0.223 0.063 0.097 0.123 0.163 0.022 0.224 0.028 0.101 0.006 0.107 0.049 0.054 0.162 0.163 0.007 0.297 0.056 0.027 0.110 0.204 0.297 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.042 0.353 0.263 1.280 0.2070.029 1.170 0.144 0.260 0.094 0.767 0.113 0.604 0.689 0.666 0.049 2.119 0.054 0.387 0.045 0.440 0.081 0.341 0.627 0.033 0.308 0.031 0.313 0.046 0.376 0.310 1.502 0.052 0.433 0.0950.258 0.635 0.429 1.134 0.105 1.577 0.141 0.669 0.032 0.709 0.266 0.323 0.810 1.057 0.040 1.956 0.123 0.337 0.688 0.063 0.666 0.058 0.480 0.0740.060 0.529 0.015 0.456 0.204 0.059 0.476 0.0630.021 0.509 0.436 0.232 0.073 1.512 0.754 0.517 0.552 2.866 2.050 0.163 0.979 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.030 0.632 0.022 0.559 0.020 0.584 0.028 0.681 0.097 2.259 0.046 1.083 0.037 0.810 0.0370.036 0.908 0.018 0.783 0.415 0.032 0.805 0.080 1.996 0.0720.021 1.742 0.072 0.544 0.042 1.334 0.066 1.047 0.121 1.138 0.035 3.310 0.037 0.695 0.019 0.787 0.044 0.633 1.043 0.0350.021 0.852 0.077 0.498 0.031 2.561 0.196 0.895 0.117 4.241 3.241 0.056 1.452 0.053 0.777 0.0360.095 1.052 0.118 1.839 0.045 2.400 0.053 1.113 0.026 1.229 0.065 0.568 0.126 1.792 0.028 3.558 0.072 0.601 1.179 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.266 8.886 0.234 7.578 0.074 1.763 0.036 1.339 0.116 4.801 0.2030.041 3.929 0.081 0.998 0.090 3.016 0.134 2.189 0.246 2.457 0.068 6.594 0.077 1.443 0.054 1.675 0.091 1.317 2.293 0.070 1.184 0.028 1.195 0.113 1.445 0.075 3.391 0.315 5.278 0.121 1.593 0.0890.109 2.311 0.226 3.966 0.092 5.320 0.076 2.350 0.040 2.500 0.207 1.212 3.906 0.0910.144 1.273 2.535 0.104 2.159 0.075 1.733 0.0600.071 1.916 0.043 1.689 0.831 0.1000.049 1.804 0.181 0.935 0.098 5.204 2.085 0.378 7.072 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.203 8.620 0.271 12.563 0.302 9.330 0.223 10.592 0.071 2.696 0.060 2.378 0.046 1.930 0.154 6.995 0.1220.034 5.504 0.082 1.445 0.073 4.410 0.091 3.162 3.457 0.0500.058 2.066 0.044 2.318 0.070 1.771 3.185 0.033 1.641 0.040 1.771 0.051 2.010 0.053 2.589 0.112 4.807 0.156 7.441 0.075 2.301 0.0680.136 3.329 0.180 5.653 0.062 7.203 0.085 3.211 0.058 3.600 0.094 1.791 5.355 0.0540.060 1.794 3.547 0.070 2.970 0.051 2.396 0.0550.030 2.320 1.159 0.0360.191 1.333 0.098 7.290 3.231 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.151 11.590 0.2630.229 5.589 16.326 0.167 12.136 0.021 2.308 0.018 2.426 0.024 2.930 0.0300.020 3.225 0.032 2.499 1.548 0.027 2.832 0.069 7.955 0.019 2.390 0.0710.010 6.620 0.041 1.604 0.032 4.946 0.036 3.789 4.290 0.0220.030 2.707 0.013 2.742 0.026 2.067 3.986 0.015 1.972 0.0230.032 3.007 0.053 1.519 7.975 0.044 5.264 0.021 2.705 0.055 8.467 0.0470.049 4.091 0.090 7.016 0.025 8.482 0.036 3.349 0.024 4.370 0.034 2.088 0.073 5.653 0.019 10.538 0.028 2.188 3.628 0.038 3.986 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.578 19.068 0.285 16.577 0.023 2.032 0.017 1.599 0.030 2.333 0.020 1.905 0.058 6.021 0.053 4.168 0.028 2.582 0.0200.018 3.220 0.022 1.459 1.739 0.025 1.940 0.171 10.963 0.071 7.463 0.0710.011 5.151 0.049 1.086 0.035 4.441 0.046 3.467 3.908 0.0270.029 2.355 0.013 2.147 0.012 1.406 3.104 0.203 12.087 0.0230.022 2.443 0.050 1.159 5.801 0.038 3.150 0.023 2.249 0.0490.025 3.416 0.093 5.914 0.020 6.545 0.023 1.786 0.025 3.886 0.036 1.754 0.115 3.684 0.020 7.930 0.018 2.013 1.916 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HR 5910HR 6907 24.137 HR 7291 11.904 8.458 HD 8535 2.138 HD 7449 2.501 HD 6718 0.989 HD 9446 1.043 HD 9578 1.303 HD 68988HD 70642 1.242 HD 73267 2.979 HD 73534 0.584 HD 74156 2.644 2.252 HD 67087 1.622 HD 66428 1.102 HD 87883HD 88133 3.161 HD 89307 2.032 HD 90156 3.927 HD 93083 3.881 HD 93385 0.836 2.501 HD 86264 2.898 HD 86226 1.603 HD 85390HD 86081 0.741 1.188 HD 83443 1.043 HD 75898HD 76700 1.452 HD 77338 1.197 HD 81040 0.695 HD 82886 1.915 4.835 HD 98649HD 99109 1.485 HD 99706 0.608 3.045 HD 97658 1.594 HD 95089HD 95127 1.934 4.167 HD 96063HD 96167 0.986 1.265 HD 75289A 7.146 105 0.001 0.001 0.003 0.001 0.001 0.001 ± ± ± ± ± ± 0.0010.001 0.026 0.004 0.010 0.001 0.095 0.001 0.026 0.011 0.000 0.007 ± ± ± ± ± ± 0.013 0.089 0.003 0.025 0.1180.014 0.238 0.004 0.086 0.039 0.004 0.035 ± ± ± ± ± ± 0.513 1.637 0.0770.016 0.570 0.230 0.015 0.202 0.068 0.583 0.008 0.134 ± ± ± ± ± ± 0.018 0.416 0.044 0.968 0.016 0.277 0.089 2.565 0.0480.020 0.919 0.449 ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.131 5.345 0.102 1.999 0.039 0.886 0.040 0.814 0.064 2.081 0.017 0.572 ± ± ± ± ± ± 0.279 7.912 0.0680.029 2.910 1.259 0.029 1.091 0.087 2.883 0.018 0.810 ± ± ± ± ± ± 0.147 11.202 0.020 0.843 0.0310.052 3.682 1.511 0.008 1.168 0.021 3.273 ± ± ± ± ± ± 0.129 15.948 0.007 0.614 0.011 2.290 0.019 0.534 0.0410.015 3.403 1.258 ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) V* PR Vir 0.285 V* CS Pyx 1.242 V* V342 PegV* V376 Peg 13.999 2.219 V* V478 Hya 0.813 TYC 1422-614-1 0.261 106 APPENDIX D. APENDIX 0.003 0.002 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.004 0.105 0.004 0.093 0.0000.001 0.007 0.001 0.011 0.000 0.014 0.001 0.007 0.001 0.011 0.001 0.010 0.001 0.011 0.016 0.0030.001 0.073 0.001 0.015 0.001 0.016 0.001 0.010 0.001 0.007 0.000 0.010 0.001 0.009 0.001 0.012 0.000 0.012 0.008 0.0010.001 0.010 0.001 0.009 0.001 0.011 0.001 0.009 0.016 0.0000.001 0.008 0.001 0.020 0.013 0.0010.000 0.010 0.000 0.008 0.000 0.008 0.001 0.009 0.001 0.015 0.001 0.012 0.000 0.012 0.010 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.166 0.309 0.260 0.346 0.1680.011 0.237 0.007 0.056 0.004 0.061 0.003 0.033 0.003 0.029 0.003 0.034 0.004 0.030 0.004 0.042 0.003 0.035 0.002 0.027 0.004 0.022 0.039 0.0030.007 0.024 0.004 0.062 0.004 0.042 0.003 0.036 0.032 0.0050.003 0.045 0.004 0.025 0.004 0.035 0.004 0.039 0.006 0.034 0.003 0.053 0.002 0.032 0.003 0.024 0.003 0.027 0.004 0.029 0.004 0.043 0.004 0.038 0.003 0.040 0.025 0.0040.003 0.037 0.006 0.029 0.052 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.744 2.125 0.786 2.614 0.5780.027 1.769 0.050 0.337 0.012 0.354 0.009 0.181 0.012 0.159 0.188 0.011 0.173 0.0150.023 0.220 0.008 0.250 0.013 0.146 0.015 0.193 0.012 0.223 0.032 0.193 0.011 0.299 0.007 0.180 0.009 0.141 0.010 0.151 0.024 0.160 0.017 0.244 0.017 0.216 0.007 0.232 0.138 0.0080.007 0.153 0.131 0.0240.010 0.241 0.198 0.016 0.206 0.0100.033 0.163 0.302 0.0450.018 0.354 0.014 0.230 0.011 0.206 0.178 0.007 0.134 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.137 3.378 0.131 3.728 0.1100.025 2.716 0.034 0.562 0.020 0.679 0.013 0.361 0.018 0.325 0.013 0.377 0.341 0.0190.021 0.454 0.490 0.0210.012 0.293 0.253 0.0170.015 0.501 0.372 0.019 0.412 0.0260.017 0.670 0.014 0.498 0.019 0.434 0.360 0.013 0.260 0.0090.012 0.286 0.024 0.392 0.021 0.445 0.018 0.375 0.012 0.595 0.009 0.366 0.015 0.279 0.013 0.294 0.019 0.323 0.021 0.491 0.018 0.433 0.012 0.463 0.265 0.0160.022 0.329 0.562 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.228 7.419 0.368 7.898 0.0250.042 0.744 0.681 0.2460.073 5.664 0.061 1.140 0.032 1.406 0.035 0.736 0.649 0.0630.037 0.928 0.542 0.0510.035 0.877 0.029 0.968 0.035 0.563 0.039 0.745 0.059 0.778 0.047 0.794 0.027 1.084 0.028 0.698 0.035 0.567 0.026 0.619 0.053 0.629 0.050 0.974 0.857 0.0510.023 0.611 0.528 0.0420.035 0.925 0.772 0.039 0.805 0.0470.073 0.685 1.194 0.0500.074 1.364 0.045 0.914 0.040 0.819 0.758 0.029 0.512 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.263 11.084 0.281 10.762 0.0230.020 1.043 0.967 0.1800.036 8.104 0.046 1.561 0.022 1.939 0.020 1.063 0.856 0.0230.020 1.255 1.070 0.046 1.870 0.023 0.714 0.0390.016 1.281 0.748 0.0230.027 1.200 0.019 1.320 0.019 0.790 0.022 0.991 0.028 1.111 0.026 1.087 0.017 1.495 0.020 1.020 0.024 0.830 0.020 0.894 0.041 0.848 0.023 1.361 1.190 0.0190.021 0.805 0.736 0.027 1.120 0.0240.028 0.953 1.556 0.0270.019 1.267 0.023 1.108 1.089 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Observed fluxes for stars without planets used in this work. 0.221 15.055 0.100 12.697 0.0220.026 0.976 1.187 0.0960.009 9.783 0.024 1.462 0.006 1.903 0.021 0.973 0.885 0.0070.014 0.870 0.858 0.0080.006 1.270 1.014 0.0120.007 1.908 0.006 1.225 1.081 0.006 0.748 0.0160.006 1.409 0.769 0.0090.008 1.227 1.282 0.0060.016 0.795 0.004 0.959 0.022 0.978 0.007 1.288 0.008 1.350 0.024 0.989 0.007 0.937 0.014 0.861 0.008 0.767 0.017 1.306 1.204 0.007 1.116 0.0100.010 1.017 1.543 0.014 1.168 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Table D.2: 0.295 16.007 0.094 9.906 0.0180.023 0.479 0.950 0.0070.006 0.635 0.591 0.0930.006 9.460 0.019 0.625 0.004 0.859 0.017 0.467 0.376 0.0060.013 0.483 0.740 0.0060.004 0.560 0.432 0.006 0.525 0.011 1.024 0.0090.005 0.855 0.004 0.487 0.453 0.005 0.405 0.005 0.439 0.013 0.927 0.0050.011 0.417 0.002 0.337 0.019 0.263 0.005 1.183 0.006 0.479 0.019 0.566 0.006 0.868 0.009 0.525 0.005 0.215 0.013 0.544 0.613 0.0090.007 0.731 0.689 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) * 14 Cet* 12.317 40 Cet 6.282 * 24 LMi 6.358 BD-01 184 0.264 BD-05 484BD-05 578 0.194 0.615 BD-09 872 0.239 BD-12 327 0.135 BD-13 321BD-14 184 0.188 0.253 BD-06 904 0.243 BD-16 308BD-16 931 0.517 0.257 CD-36 866 0.358 BD-03 4797BD-04 4138 0.347 BD-05 3176 0.183 0.152 BD-06 3481BD-06 4196 0.259 0.186 BD-09 2670 0.284 BD-11 2763 0.208 BD-12 3458BD-13 1161 0.102 0.704 BD-17 3242BD-21 3153 0.098 BD-22 3528 0.220 0.274 BD-08 2534 0.479 CD-36 1303 0.237 CD-38 2136 0.308 CD-26 2288CD-27 6378 0.365 CD-28 8692 0.214 0.171 CD-25 8473 0.193 BD+09 1617 0.487 CD-30 18090 0.458 CD-23 15543 0.196 107 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0040.001 0.088 0.001 0.013 0.001 0.015 0.001 0.034 0.001 0.029 0.002 0.009 0.048 0.0010.002 0.011 0.037 0.0010.000 0.012 0.001 0.007 0.002 0.030 0.041 0.001 0.013 0.0010.003 0.028 0.001 0.065 0.002 0.033 0.001 0.048 0.001 0.013 0.001 0.032 0.001 0.031 0.001 0.021 0.015 0.0020.001 0.035 0.001 0.008 0.002 0.027 0.001 0.045 0.000 0.009 0.004 0.008 0.001 0.072 0.001 0.028 0.023 0.0010.001 0.010 0.003 0.010 0.003 0.070 0.003 0.072 0.001 0.062 0.001 0.012 0.002 0.013 0.041 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.188 0.286 0.0040.003 0.038 0.015 0.025 0.036 0.096 0.004 0.141 0.031 0.037 0.122 0.004 0.037 0.0050.025 0.049 0.014 0.104 0.003 0.087 0.056 0.031 0.162 0.004 0.036 0.0280.003 0.111 0.017 0.029 0.054 0.091 0.003 0.148 0.003 0.030 0.135 0.028 0.015 0.241 0.010 0.089 0.020 0.077 0.102 0.096 0.026 0.216 0.108 0.0040.025 0.041 0.023 0.108 0.007 0.102 0.005 0.073 0.046 0.056 0.162 0.0040.003 0.035 0.064 0.032 0.054 0.177 0.075 0.233 0.004 0.204 0.005 0.038 0.038 0.041 0.134 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.013 0.212 0.018 0.206 0.0330.094 0.289 0.092 0.698 0.012 0.587 0.224 0.184 1.124 0.015 0.212 0.1330.010 0.695 0.088 0.166 0.230 0.591 0.012 0.987 0.009 0.174 0.162 0.607 2.078 0.008 0.146 0.139 0.759 0.0900.175 0.621 0.019 0.903 0.213 0.0190.105 0.243 0.096 0.681 0.024 0.679 0.025 0.428 0.268 0.535 1.708 0.2870.122 1.510 0.220 0.696 1.089 0.0130.011 0.206 0.264 0.184 0.296 1.228 0.374 1.588 0.016 1.437 0.223 0.0790.029 0.552 0.086 0.496 0.610 0.026 0.249 0.157 0.883 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.013 0.438 0.100 3.124 0.012 0.279 0.054 1.301 0.023 0.426 0.0410.072 1.053 0.016 1.484 0.438 0.017 0.423 0.0250.037 0.548 0.074 1.112 0.014 0.972 0.063 0.376 1.723 0.0490.016 1.181 0.036 0.316 0.086 0.993 0.014 1.612 0.019 0.351 0.119 0.322 2.728 0.1070.040 2.177 0.060 1.172 1.766 0.0380.025 0.949 0.042 0.859 1.061 0.0200.051 0.476 0.059 1.175 0.031 1.113 0.020 0.790 0.516 0.0150.016 0.409 0.060 0.356 0.085 1.896 0.103 2.488 0.020 2.267 0.037 0.449 0.491 0.044 1.436 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.333 6.810 0.034 0.547 0.048 0.813 0.052 0.819 0.0360.124 1.149 0.080 2.335 0.035 2.019 0.170 0.683 3.805 0.045 0.858 0.1060.026 2.521 0.117 0.644 0.098 2.173 0.054 3.451 0.018 0.670 0.652 0.083 2.795 0.0980.069 2.244 0.031 3.245 0.861 0.0480.095 0.954 0.134 2.427 0.089 2.366 0.076 1.707 1.031 0.241 5.612 0.2720.068 5.071 0.084 2.542 3.847 0.0500.045 0.788 0.107 0.726 0.232 4.054 0.194 5.454 0.063 4.839 0.895 0.0510.077 1.988 0.095 1.811 2.167 0.065 0.963 0.133 3.182 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.276 10.035 0.026 0.787 0.023 1.183 0.067 3.118 0.018 1.027 0.0430.111 1.613 0.082 3.551 0.024 3.003 0.139 1.008 5.429 0.039 1.162 0.0710.025 3.483 0.094 0.925 0.112 3.032 0.028 5.052 0.028 0.992 0.202 0.937 7.920 0.051 2.792 0.112 3.908 0.1120.025 4.676 1.236 0.0440.075 1.366 0.073 3.574 0.052 3.311 0.043 2.305 1.442 0.1880.074 7.371 0.131 3.704 5.359 0.0280.023 1.162 0.152 0.995 0.193 5.833 0.147 7.647 0.034 6.784 0.028 1.243 1.329 0.0560.064 2.522 3.138 0.145 4.364 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0260.039 1.927 0.051 4.166 0.009 3.696 0.063 1.067 0.023 6.572 3.838 0.021 1.401 0.088 11.516 0.009 0.888 0.042 4.493 0.0380.049 3.613 0.018 5.767 1.352 0.010 0.978 0.004 1.002 0.0120.051 1.597 0.026 4.306 0.012 3.750 0.015 2.444 0.014 1.812 1.327 0.0090.053 1.016 0.058 3.794 0.014 6.422 0.010 1.107 0.082 1.154 9.552 0.0730.041 8.857 0.040 4.735 6.184 0.0170.021 2.762 0.039 2.886 3.665 0.0080.111 1.177 0.073 7.173 0.071 9.105 0.024 8.427 0.012 1.422 1.622 0.042 5.426 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.015 1.393 0.053 4.206 0.064 3.698 0.009 0.679 0.061 6.193 0.025 2.511 0.009 0.685 0.064 3.822 0.020 1.148 0.076 8.708 0.009 0.649 0.038 3.075 0.035 2.722 0.067 5.330 0.015 0.982 0.010 0.275 0.003 0.305 0.015 1.342 0.062 3.725 0.021 2.606 0.012 1.330 0.019 1.644 0.015 1.028 0.010 0.855 0.071 6.024 0.084 6.308 0.011 0.751 0.005 1.152 0.055 8.952 0.046 7.942 0.029 4.487 0.031 3.944 0.013 1.247 0.025 2.324 0.042 2.857 0.014 1.282 0.045 7.942 0.046 7.725 0.021 1.286 0.052 4.570 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) G 266-98 0.375 HD 10166 0.361 HD 10086 5.130 HD 10002 1.480 HD 10895 0.776 HD 101339 0.708 HD 100508 1.593 HD 100167HD 100289 3.639 0.547 HD 101367HD 101472 0.806 HD 101612 2.871 2.667 HD 101959HD 102071 4.150 HD 102136 1.337 HD 102300 0.361 HD 102357 2.658 HD 102843 4.551 HD 103829 0.407 HD 103891 0.787 5.999 HD 105328HD 105405 5.036 HD 105631 3.178 2.119 HD 103949HD 104263 0.542 HD 104982 1.382 1.746 HD 105779HD 105837 0.836 HD 106156 2.571 HD 106275 1.400 HD 106290 0.646 HD 106589 1.014 HD 107094 0.611 HD 107146 0.520 HD 107692 3.856 HD 108510 4.899 HD 108768 4.990 0.748 HD 109098 2.845 CD-39 5624 0.114 CD-43 14916 0.092 108 APPENDIX D. APENDIX 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.001 0.013 0.0010.003 0.016 0.002 0.062 0.001 0.047 0.001 0.029 0.002 0.030 0.045 0.0010.000 0.026 0.007 0.0010.001 0.020 0.011 0.0010.001 0.017 0.014 0.0010.003 0.015 0.002 0.063 0.001 0.039 0.000 0.022 0.002 0.009 0.043 0.0000.002 0.009 0.050 0.0010.001 0.024 0.022 0.0010.001 0.030 0.013 0.0030.001 0.071 0.001 0.019 0.000 0.010 0.002 0.007 0.002 0.045 0.040 0.0010.001 0.012 0.024 0.0000.001 0.008 0.027 0.0030.001 0.057 0.013 0.0000.001 0.008 0.015 0.001 0.012 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0180.002 0.093 0.006 0.023 0.070 0.055 0.213 0.0050.008 0.047 0.004 0.062 0.036 0.0060.005 0.054 0.045 0.0030.053 0.030 0.005 0.165 0.085 0.051 0.211 0.0240.018 0.094 0.097 0.0110.009 0.076 0.074 0.041 0.157 0.049 0.147 0.0210.004 0.098 0.042 0.0050.010 0.045 0.093 0.076 0.007 0.236 0.058 0.0110.003 0.075 0.043 0.031 0.003 0.139 0.013 0.026 0.091 0.040 0.137 0.0640.005 0.187 0.043 0.0020.053 0.020 0.030 0.150 0.003 0.131 0.005 0.030 0.051 0.004 0.034 0.004 0.040 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.026 0.266 0.0420.016 0.373 0.034 0.211 0.027 0.314 0.264 0.0900.087 0.597 0.620 0.0560.055 0.492 0.096 0.445 0.017 0.636 0.247 0.3450.198 1.495 1.041 0.227 0.976 0.007 0.136 0.035 0.333 0.087 0.630 0.0540.010 0.473 0.153 0.174 0.008 0.891 0.080 0.149 0.335 0.556 0.022 1.314 0.252 0.3780.182 1.422 0.915 0.222 1.122 0.031 0.307 0.010 0.168 0.0050.206 0.117 0.144 1.008 0.009 0.827 0.034 0.174 0.022 0.289 0.225 0.0360.013 0.355 0.193 0.057 0.473 0.457 1.569 0.026 0.258 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.1180.078 2.282 1.664 0.013 0.262 0.020 0.524 0.027 0.598 0.0280.023 0.664 0.020 0.402 0.019 0.585 0.036 0.515 1.033 0.1100.049 2.216 1.490 0.081 1.745 0.022 0.571 0.0370.033 1.031 1.063 0.0340.036 0.849 0.037 0.780 0.024 1.046 0.011 0.458 0.335 0.064 1.652 0.0260.017 0.647 0.393 0.042 0.830 0.156 2.544 0.0390.015 0.810 0.088 0.329 0.015 1.484 0.034 0.302 0.074 0.962 0.020 2.104 0.026 0.478 0.523 0.0070.054 0.222 0.051 1.530 0.016 1.374 0.019 0.332 0.019 0.571 0.475 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.136 2.255 0.247 4.942 0.157 3.671 0.018 0.538 0.061 1.083 0.061 1.279 0.055 1.464 0.054 0.794 0.052 1.199 0.065 1.004 0.133 2.274 0.130 1.757 0.228 4.965 0.185 2.951 0.255 3.822 0.043 1.159 0.084 2.234 0.064 1.752 0.068 1.689 0.084 2.212 0.041 0.947 0.034 0.662 0.089 3.470 0.023 0.447 0.046 1.365 0.037 0.749 0.095 1.746 0.211 5.449 0.026 0.701 0.145 3.284 0.024 0.625 0.056 2.049 0.171 4.478 0.053 0.963 0.040 1.033 0.162 3.445 0.181 3.061 0.024 0.676 0.046 1.119 0.046 0.876 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.027 1.509 0.067 3.200 0.105 3.366 0.148 7.045 0.139 5.006 0.148 4.856 0.019 0.745 0.049 1.828 0.038 1.921 0.025 1.144 0.030 1.577 0.042 1.436 0.074 3.141 0.061 2.567 0.032 0.967 0.135 4.763 0.180 6.885 0.098 4.269 0.127 5.424 0.062 1.613 0.087 2.575 0.068 2.546 0.054 3.144 0.037 1.323 0.024 0.963 0.013 0.650 0.123 4.892 0.097 4.269 0.047 1.926 0.022 1.055 0.068 2.445 0.155 7.391 0.026 0.894 0.056 2.918 0.174 6.384 0.029 1.314 0.027 1.494 0.029 0.980 0.040 1.622 0.024 1.240 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.018 1.468 0.021 2.086 0.048 3.838 0.054 3.785 0.030 3.270 0.095 8.055 0.055 6.282 0.053 6.196 0.014 0.840 0.017 2.196 0.018 1.360 0.010 1.790 0.010 1.518 0.034 4.006 0.026 3.145 0.018 1.188 0.070 5.646 0.024 1.048 0.089 8.130 0.057 5.092 0.044 5.972 0.016 1.970 0.019 2.850 0.025 3.111 0.011 1.543 0.018 0.995 0.007 0.702 0.069 5.793 0.041 5.022 0.013 1.041 0.019 2.430 0.015 1.045 0.021 2.840 0.044 8.033 0.025 3.374 0.106 7.879 0.023 1.591 0.015 1.602 0.015 1.593 0.013 1.285 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.014 0.644 0.015 1.137 0.016 1.000 0.015 1.057 0.053 3.467 0.032 2.937 0.044 3.311 0.021 2.013 0.012 1.380 0.096 6.854 0.049 5.394 0.069 5.753 0.010 0.525 0.021 1.870 0.008 0.982 0.044 3.681 0.033 2.831 0.011 0.960 0.072 5.043 0.018 0.874 0.030 2.728 0.126 7.654 0.095 6.426 0.062 4.130 0.036 4.324 0.019 1.722 0.013 1.191 0.015 0.661 0.006 0.474 0.079 5.011 0.037 4.054 0.010 0.679 0.013 0.806 0.009 0.711 0.023 2.108 0.010 0.560 0.024 2.269 0.044 4.830 0.013 1.236 0.013 1.089 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 1171 0.267 HD 11112 3.297 HD 11226 3.751 HD 11020 0.523 HD 11505 2.571 HD 11608 0.555 HD 111031 4.000 HD 110557HD 0.279 110668 1.122 HD 109368 0.260 HD 109423HD 0.547 109723HD 0.589 109988 0.527 HD 110537 2.383 HD 114853 3.953 HD 114260HD 2.455 114561 1.043 HD 111564HD 2.198 112257 1.762 HD 112283HD 2.410 112540HD 1.154 112914HD 0.646 113513HD 0.702 113569 0.323 HD 116410HD 1.265 116883 0.259 HD 116259HD 1.289 116284 2.410 HD 115341HD 1.812 115499HD 0.571 115585HD 2.999 115589HD 0.493 115674HD 1.622 115773HD 5.273 115902 0.728 HD 117105HD 3.297 117126HD 2.501 117359HD 0.348 117938HD 0.360 118466 0.333 109 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.001 0.017 0.004 0.027 0.001 0.100 0.003 0.013 0.001 0.071 0.001 0.021 0.023 0.000 0.011 0.001 0.020 0.002 0.051 0.0010.001 0.025 0.001 0.017 0.002 0.011 0.058 0.001 0.011 0.001 0.010 0.001 0.009 0.002 0.053 0.0020.001 0.033 0.003 0.009 0.001 0.065 0.001 0.034 0.002 0.018 0.001 0.036 0.016 0.001 0.011 0.005 0.107 0.001 0.013 0.0000.001 0.009 0.000 0.019 0.001 0.007 0.013 0.001 0.014 0.004 0.087 0.001 0.020 0.0010.003 0.019 0.041 0.003 0.066 0.002 0.039 0.001 0.030 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.006 0.059 0.003 0.029 0.007 0.067 0.0120.005 0.086 0.004 0.045 0.043 0.038 0.055 0.192 0.170 0.004 0.033 0.004 0.035 0.003 0.032 0.059 0.176 0.024 0.111 0.003 0.034 0.269 0.356 0.0030.008 0.027 0.003 0.065 0.004 0.026 0.006 0.038 0.042 0.005 0.047 0.224 0.310 0.007 0.068 0.0170.235 0.093 0.005 0.332 0.087 0.042 0.010 0.231 0.011 0.074 0.007 0.076 0.025 0.058 0.149 0.096 0.218 0.031 0.135 0.003 0.031 0.0140.008 0.108 0.027 0.062 0.005 0.118 0.024 0.052 0.100 0.079 0.216 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.010 0.196 0.014 0.203 0.3220.012 1.194 0.188 0.023 0.263 0.629 2.404 0.0850.814 0.606 0.021 2.363 0.419 0.246 0.058 1.599 0.060 0.458 0.023 0.483 0.070 0.344 0.862 0.4630.028 1.535 0.406 0.152 0.886 0.022 0.337 0.008 0.164 0.028 0.393 0.0160.188 0.211 0.247 1.299 1.179 0.026 0.247 0.071 0.520 0.008 0.182 0.0800.042 0.671 0.138 0.377 0.018 0.745 0.112 0.313 0.653 0.485 1.511 0.113 0.678 0.012 0.196 0.924 2.653 0.0080.013 0.152 0.020 0.220 0.239 0.047 0.385 0.009 0.154 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.041 0.964 0.025 0.633 0.013 0.314 0.062 0.747 0.0160.136 0.433 0.098 1.980 1.903 0.023 0.504 0.038 0.934 0.016 0.384 0.013 0.410 0.0750.018 1.942 0.370 0.040 1.218 0.018 0.393 0.125 3.965 0.0130.016 0.292 0.018 0.414 0.488 0.032 0.689 0.018 0.302 0.021 0.492 0.098 3.451 0.1240.024 3.700 0.078 0.478 0.038 2.472 0.038 0.834 0.022 0.833 0.067 0.634 1.333 0.1440.026 2.429 0.752 0.053 1.385 0.013 0.338 0.0490.032 1.161 0.044 0.686 0.029 1.278 0.037 0.583 1.063 0.080 2.427 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.578 7.894 0.282 8.502 0.026 0.738 0.017 0.798 0.1360.036 4.092 0.722 0.035 0.992 0.128 5.915 0.133 2.110 0.0800.143 0.982 0.104 5.281 0.091 1.720 0.040 1.722 0.091 1.378 3.017 0.2670.069 5.039 1.557 0.152 3.214 0.059 1.316 0.020 0.667 0.063 1.468 0.0520.200 0.881 0.269 4.474 4.111 0.059 0.957 0.101 1.955 0.019 0.690 0.1040.079 2.523 0.085 1.447 0.082 2.659 0.088 1.192 2.350 0.285 5.081 0.123 2.716 0.028 0.772 0.0310.043 0.591 0.048 0.847 0.938 0.063 1.494 0.044 0.598 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.248 11.418 0.240 11.790 0.219 8.684 0.021 1.300 0.053 2.618 0.029 1.062 0.031 1.175 0.1600.032 6.149 1.037 0.039 2.002 0.016 0.819 0.031 1.316 0.067 3.141 0.0560.174 1.335 0.063 7.398 0.078 2.453 0.039 2.598 0.084 1.895 4.273 0.1340.061 7.243 2.197 0.135 4.850 0.036 1.776 0.031 0.913 0.043 2.064 0.0220.139 1.208 0.132 6.396 5.732 0.028 0.999 0.0990.093 3.650 0.090 2.134 0.041 3.833 0.074 1.752 3.304 0.229 7.026 0.078 3.914 0.026 1.065 0.0200.037 0.845 0.030 1.224 1.247 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.175 14.937 0.091 14.471 0.123 11.305 0.012 2.241 0.0100.104 1.245 0.090 7.923 7.166 0.011 1.195 0.011 2.393 0.021 1.290 0.014 1.470 0.0790.016 7.575 1.186 0.0100.014 0.966 0.006 1.339 1.213 0.013 2.012 0.005 0.811 0.013 1.297 0.0110.044 1.556 0.031 8.228 0.028 2.846 0.028 3.131 0.035 2.360 4.555 0.0810.018 8.085 2.545 0.025 3.655 0.072 6.114 0.011 1.624 0.018 1.118 0.016 1.135 0.0370.045 4.484 0.035 2.590 0.018 4.674 0.035 2.129 4.255 0.068 8.296 0.051 4.705 0.017 1.084 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.182 17.304 0.023 2.728 0.010 0.581 0.016 1.000 0.012 1.355 0.0080.129 0.704 0.112 7.508 6.545 0.009 0.405 0.007 0.794 0.014 1.127 0.013 1.384 0.0770.013 7.810 0.863 0.048 5.030 0.014 0.602 0.042 10.963 0.0110.014 0.718 0.004 1.018 0.457 0.010 0.964 0.004 0.340 0.008 0.465 0.127 12.131 0.0130.020 1.247 0.031 5.345 0.039 2.266 0.033 3.019 0.030 2.032 2.544 0.0790.022 5.866 1.958 0.057 7.787 0.013 0.847 0.0490.029 4.054 0.036 2.450 0.025 3.766 0.044 1.977 3.801 0.060 6.759 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 12414 6.139 HD 11938 0.168 HD 12846 4.105 HD 12617 0.411 HD 121320 1.590 HD 120491 0.226 HD 120362 0.595 HD 119782 0.658 HD 119503HD 119629 0.344 HD 119638 5.396 4.678 HD 119291 0.290 HD 119173 0.748 HD 118914 0.896 HD 118475HD 118563 5.226 0.481 HD 128428 3.258 HD 128113 0.303 HD 127334 6.458 HD 126681HD 126803 0.455 HD 126829 0.605 0.183 HD 125522 0.185 HD 125271 0.208 HD 125040 8.592 HD 121560HD 12.327 122474HD 122676 0.728 HD 123265 3.063 HD 123619 1.279 HD 123651 2.099 HD 124106 1.387 1.266 HD 124292HD 124364 3.288 1.186 HD 128431 0.468 HD 129010HD 129191 2.643 HD 129814 1.586 HD 129829 2.315 HD 130087 1.349 2.388 110 APPENDIX D. APENDIX 0.002 0.001 0.001 0.002 0.003 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0020.001 0.050 0.013 0.0020.002 0.034 0.002 0.049 0.001 0.042 0.001 0.028 0.003 0.010 0.001 0.070 0.002 0.026 0.001 0.048 0.035 0.0010.003 0.024 0.004 0.063 0.001 0.099 0.001 0.029 0.001 0.015 0.001 0.025 0.000 0.029 0.000 0.010 0.000 0.008 0.010 0.0010.001 0.012 0.002 0.010 0.001 0.033 0.002 0.009 0.000 0.047 0.001 0.005 0.001 0.033 0.002 0.019 0.043 0.0020.001 0.036 0.001 0.026 0.013 0.0010.002 0.026 0.042 0.0020.002 0.050 0.003 0.045 0.001 0.066 0.025 0.001 0.020 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0580.005 0.173 0.048 0.0100.072 0.072 0.150 0.212 0.011 0.320 0.005 0.092 0.009 0.047 0.011 0.082 0.003 0.093 0.003 0.031 0.003 0.029 0.030 0.030 0.052 0.118 0.040 0.164 0.136 0.0300.014 0.122 0.005 0.088 0.004 0.042 0.003 0.041 0.026 0.036 0.110 0.0130.043 0.082 0.145 0.117 0.236 0.0130.004 0.090 0.036 0.0130.027 0.088 0.010 0.159 0.057 0.087 0.036 0.164 0.059 0.149 0.010 0.219 0.085 0.0030.028 0.032 0.002 0.157 0.018 0.020 0.008 0.096 0.038 0.065 0.007 0.139 0.065 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.2560.030 1.133 0.278 0.0540.253 0.422 0.509 1.528 0.053 2.233 0.025 0.553 0.071 0.275 0.060 0.507 0.559 0.139 0.915 0.084 0.542 0.324 1.672 0.0090.010 0.178 0.165 0.2440.222 1.090 0.082 0.894 0.011 0.563 0.211 0.0740.205 0.543 0.044 1.105 0.230 0.520 0.178 1.129 0.243 0.942 0.049 1.496 0.505 0.0080.129 0.174 0.747 0.0130.116 0.199 0.010 0.695 0.156 0.184 0.005 1.079 0.035 0.110 0.047 0.603 0.182 0.395 0.025 0.903 0.390 0.1520.031 0.738 0.020 0.542 0.020 0.244 0.238 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0880.023 1.817 0.530 0.0410.108 0.765 0.143 2.236 0.057 3.476 0.020 0.981 0.045 0.512 0.031 0.924 0.011 0.997 0.019 0.339 0.325 0.0720.059 1.729 0.042 1.495 1.027 0.0120.046 0.340 1.205 0.0180.072 0.388 0.013 1.152 0.364 0.0500.047 1.334 0.024 0.930 0.025 0.460 0.449 0.049 1.395 0.036 0.924 0.133 2.551 0.020 0.388 0.0580.071 0.914 0.043 1.736 0.071 0.911 0.063 1.696 0.075 1.567 0.046 2.352 0.925 0.0520.009 1.690 0.041 0.211 0.027 1.014 0.076 0.718 0.029 1.536 0.695 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.296 7.391 0.1310.053 3.998 1.072 0.0500.173 1.653 4.892 0.1100.032 2.128 0.063 1.060 0.080 1.864 2.112 0.098 3.354 0.063 1.874 0.282 5.556 0.0480.033 0.707 0.664 0.1710.146 3.901 0.095 3.221 0.038 2.157 0.794 0.0690.254 2.032 0.090 3.840 0.103 2.036 0.159 3.837 0.155 3.426 0.061 5.085 1.907 0.0280.093 0.643 2.766 0.0530.062 0.832 0.052 2.528 0.125 0.724 0.022 3.502 0.120 0.421 0.041 2.238 0.195 1.493 0.090 3.182 1.509 0.1120.084 2.688 0.041 2.108 0.034 0.953 0.935 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.257 10.382 0.1340.036 5.921 1.512 0.0580.189 2.350 7.229 0.0970.030 2.992 0.055 1.517 0.060 2.620 0.018 2.992 0.024 0.956 0.909 0.0780.082 3.587 3.144 0.079 4.642 0.069 2.615 0.257 7.647 0.2350.135 5.622 0.082 4.651 0.022 3.132 1.099 0.0790.180 2.897 0.093 5.404 0.156 2.951 0.117 5.592 0.137 4.781 0.129 7.303 2.894 0.0180.095 0.911 3.879 0.0300.100 1.128 0.024 3.721 0.179 0.987 0.014 5.043 0.089 0.601 0.061 3.247 0.127 2.145 0.048 4.499 2.134 0.0270.027 1.352 1.267 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.093 9.640 0.118 13.271 0.009 1.699 0.050 6.342 0.0170.126 2.439 8.939 0.0250.013 3.621 0.034 1.740 0.030 3.134 0.005 3.628 0.013 0.910 1.020 0.060 6.882 0.0090.028 0.967 4.314 0.014 1.237 0.0260.035 3.694 0.023 3.443 0.008 1.631 1.418 0.044 5.027 0.025 3.246 0.010 1.203 0.0290.059 3.588 0.038 6.737 0.074 3.733 0.035 7.342 0.055 4.903 0.024 8.273 3.178 0.0480.035 5.656 3.869 0.0460.009 6.083 0.053 0.626 0.024 4.022 0.040 2.780 0.023 5.298 2.619 0.0320.013 4.509 1.000 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.010 1.028 0.041 4.957 0.0140.164 1.259 0.110 9.144 11.693 0.029 2.728 0.0100.066 0.738 10.090 0.0370.082 3.162 0.053 6.426 0.055 4.092 0.027 8.001 0.042 2.553 0.027 5.429 2.654 0.0150.036 1.380 0.041 2.466 0.004 3.280 0.011 0.360 0.724 0.0570.063 5.969 0.044 5.199 3.748 0.0080.032 0.686 3.047 0.0250.008 5.545 0.061 0.337 0.030 3.801 0.048 2.582 0.022 4.324 2.271 0.0100.016 0.758 0.010 3.908 0.479 0.0200.035 1.873 0.013 2.511 0.008 1.224 0.887 0.043 3.220 0.030 2.728 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 1320 1.507 HD 13060 0.552 HD 13252 0.400 HD 13789 0.837 HD 13724 1.607 HD 130307 2.798 HD 130930HD 0.589 130989HD 6.850 131117HD 7.483 131183HD 1.549 131565 0.813 HD 132173HD 2.219 132411 0.155 HD 133161HD 3.856 133295HD 3.421 134664 2.390 HD 132569HD 0.350 132648 1.746 HD 138914HD 0.371 139324HD 2.455 139332 0.226 HD 138549HD 1.452 138776HD 0.689 138799 0.451 HD 137676 1.779 HD 134985HD 0.404 135468HD 7.213 135625HD 2.023 136118HD 4.427 136544HD 2.898 136580HD 5.946 136713HD 1.141 136923HD 2.866 136925 1.658 HD 139457HD 3.820 139536HD 0.167 139590HD 2.547 139879HD 1.607 140785HD 2.619 140913 1.492 111 0.002 0.002 0.001 0.056 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0090.002 2.523 0.001 0.040 0.001 0.015 0.002 0.019 0.001 0.052 0.012 0.0010.003 0.020 0.069 0.0020.002 0.047 0.001 0.039 0.012 0.0010.002 0.031 0.002 0.047 0.003 0.037 0.001 0.063 0.001 0.024 0.023 0.0040.001 0.082 0.016 0.0010.001 0.010 0.013 0.0010.004 0.009 0.082 0.0010.001 0.024 0.001 0.026 0.001 0.023 0.001 0.025 0.002 0.017 0.035 0.0010.001 0.013 0.024 0.0030.002 0.060 0.032 0.0000.001 0.008 0.031 0.004 0.070 0.0020.001 0.033 0.027 0.0010.004 0.026 0.066 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0100.109 0.070 0.067 0.225 0.042 0.678 0.134 0.0410.038 0.155 0.005 0.122 0.042 0.1660.007 0.284 0.027 0.054 0.050 0.106 0.155 0.0510.004 0.170 0.004 0.041 0.006 0.037 0.049 0.0070.007 0.055 0.062 0.0030.166 0.031 0.284 0.0040.011 0.040 0.011 0.074 0.015 0.078 0.092 0.0650.010 0.210 0.083 0.0860.026 0.201 0.108 0.026 0.116 0.010 0.076 0.0030.024 0.024 0.101 0.089 0.240 0.013 0.083 0.0290.030 0.112 0.015 0.113 0.092 0.011 0.083 0.006 0.055 0.0140.087 0.086 0.214 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.1290.013 0.800 0.246 0.162 1.011 0.2400.017 1.132 0.012 0.238 0.029 0.211 0.012 0.291 0.316 0.176 2.000 0.1940.025 0.886 0.043 0.321 0.376 0.399 1.499 0.157 1.422 0.055 0.436 0.2880.070 1.465 0.503 0.2460.126 1.397 0.007 0.681 0.113 0.136 0.673 0.2120.058 1.042 0.740 0.056 0.450 0.036 0.330 0.118 0.663 0.316 2.000 0.073 0.520 0.1220.133 0.730 0.082 0.713 0.084 0.568 0.346 0.552 1.507 0.0910.076 0.587 0.496 0.036 0.334 0.061 0.476 0.066 0.492 0.022 0.234 0.479 1.582 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0680.027 1.433 0.583 0.076 2.394 0.029 1.408 0.0890.016 1.254 0.028 0.469 0.747 0.094 1.544 0.0670.056 1.659 1.125 0.023 0.589 0.058 1.125 0.1260.020 1.749 0.016 0.454 0.021 0.408 0.017 0.550 0.162 0.342 0.162 2.883 2.883 0.021 0.679 0.0430.041 1.030 0.887 0.035 0.802 0.034 0.845 0.1070.032 2.280 0.921 0.1160.054 2.155 0.011 1.167 0.034 0.262 0.019 1.067 0.457 0.025 0.810 0.046 0.934 0.0570.042 1.197 0.047 1.197 0.053 0.973 0.124 0.972 0.116 2.303 2.514 0.039 0.619 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.170 4.010 0.202 3.194 0.076 1.231 0.113 1.442 0.317 5.133 0.037 1.006 0.115 2.831 0.037 0.975 0.063 1.512 0.222 3.777 0.290 5.057 0.125 3.657 0.118 2.662 0.039 1.267 0.070 2.403 0.042 0.925 0.036 0.827 0.072 1.151 0.036 0.675 0.146 6.785 0.146 6.785 0.086 1.912 0.116 2.204 0.068 1.951 0.085 1.233 0.140 1.669 0.072 1.762 0.061 1.937 0.185 4.360 0.058 2.535 0.026 0.537 0.064 2.322 0.038 0.891 0.071 1.726 0.195 2.681 0.141 2.685 0.103 2.200 0.116 1.975 0.328 4.970 0.152 5.474 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.118 5.607 0.031 1.267 0.125 4.470 0.048 1.688 0.069 2.085 0.131 6.753 0.016 0.860 0.120 4.032 0.028 1.401 0.084 2.199 0.117 5.242 0.237 7.163 0.063 2.782 0.131 5.218 0.091 3.872 0.054 2.271 0.041 1.840 0.077 3.610 0.026 1.189 0.028 1.605 0.029 0.941 0.213 9.322 0.213 9.322 0.077 2.828 0.099 3.847 0.083 3.138 0.069 2.565 0.049 1.816 0.087 2.416 0.056 2.532 0.141 6.485 0.095 3.721 0.013 0.747 0.104 3.301 0.021 1.218 0.092 4.034 0.080 3.100 0.076 2.746 0.141 6.981 0.154 7.847 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.049 6.399 0.018 1.475 0.010 1.180 0.041 5.239 0.013 1.813 0.034 2.491 0.032 6.162 0.012 0.723 0.056 5.411 0.022 1.591 0.021 2.599 0.050 6.694 0.080 9.534 0.027 3.399 0.051 7.313 0.048 6.179 0.037 4.713 0.017 2.241 0.018 2.210 0.055 4.386 0.012 1.613 0.013 1.060 0.075 9.640 0.055 9.640 0.023 3.216 0.055 5.120 0.062 5.243 0.044 3.757 0.014 2.791 0.017 2.196 0.028 2.952 0.020 2.871 0.036 4.480 0.004 0.727 0.027 3.778 0.009 1.264 0.034 3.788 0.038 3.420 0.049 7.658 0.073 9.300 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.052 4.919 0.041 4.830 0.010 0.991 0.007 0.696 0.010 0.839 0.011 0.705 0.026 4.487 0.010 0.920 0.038 2.471 0.022 2.301 0.008 0.337 0.083 6.080 0.013 1.202 0.026 2.249 0.046 9.665 0.028 2.910 0.032 5.545 0.022 3.872 0.003 0.319 0.032 5.247 0.048 4.054 0.014 0.920 0.024 1.995 0.066 4.017 0.066 5.424 0.041 5.424 0.028 2.511 0.041 5.987 0.067 6.104 0.040 3.694 0.040 2.779 0.053 3.220 0.021 1.540 0.022 1.888 0.038 3.047 0.024 2.167 0.024 2.654 0.007 0.637 0.052 5.296 0.088 7.942 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 14374 1.600 HD 14635 0.375 HD 14452 0.386 HD 14868 1.219 HD 14745HD 14747 2.080 1.289 HD 14744 0.301 HD 143114HD 2.845 143295 0.435 HD 142709HD 0.909 143006 0.183 HD 141128HD 4.509 141598HD 0.695 142229 1.413 HD 141103 3.549 HD 144988HD 3.421 145229 2.619 HD 144846HD 1.289 144880 2.768 HD 144009HD 2.768 144342HD 0.537 144411HD 0.311 144497 0.419 HD 144628HD 2.752 144628 2.752 HD 148211HD 2.198 148303 0.753 HD 145435HD 7.183 145666 1.931 HD 146481HD 3.452 147044HD 2.410 147147HD 0.141 147231 1.652 HD 148577 1.507 HD 149200HD 4.449 149652HD 4.536 149724HD 2.197 150437HD 1.668 150474HD 2.845 150698 4.765 112 APPENDIX D. APENDIX 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.003 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.001 0.026 0.015 0.0010.001 0.013 0.001 0.014 0.002 0.024 0.002 0.035 0.003 0.042 0.055 0.0020.001 0.034 0.001 0.024 0.001 0.026 0.003 0.023 0.001 0.052 0.001 0.012 0.002 0.025 0.053 0.0030.000 0.058 0.002 0.010 0.001 0.043 0.001 0.013 0.002 0.010 0.045 0.0000.001 0.008 0.002 0.016 0.000 0.033 0.004 0.009 0.001 0.078 0.003 0.010 0.000 0.054 0.006 0.0030.001 0.069 0.011 0.0020.001 0.033 0.002 0.018 0.003 0.040 0.002 0.056 0.001 0.041 0.001 0.014 0.002 0.021 0.029 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0120.006 0.087 0.051 0.0240.010 0.110 0.012 0.079 0.014 0.090 0.070 0.081 0.004 0.179 0.013 0.040 0.073 0.084 0.006 0.186 0.005 0.057 0.045 0.0310.028 0.120 0.070 0.158 0.192 0.011 0.074 0.0030.006 0.026 0.026 0.052 0.003 0.112 0.129 0.029 0.004 0.266 0.064 0.038 0.002 0.181 0.072 0.023 0.003 0.194 0.032 0.0040.046 0.041 0.150 0.0410.005 0.142 0.043 0.0280.007 0.114 0.039 0.061 0.062 0.135 0.040 0.188 0.004 0.139 0.009 0.039 0.021 0.071 0.104 0.102 0.003 0.233 0.032 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.041 0.574 0.033 0.299 0.1140.070 0.713 0.063 0.471 0.076 0.537 0.226 0.524 1.223 0.1230.093 0.762 0.271 0.947 1.341 0.0260.061 0.259 0.458 0.0080.028 0.149 0.122 0.311 0.010 0.700 0.354 0.165 1.820 0.015 0.221 0.2760.038 1.316 0.340 0.069 0.535 0.0210.221 0.232 0.965 0.015 0.217 0.0110.147 0.180 0.023 0.906 0.259 0.1290.046 0.729 0.225 0.364 0.282 0.858 0.172 1.266 0.862 0.0060.313 0.135 1.311 0.279 1.233 0.011 0.182 0.017 0.229 0.1060.388 0.657 1.568 0.053 0.443 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.031 0.936 0.017 0.562 0.0570.035 1.211 0.029 0.843 0.043 0.906 0.056 0.928 1.814 0.0170.029 0.524 0.822 0.015 0.431 0.0640.028 1.998 0.603 0.036 0.945 0.0430.098 1.267 0.093 1.480 2.028 0.0090.025 0.285 0.051 0.554 0.017 1.196 0.134 0.329 0.020 2.828 0.448 0.0160.062 0.367 1.479 0.0120.081 0.258 2.098 0.072 1.931 0.0290.064 0.447 1.580 0.018 0.495 0.0700.026 1.199 0.078 0.660 0.111 1.473 0.053 1.987 1.473 0.014 0.354 0.017 0.460 0.0380.123 1.102 2.506 0.033 0.799 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.093 1.984 0.037 1.171 0.124 2.764 0.080 2.584 0.041 1.819 0.053 1.944 0.073 1.955 0.162 4.077 0.042 1.015 0.109 1.758 0.037 0.901 0.175 4.328 0.071 1.330 0.090 1.943 0.084 3.130 0.212 4.385 0.019 0.573 0.056 1.189 0.091 2.623 0.024 0.637 0.134 6.069 0.053 0.842 0.031 0.741 0.116 3.351 0.072 0.989 0.022 0.518 0.194 4.377 0.291 4.352 0.038 0.926 0.109 3.454 0.123 2.620 0.059 1.403 0.141 3.144 0.155 4.450 0.162 3.199 0.024 0.741 0.018 0.900 0.332 2.448 0.188 5.562 0.066 1.553 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.356 8.541 0.060 2.807 0.032 1.564 0.0910.055 3.627 0.051 2.647 0.061 2.755 0.151 2.736 0.023 6.074 1.218 0.078 2.713 0.1080.142 3.947 0.133 4.587 6.408 0.0270.053 1.331 2.409 0.0230.036 0.787 0.079 1.701 0.023 3.677 0.889 0.029 1.130 0.1350.039 6.119 1.921 0.172 6.187 0.0330.107 1.317 4.951 0.0190.132 1.081 0.055 4.838 1.431 0.0950.042 3.711 0.111 1.942 0.130 4.495 0.075 6.233 0.029 4.399 1.286 0.0130.153 0.712 6.204 0.062 2.185 0.021 1.018 0.0830.242 3.403 7.854 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.031 3.255 0.0070.045 1.507 4.700 0.0390.046 4.867 0.069 5.698 0.006 8.048 0.822 0.0170.014 2.850 0.030 2.742 0.073 3.494 0.007 7.821 1.209 0.0160.023 1.518 3.035 0.0320.062 3.523 0.018 7.326 2.323 0.0080.049 1.252 0.030 6.128 4.314 0.0150.034 2.053 0.012 4.505 0.082 0.968 10.454 0.009 1.211 0.0240.057 1.157 0.013 6.224 1.706 0.0680.016 7.764 0.052 0.803 7.213 0.0160.041 2.377 0.069 5.225 0.032 7.814 0.024 4.500 1.587 0.007 1.066 0.0160.041 2.494 0.081 4.522 9.073 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.029 2.228 0.005 0.539 0.034 4.919 0.013 1.675 0.009 1.403 0.026 4.285 0.031 5.029 0.046 7.446 0.004 0.428 0.018 1.675 0.041 3.732 0.040 3.220 0.076 7.216 0.005 0.492 0.012 0.887 0.028 2.466 0.044 3.489 0.057 6.080 0.023 1.977 0.007 0.607 0.032 5.345 0.036 3.280 0.019 1.786 0.049 4.405 0.009 0.643 0.049 8.870 0.007 0.637 0.026 0.882 0.039 6.193 0.016 1.419 0.071 6.722 0.012 0.436 0.031 5.596 0.049 7.446 0.025 2.301 0.022 1.294 0.006 0.530 0.017 1.754 0.059 4.487 0.070 7.993 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 15337 0.447 HD 15612 0.336 HD 15906 0.463 HD 16008 0.859 HD 16270HD 16275 1.028 0.791 HD 16297 0.933 HD 151504 1.208 HD 151692HD 0.220 151772HD 3.716 151877HD 0.875 151995HD 0.627 152433HD 2.178 152446HD 5.153 152533 0.214 HD 152555HD 2.382 153075HD 3.891 153276 1.265 HD 153458HD 1.507 153627HD 2.793 155060HD 3.327 155423HD 5.036 155717HD 0.186 155968HD 0.996 156079 2.239 HD 156365HD 5.273 156517 0.301 HD 157466HD 4.836 157668HD 0.257 158783 3.358 HD 159063 4.228 HD 160836HD 0.272 161050HD 3.452 161098HD 1.968 161256HD 1.014 161555HD 2.667 161566 5.273 HD 163436 0.252 HD 163102HD 3.207 163153 4.754 113 0.002 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.000 0.011 0.004 0.009 0.003 0.082 0.002 0.057 0.003 0.042 0.053 0.003 0.081 0.002 0.037 0.0020.001 0.053 0.001 0.010 0.003 0.012 0.001 0.067 0.021 0.0020.001 0.051 0.001 0.028 0.002 0.013 0.001 0.034 0.002 0.023 0.045 0.002 0.046 0.0020.002 0.033 0.002 0.051 0.001 0.040 0.002 0.013 0.001 0.039 0.001 0.014 0.001 0.026 0.014 0.0010.002 0.019 0.001 0.035 0.002 0.013 0.045 0.0010.002 0.018 0.001 0.044 0.001 0.012 0.001 0.015 0.001 0.025 0.001 0.017 0.001 0.032 0.018 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.004 0.036 0.147 0.265 0.0650.004 0.182 0.004 0.037 0.114 0.038 0.009 0.219 0.036 0.067 0.124 0.065 0.178 0.170 0.277 0.003 0.031 0.0720.041 0.193 0.056 0.142 0.026 0.187 0.049 0.110 0.038 0.173 0.005 0.139 0.026 0.044 0.005 0.125 0.014 0.044 0.005 0.091 0.049 0.048 0.155 0.0190.005 0.093 0.028 0.044 0.010 0.118 0.050 0.079 0.007 0.150 0.053 0.057 0.005 0.147 0.005 0.040 0.013 0.049 0.006 0.093 0.020 0.054 0.006 0.110 0.007 0.056 0.031 0.061 0.116 0.0050.046 0.047 0.155 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.386 1.718 0.2840.015 1.208 0.211 0.475 1.925 0.011 0.178 0.3730.181 1.303 0.344 0.933 0.111 1.222 0.236 0.699 0.157 1.141 0.018 0.904 0.162 0.249 0.792 0.014 0.205 0.019 0.216 0.136 0.800 0.386 1.522 0.050 0.407 0.0880.028 0.584 0.130 0.258 0.065 0.752 0.180 0.473 0.038 1.000 0.154 0.355 0.020 1.027 0.033 0.235 0.085 0.296 0.599 0.287 1.209 0.0270.203 0.286 1.005 0.0230.074 0.257 0.578 0.039 0.324 0.0380.041 0.335 0.157 0.364 0.030 0.743 0.197 0.278 1.036 0.106 0.699 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.017 0.338 0.131 2.702 0.014 0.391 0.0830.020 1.942 0.027 0.428 0.438 0.047 1.287 0.123 2.292 0.037 0.729 0.045 0.980 0.075 1.889 0.108 3.050 0.0700.060 2.066 0.082 1.583 0.040 2.077 0.077 1.161 0.058 1.731 0.031 1.431 0.071 0.477 1.360 0.0230.072 0.518 1.647 0.0280.061 0.479 0.976 0.0240.039 0.533 0.034 1.302 0.059 0.858 0.029 1.548 0.064 0.633 0.018 1.923 0.027 0.457 0.062 0.549 0.021 1.010 0.593 0.0320.030 0.595 0.060 0.652 0.017 1.284 0.516 0.038 1.142 0.058 1.636 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.470 6.497 0.062 0.686 0.228 4.499 0.213 6.187 0.026 0.770 0.115 4.277 0.064 0.855 0.041 0.819 0.070 2.862 0.119 4.965 0.084 1.546 0.082 2.126 0.058 0.994 0.073 2.679 0.093 4.054 0.148 3.271 0.254 4.430 0.164 2.535 0.122 3.991 0.127 3.144 0.042 0.984 0.135 2.981 0.031 1.100 0.080 3.729 0.052 0.965 0.076 2.144 0.090 1.852 0.154 3.548 0.091 1.312 0.214 3.451 0.041 0.968 0.052 1.130 0.074 2.167 0.057 1.255 0.055 1.275 0.060 1.403 0.125 2.701 0.064 1.048 0.086 3.476 0.082 2.556 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.480 8.943 0.212 8.914 0.1260.025 6.233 0.031 1.264 0.140 1.232 7.156 0.030 0.983 0.1750.105 6.503 0.120 4.857 0.137 6.002 0.154 3.633 0.093 5.753 0.035 4.187 0.083 1.379 0.040 4.077 0.064 1.412 3.042 0.029 1.057 0.124 4.199 0.052 2.165 0.0750.042 3.056 0.092 1.429 0.067 3.962 0.121 2.563 0.045 5.076 0.133 1.948 0.036 4.942 0.043 1.365 0.095 1.560 0.065 2.981 0.079 1.728 3.721 0.126 5.947 0.0360.124 1.598 5.425 0.0480.048 1.798 0.073 1.912 0.055 3.759 0.156 1.477 5.165 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.138 10.856 0.044 8.853 0.0570.027 7.193 0.011 1.501 0.071 1.425 8.451 0.043 5.163 0.026 2.478 0.070 7.930 0.0460.031 6.538 0.047 4.362 0.055 6.977 0.016 5.307 0.029 1.451 0.012 4.526 0.024 1.691 0.014 3.491 0.053 1.862 6.409 0.014 1.082 0.064 6.015 0.013 1.167 0.0340.016 4.761 0.049 2.801 6.259 0.0400.014 5.552 0.017 1.450 0.015 2.025 0.019 3.046 0.035 2.221 0.016 4.526 0.021 2.162 2.487 0.0510.012 3.891 1.697 0.038 2.310 0.064 7.193 0.055 6.494 0.0310.014 3.789 1.710 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.043 4.828 0.161 10.016 0.048 7.654 0.0360.016 3.359 0.044 3.766 0.057 5.104 3.980 0.011 0.745 0.095 6.937 0.010 0.685 0.0510.024 5.648 0.011 1.486 0.067 1.127 6.987 0.041 4.245 0.026 1.853 0.0350.015 3.698 0.032 1.690 5.310 0.0330.011 3.980 0.993 0.0610.015 3.664 1.342 0.041 2.051 0.045 6.981 0.0110.022 0.847 0.014 2.883 0.026 1.306 0.017 2.606 0.043 1.472 5.200 0.037 5.969 0.0240.021 1.853 0.024 1.599 0.022 2.013 0.019 3.766 0.029 1.754 0.027 2.312 0.018 2.228 1.472 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 17037 5.156 HD 16536HD 16623 0.884 0.762 HD 16714 1.072 HD 17439 0.806 HD 17548 1.466 HD 17190 1.466 HD 17970HD 18001 1.143 0.951 HD 163489 2.361 HD 168769 0.368 HD 164595 3.484 HD 166435 4.542 HD 167389 2.793 HD 173885 4.899 HD 168870HD 0.415 168871HD 6.713 169586 5.177 HD 170493HD 1.502 170778HD 2.433 171067HD 2.976 171665HD 2.366 171825 0.414 HD 171942HD 0.748 172513HD 1.426 172568HD 0.916 173701 2.935 HD 174153 2.547 HD 174457HD 2.402 174545HD 0.828 174912 3.484 HD 175518HD 2.219 176535HD 0.444 176666HD 1.277 176986HD 0.748 177122HD 1.289 177409HD 2.366 178904HD 1.043 179346 1.563 HD 180684 4.000 114 APPENDIX D. APENDIX 0.001 0.002 0.001 0.001 0.002 0.002 0.003 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.003 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.002 0.016 0.001 0.045 0.019 0.0010.001 0.020 0.001 0.019 0.002 0.026 0.001 0.045 0.001 0.022 0.002 0.011 0.001 0.037 0.003 0.013 0.002 0.060 0.036 0.0010.003 0.017 0.003 0.064 0.070 0.002 0.046 0.0010.002 0.012 0.043 0.0050.001 0.112 0.002 0.035 0.003 0.032 0.064 0.0010.001 0.029 0.002 0.010 0.001 0.044 0.002 0.013 0.001 0.040 0.000 0.014 0.003 0.007 0.063 0.0000.001 0.009 0.002 0.013 0.002 0.034 0.001 0.041 0.023 0.000 0.009 0.000 0.008 0.001 0.022 0.002 0.047 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0070.086 0.059 0.107 0.212 0.008 0.244 0.010 0.067 0.010 0.073 0.079 0.007 0.058 0.053 0.152 0.0690.007 0.151 0.004 0.064 0.032 0.040 0.142 0.1580.030 0.377 0.029 0.114 0.084 0.112 0.211 0.0030.005 0.031 0.023 0.041 0.025 0.111 0.010 0.140 0.017 0.075 0.004 0.098 0.051 0.034 0.151 0.003 0.031 0.0340.005 0.126 0.049 0.003 0.029 0.0410.010 0.140 0.004 0.075 0.039 0.0700.031 0.206 0.008 0.121 0.069 0.047 0.149 0.0050.036 0.047 0.004 0.132 0.003 0.044 0.089 0.024 0.218 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.042 0.360 0.211 0.986 0.3490.048 1.009 0.019 0.375 0.163 0.227 0.901 0.7880.161 2.806 0.135 0.712 0.377 0.707 1.390 0.011 0.176 0.1490.031 0.809 0.282 0.010 0.163 0.011 0.176 0.0620.061 0.438 0.181 0.485 0.064 0.907 0.016 0.453 0.234 0.3480.140 1.435 0.050 0.744 0.405 0.154 0.995 0.0390.338 0.355 0.497 1.399 0.046 1.732 0.387 0.021 0.250 0.0120.183 0.197 0.028 1.044 0.154 0.282 0.023 0.854 0.007 0.252 0.199 0.139 1.465 0.1210.062 0.688 0.071 0.922 0.091 0.459 0.626 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0420.038 0.797 0.061 0.845 1.523 0.026 0.645 0.090 1.557 0.0180.118 0.665 0.105 2.226 0.028 2.644 0.711 0.0600.027 1.642 0.023 0.729 0.065 0.436 1.465 0.1410.042 4.017 0.044 1.298 0.093 1.212 2.259 0.014 0.476 0.0160.058 0.385 0.021 1.645 0.527 0.017 0.356 0.0540.068 1.212 0.030 1.403 0.048 0.807 1.077 0.0610.021 1.336 0.548 0.012 0.338 0.016 0.355 0.0290.019 0.816 0.440 0.1080.063 2.305 0.029 1.274 0.742 0.069 1.494 0.0560.024 1.471 0.009 0.499 0.073 0.259 2.073 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.178 8.977 0.097 1.325 0.167 3.624 0.1630.073 3.640 0.045 1.486 0.204 0.926 3.360 0.0820.105 2.689 0.136 2.644 5.053 0.054 0.942 0.042 0.667 0.1430.047 2.884 1.145 0.042 0.643 0.047 0.659 0.0550.082 1.694 0.177 1.793 0.052 3.335 0.052 1.730 0.913 0.1470.150 4.875 0.063 2.862 1.553 0.100 3.561 0.0580.274 1.253 0.313 4.915 0.078 5.722 1.526 0.0330.244 0.768 0.057 3.496 0.130 1.078 0.045 3.067 0.023 0.990 0.131 0.523 4.941 0.0550.122 2.541 0.047 3.191 0.092 1.637 2.263 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.286 12.856 0.059 1.855 0.157 5.484 0.0450.133 1.750 6.759 0.1270.060 5.199 0.026 1.990 0.112 1.298 4.821 0.1220.111 3.885 0.208 3.694 7.052 0.051 1.324 0.024 0.980 0.0790.106 3.533 4.561 0.0940.033 4.088 1.559 0.022 0.893 0.018 0.886 0.0590.052 2.470 0.107 2.477 0.043 4.807 0.037 2.436 1.289 0.1810.109 6.955 0.036 3.870 2.199 0.111 5.151 0.1740.040 8.104 2.017 0.0230.149 1.059 0.030 5.399 0.099 1.468 0.035 4.540 0.014 1.278 0.132 0.756 7.089 0.0520.090 2.443 3.235 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.116 15.534 0.019 2.682 0.0130.050 2.050 0.056 6.882 0.013 9.456 2.078 0.020 2.358 0.039 5.895 0.0550.021 6.560 0.017 2.518 0.075 1.413 6.088 0.0480.037 4.909 0.064 4.464 8.703 0.011 1.494 0.007 1.122 0.0240.041 3.586 0.020 5.471 0.053 2.809 4.056 0.013 1.046 0.0390.030 4.872 1.876 0.018 0.987 0.0170.011 2.430 1.534 0.0690.027 8.552 0.010 3.934 1.935 0.050 6.027 0.0200.058 2.955 6.111 0.0410.008 5.366 0.012 1.321 0.058 0.861 7.977 0.0130.042 1.181 0.011 6.213 1.548 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.026 2.208 0.036 4.206 0.0390.025 6.024 0.018 2.284 0.089 0.941 5.444 0.101 11.479 0.0250.027 4.245 1.640 0.013 0.666 0.0140.014 1.213 1.202 0.0620.021 6.791 0.007 1.955 0.755 0.031 5.394 0.0230.023 2.062 0.040 2.167 6.308 0.0140.041 1.432 0.024 3.597 0.010 6.791 0.937 0.0470.047 4.702 0.054 4.054 6.308 0.0500.005 4.487 0.014 0.565 0.050 0.658 5.709 0.011 1.127 0.0100.021 0.679 0.009 5.057 0.780 0.009 0.802 0.0190.051 1.747 0.012 4.405 0.069 2.187 3.836 0.010 0.692 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 1832 3.211 HD 18083 1.426 HD 18144 2.321 HD 18709HD 18719 2.742 0.975 HD 18777 0.339 HD 18386 0.776 HD 18838 0.472 HD 18822 0.361 HD 185295HD 1.227 185615HD 1.265 185720 4.346 HD 183870HD 1.714 184385HD 3.785 185283 0.400 HD 181144HD 4.189 181234HD 1.359 181249HD 0.494 181428 3.716 HD 181655 6.825 HD 183341HD 2.547 183650 3.648 HD 188510 0.735 HD 189004HD 0.345 189067 3.237 HD 188559HD 0.781 188641HD 2.768 188748HD 1.300 188815 2.898 HD 186061HD 0.578 186302 0.735 HD 187237HD 4.228 187456HD 0.874 187760 0.295 HD 187897 3.389 HD 189242HD 0.382 189625HD 2.717 189987HD 0.224 190204HD 0.383 190228 3.396 115 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.001 0.025 0.0010.001 0.011 0.001 0.009 0.001 0.009 0.003 0.020 0.002 0.043 0.002 0.036 0.005 0.043 0.001 0.098 0.010 0.0010.001 0.014 0.001 0.020 0.002 0.022 0.001 0.040 0.001 0.027 0.015 0.0020.001 0.044 0.002 0.026 0.001 0.040 0.001 0.014 0.002 0.019 0.002 0.040 0.001 0.036 0.001 0.011 0.025 0.0030.001 0.062 0.002 0.013 0.001 0.040 0.001 0.015 0.024 0.001 0.025 0.0010.001 0.014 0.003 0.013 0.055 0.0010.001 0.016 0.002 0.023 0.001 0.037 0.001 0.022 0.003 0.017 0.059 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.012 0.081 0.0050.009 0.047 0.010 0.067 0.040 0.070 0.015 0.129 0.005 0.089 0.004 0.050 0.003 0.036 0.004 0.034 0.035 0.0760.004 0.200 0.042 0.037 0.006 0.134 0.012 0.053 0.043 0.083 0.014 0.149 0.037 0.085 0.130 0.014 0.084 0.357 0.344 0.0080.043 0.062 0.030 0.142 0.036 0.119 0.143 0.0030.005 0.032 0.005 0.046 0.073 0.044 0.187 0.008 0.063 0.004 0.041 0.0380.029 0.135 0.004 0.122 0.011 0.039 0.006 0.078 0.015 0.050 0.033 0.077 0.010 0.126 0.006 0.074 0.092 0.054 0.198 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.064 0.509 0.0290.053 0.286 0.055 0.411 0.432 0.331 1.443 0.075 0.562 0.691 3.052 0.171 0.838 0.0120.013 0.189 0.046 0.199 0.159 0.378 0.146 0.860 0.172 0.754 0.955 0.0120.027 0.180 0.023 0.272 0.183 0.257 1.338 0.0840.031 0.610 0.014 0.284 0.205 0.046 0.382 0.013 0.214 0.2200.074 0.968 0.155 0.574 0.022 0.836 0.238 0.1730.132 0.940 0.021 0.776 0.071 0.236 0.033 0.498 0.045 0.288 0.132 0.493 0.059 0.806 0.036 0.470 0.202 0.329 1.401 0.1540.050 0.895 0.071 0.318 0.541 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.047 0.914 0.0180.023 0.528 0.032 0.744 0.055 0.781 1.374 0.0160.016 0.369 0.023 0.404 0.669 0.0350.031 0.972 0.023 0.558 0.392 0.012 0.404 0.0910.053 1.638 0.058 0.958 0.022 1.383 0.475 0.110 2.203 0.0760.017 1.442 0.043 0.944 0.922 0.036 0.908 0.138 3.886 0.0540.047 1.411 0.052 1.249 1.479 0.0180.024 0.356 0.026 0.546 0.081 0.501 1.875 0.026 0.679 0.0500.065 1.548 0.014 1.318 0.039 0.449 0.018 0.858 0.031 0.537 0.056 0.809 0.032 1.319 0.028 0.813 0.066 0.588 1.872 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.192 7.467 0.058 1.877 0.0420.058 1.088 0.065 1.527 1.533 0.029 0.847 0.225 4.608 0.112 1.950 0.206 2.978 0.0320.028 0.745 0.046 0.805 0.079 1.405 0.128 3.235 0.154 2.806 3.317 0.0220.030 0.714 0.061 1.064 0.129 0.982 4.373 0.0930.032 2.118 0.040 1.166 0.818 0.048 1.407 0.1740.071 3.410 0.201 1.999 0.051 2.984 0.937 0.1430.131 3.224 0.037 2.934 0.077 0.877 0.040 1.757 0.085 1.156 0.092 1.669 0.052 2.894 0.077 1.739 0.168 1.256 4.507 0.1550.040 3.173 0.102 1.014 1.953 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.235 10.450 0.059 2.716 0.0350.044 1.569 0.042 2.179 0.113 2.147 4.073 0.085 3.056 0.025 1.174 0.140 6.784 0.1080.038 4.433 1.503 0.069 2.774 0.0240.022 1.012 0.042 1.113 0.094 1.940 0.088 4.080 0.135 4.077 4.659 0.0140.069 0.924 0.032 1.543 0.134 1.406 6.091 0.0350.024 1.670 1.131 0.053 2.008 0.1050.064 4.724 0.125 2.945 0.024 4.281 1.316 0.0950.113 4.561 0.030 4.319 0.047 1.293 0.030 2.472 0.052 1.589 0.095 2.425 0.061 4.179 0.042 2.477 0.145 1.820 6.308 0.080 2.913 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.120 12.779 0.031 3.046 0.0300.020 1.911 0.016 2.633 0.037 2.419 5.120 0.011 1.088 0.0350.012 3.841 0.011 1.644 1.147 0.008 1.314 0.043 5.677 0.084 7.622 0.0530.015 5.873 0.031 1.779 3.608 0.025 3.276 0.0170.055 3.916 0.047 5.319 5.630 0.0120.014 0.873 0.014 1.837 0.050 1.438 7.259 0.0090.016 1.147 2.281 0.018 2.406 0.0680.044 5.756 0.012 5.096 0.017 1.571 0.014 2.816 0.022 1.616 0.037 2.824 0.027 4.912 0.032 3.140 0.062 2.291 7.518 0.0380.042 3.831 0.019 5.225 1.473 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.032 2.228 0.0110.078 1.261 0.031 5.945 0.118 5.104 11.801 0.0110.014 0.328 0.013 1.541 0.056 0.758 5.394 0.0190.024 1.614 0.018 2.167 0.023 1.690 4.054 0.0090.008 0.619 0.017 0.646 1.706 0.0470.009 3.766 0.011 0.840 0.608 0.022 1.940 0.0760.028 4.919 0.016 4.773 0.019 1.330 0.013 1.870 0.028 0.765 0.049 2.355 0.034 4.054 2.883 0.009 0.879 0.0250.056 4.698 0.051 4.168 0.014 4.528 1.009 0.089 6.080 0.0730.018 5.700 0.044 1.641 3.403 0.030 2.679 0.0410.057 2.321 6.108 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 19034 1.337 HD 19641 1.208 HD 19632 2.768 HD 19467 3.716 HD 19423 1.652 HD 190524HD 1.014 190613HD 1.325 190954HD 0.968 191022 2.501 HD 191847HD 0.315 191902HD 0.316 192117 0.933 HD 191033HD 2.571 191285HD 0.376 191797 0.312 HD 194717 0.490 HD 196384HD 3.063 196390 2.793 HD 195104HD 3.964 195145HD 0.976 195200 2.366 HD 192961HD 0.473 193017HD 4.235 193193HD 3.327 193307HD 7.982 193406HD 0.149 193795HD 0.928 193844HD 0.365 194035 3.063 HD 196397 0.523 HD 196800HD 3.178 197210HD 3.090 197300HD 0.851 197823HD 1.014 197921HD 0.355 198075HD 1.521 198089HD 2.667 199086HD 1.862 199289HD 1.725 199509 3.845 116 APPENDIX D. APENDIX 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.002 0.002 0.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.001 0.025 0.0010.001 0.024 0.001 0.016 0.001 0.015 0.001 0.010 0.001 0.018 0.026 0.0010.001 0.017 0.022 0.0010.001 0.019 0.013 0.0000.002 0.008 0.043 0.0030.001 0.065 0.001 0.013 0.001 0.016 0.001 0.028 0.001 0.024 0.028 0.0020.001 0.043 0.011 0.0010.001 0.009 0.013 0.0010.002 0.019 0.038 0.0020.001 0.044 0.002 0.012 0.003 0.053 0.002 0.068 0.001 0.035 0.028 0.0030.002 0.059 0.043 0.0020.000 0.036 0.009 0.0010.003 0.009 0.067 0.0010.001 0.019 0.015 0.004 0.055 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0050.011 0.051 0.013 0.077 0.006 0.084 0.054 0.0140.006 0.085 0.004 0.059 0.044 0.0030.051 0.027 0.142 0.0430.004 0.145 0.084 0.034 0.005 0.205 0.044 0.0040.007 0.035 0.013 0.058 0.003 0.083 0.005 0.032 0.045 0.006 0.053 0.0080.035 0.066 0.126 0.0820.044 0.187 0.046 0.146 0.005 0.144 0.042 0.0160.013 0.102 0.014 0.083 0.032 0.095 0.003 0.121 0.026 0.006 0.054 0.0030.107 0.029 0.222 0.1030.026 0.219 0.014 0.113 0.009 0.091 0.005 0.067 0.049 0.053 0.164 0.087 0.188 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.075 0.555 0.0380.024 0.340 0.009 0.248 0.205 0.154 0.940 0.0140.039 0.196 0.070 0.368 0.012 0.526 0.022 0.179 0.048 0.272 0.158 0.408 0.819 0.0350.039 0.323 0.328 0.058 0.474 0.063 0.545 0.033 0.294 0.0590.080 0.642 0.088 0.536 0.149 0.594 0.008 0.780 0.010 0.145 0.467 0.170 1.564 0.0220.036 0.245 0.320 0.012 0.191 0.393 1.344 0.226 0.932 0.3170.135 1.527 0.071 0.768 0.054 0.598 0.027 0.428 0.399 0.290 1.298 0.0270.211 0.235 1.093 0.212 0.934 0.154 0.947 0.238 1.344 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0290.023 0.596 0.604 0.039 0.848 0.054 0.908 0.033 0.931 0.0210.027 0.631 0.015 0.510 0.079 0.307 0.024 1.556 0.568 0.0280.020 0.476 0.582 0.025 0.396 0.087 2.246 0.0230.026 0.420 0.046 0.640 0.013 0.898 0.017 0.359 0.032 0.525 0.049 0.722 0.052 1.392 1.593 0.0170.063 0.465 1.747 0.083 1.557 0.063 1.497 0.0470.033 1.023 0.043 0.943 0.070 1.044 0.013 1.339 0.016 0.287 0.076 0.331 0.085 2.495 1.969 0.1150.042 2.307 0.040 1.238 0.028 0.963 0.022 0.766 0.084 0.535 1.997 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.037 0.810 0.046 1.231 0.050 1.235 0.063 1.758 0.105 2.030 0.177 1.986 0.054 1.362 0.070 1.001 0.044 0.644 0.212 3.299 0.051 1.119 0.077 2.238 0.037 0.970 0.039 1.221 0.024 0.825 0.143 4.733 0.088 1.348 0.050 1.903 0.042 0.695 0.028 1.034 0.088 1.495 0.161 2.967 0.080 3.338 0.233 5.180 0.043 1.026 0.192 3.805 0.149 3.354 0.103 3.271 0.086 1.968 0.051 2.201 0.135 2.818 0.023 0.606 0.023 0.653 0.183 5.185 0.158 4.409 0.111 2.551 0.139 2.076 0.070 1.455 0.043 1.143 0.227 4.328 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.089 2.846 0.024 1.168 0.047 2.023 0.061 2.572 0.046 1.848 0.035 1.758 0.062 2.539 0.086 2.789 0.035 1.895 0.025 1.329 0.019 0.946 0.109 4.707 0.040 1.543 0.089 3.104 0.053 2.749 0.056 3.049 0.029 1.308 0.039 1.755 0.029 1.148 0.109 6.478 0.025 0.968 0.030 1.471 0.046 2.161 0.091 4.164 0.133 4.812 0.194 7.013 0.095 3.667 0.087 3.087 0.037 1.361 0.150 5.494 0.107 4.892 0.101 4.672 0.079 3.847 0.021 0.854 0.029 0.876 0.164 7.343 0.160 6.581 0.041 2.106 0.050 1.611 0.124 6.159 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.031 3.578 0.023 2.016 0.026 1.241 0.025 2.554 0.022 3.163 0.008 1.039 0.017 2.103 0.016 2.101 0.014 2.602 0.028 3.452 0.010 1.376 0.027 1.054 0.053 5.922 0.009 1.482 0.037 4.011 0.022 3.198 0.014 3.055 0.032 4.497 0.006 1.201 0.018 2.243 0.020 1.175 0.032 6.242 0.014 1.792 0.021 2.655 0.043 5.215 0.041 5.563 0.053 8.108 0.047 4.903 0.040 3.957 0.016 2.371 0.009 1.387 0.064 6.787 0.042 5.522 0.049 5.745 0.008 0.928 0.016 0.973 0.105 8.882 0.079 8.296 0.020 1.864 0.081 7.114 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.022 3.372 0.026 1.246 0.008 0.758 0.025 0.965 0.023 0.932 0.034 2.703 0.026 2.421 0.007 0.555 0.017 1.486 0.027 2.312 0.015 1.644 0.020 1.770 0.014 1.472 0.038 3.047 0.036 5.806 0.007 0.643 0.025 3.980 0.024 2.376 0.013 1.536 0.035 3.499 0.007 0.571 0.014 0.591 0.004 0.432 0.024 1.977 0.023 0.721 0.021 3.169 0.056 4.698 0.025 4.487 0.029 5.700 0.034 5.151 0.054 4.312 0.018 1.786 0.021 1.459 0.085 5.866 0.007 0.685 0.046 6.917 0.051 4.528 0.032 5.296 0.119 7.612 0.083 7.811 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 2014 0.272 HD 20029 3.891 HD 20201 3.035 HD 20492 0.306 HD 20407 4.972 HD 20619 3.559 HD 200565HD 1.024 200633 1.072 HD 200505HD 0.741 200538 2.042 HD 199868 2.345 HD 199933HD 0.557 200083HD 0.339 200143 0.545 HD 200349 0.285 HD 202819HD 0.170 202871 1.312 HD 202389HD 0.353 202575 1.416 HD 201161HD 0.489 201203HD 1.845 201219 1.387 HD 201422HD 0.900 201496 1.479 HD 202108 2.742 HD 205294 4.990 HD 204287HD 2.742 204385 3.421 HD 203335HD 2.717 203384HD 1.289 203413HD 0.686 203432HD 1.915 203771HD 0.291 203897 0.295 HD 204277 5.604 HD 205536HD 3.178 205591HD 3.716 206116HD 2.945 206163HD 0.968 206172 0.875 117 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.003 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.001 0.023 0.001 0.014 0.002 0.029 0.001 0.030 0.001 0.013 0.022 0.0010.001 0.010 0.024 0.0020.002 0.034 0.003 0.043 0.056 0.0030.001 0.066 0.002 0.016 0.001 0.051 0.002 0.026 0.002 0.037 0.052 0.0020.002 0.056 0.045 0.001 0.018 0.002 0.040 0.0010.002 0.016 0.047 0.0020.001 0.032 0.001 0.016 0.001 0.026 0.001 0.010 0.001 0.021 0.030 0.0010.003 0.010 0.060 0.0010.001 0.013 0.013 0.0010.000 0.010 0.008 0.001 0.028 0.0010.001 0.010 0.022 0.0010.001 0.015 0.025 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0030.012 0.033 0.009 0.083 0.005 0.070 0.045 0.0260.037 0.113 0.076 0.140 0.194 0.0590.055 0.183 0.073 0.149 0.006 0.202 0.053 0.0220.004 0.102 0.010 0.042 0.075 0.007 0.062 0.020 0.099 0.037 0.130 0.0060.042 0.053 0.157 0.0030.076 0.036 0.032 0.199 0.005 0.112 0.052 0.0110.035 0.082 0.059 0.125 0.004 0.170 0.005 0.043 0.047 0.063 0.174 0.0040.003 0.036 0.031 0.018 0.092 0.003 0.031 0.0190.004 0.102 0.009 0.038 0.072 0.014 0.094 0.010 0.068 0.0050.013 0.052 0.087 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.1860.314 0.923 1.305 0.103 0.733 0.1000.022 0.660 0.057 0.252 0.466 0.0410.036 0.362 0.215 0.322 1.020 0.0290.112 0.256 0.640 0.163 0.837 0.079 0.542 0.058 0.443 0.012 0.185 0.0600.137 0.499 0.217 0.800 0.027 1.137 0.032 0.249 0.014 0.277 0.011 0.203 0.176 0.0360.314 0.314 1.160 0.175 1.039 0.377 1.446 0.433 1.316 0.011 0.178 0.1100.015 0.682 0.058 0.210 0.033 0.427 0.064 0.308 0.544 0.0320.087 0.296 0.606 0.065 0.440 0.323 1.330 0.138 0.769 0.014 0.195 0.088 0.602 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0150.097 0.525 1.067 0.048 0.892 0.035 0.781 0.0600.074 1.533 0.012 2.133 0.371 0.041 1.201 0.0270.084 0.596 1.853 0.076 1.653 0.090 2.246 0.0500.014 1.073 0.032 0.500 0.801 0.0260.026 0.672 0.060 0.589 0.105 1.668 2.541 0.059 1.371 0.0280.069 0.607 1.047 0.069 2.085 0.056 1.210 0.0390.056 0.876 0.065 1.291 0.023 1.801 0.024 0.516 0.018 0.520 0.021 0.413 0.017 0.355 0.398 0.018 0.349 0.0340.017 1.124 0.032 0.452 0.019 0.778 0.037 0.569 0.052 0.908 1.028 0.034 0.756 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.093 2.350 0.041 1.039 0.072 2.238 0.175 1.919 0.061 1.590 0.092 3.268 0.152 4.442 0.040 0.714 0.094 2.642 0.086 1.843 0.061 1.213 0.172 3.984 0.138 3.594 0.226 4.668 0.028 0.969 0.053 1.736 0.034 1.409 0.034 1.223 0.166 3.627 0.185 4.230 0.171 3.031 0.036 0.674 0.052 1.170 0.112 2.189 0.070 1.543 0.138 4.659 0.134 2.530 0.088 2.876 0.197 3.926 0.069 0.968 0.053 1.068 0.028 0.805 0.030 0.703 0.048 0.799 0.099 2.319 0.030 0.813 0.046 1.674 0.066 1.159 0.119 1.999 0.084 2.072 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.082 3.262 0.042 1.334 0.051 2.520 0.034 1.452 0.080 3.259 0.084 2.759 0.063 2.278 0.092 4.763 0.153 6.355 0.024 0.991 0.076 3.784 0.053 2.598 0.086 4.164 0.111 5.638 0.035 1.755 0.122 5.484 0.137 5.180 0.177 6.803 0.042 2.048 0.047 1.752 0.165 5.300 0.138 5.920 0.110 4.429 0.026 0.985 0.077 3.272 0.031 1.574 0.074 3.196 0.070 2.230 0.122 6.509 0.100 3.822 0.029 1.412 0.045 1.512 0.021 1.125 0.020 0.982 0.023 1.025 0.021 1.130 0.132 2.382 0.035 1.567 0.071 2.802 0.094 2.934 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.026 3.866 0.026 1.681 0.018 2.788 0.014 1.437 0.019 3.358 0.060 5.698 0.030 3.358 0.017 2.626 0.040 5.563 0.084 8.327 0.013 0.974 0.042 4.845 0.023 2.762 0.049 4.926 0.069 6.358 0.014 1.774 0.019 2.001 0.057 6.952 0.055 6.184 0.079 8.335 0.026 2.194 0.016 2.123 0.072 6.184 0.065 7.511 0.007 0.981 0.019 3.492 0.005 1.087 0.008 1.484 0.039 4.002 0.025 2.832 0.048 7.374 0.058 4.534 0.013 1.805 0.012 1.223 0.010 1.037 0.007 1.083 0.024 2.873 0.014 1.887 0.038 3.370 0.026 3.510 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.040 4.168 0.030 2.857 0.019 1.406 0.020 1.970 0.019 1.425 0.021 1.786 0.012 0.743 0.018 2.032 0.047 6.545 0.043 3.311 0.019 1.836 0.034 3.980 0.082 8.316 0.008 0.457 0.020 1.629 0.049 4.830 0.072 4.965 0.012 1.342 0.014 1.367 0.011 0.882 0.021 1.393 0.037 6.193 0.052 5.394 0.056 8.549 0.080 5.199 0.061 6.426 0.006 0.525 0.018 2.009 0.004 0.398 0.029 2.644 0.017 1.570 0.006 0.581 0.051 4.242 0.036 2.754 0.037 4.741 0.069 4.206 0.009 0.544 0.005 0.483 0.042 2.754 0.023 2.606 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 20852 5.083 HD 21132 1.950 HD 207699HD 0.332 207874 0.996 HD 207190HD 2.323 207583 1.033 HD 206374HD 2.323 206395HD 5.573 206630 0.212 HD 206332 2.692 HD 209566HD 0.891 209653 4.000 HD 208998HD 3.549 209253 6.055 HD 207970HD 1.622 208068HD 1.014 208272 1.071 HD 208573HD 0.697 208672HD 1.133 208704HD 3.327 208776 4.112 HD 210975HD 0.246 211080 2.747 HD 210667HD 2.478 210752 2.898 HD 209742HD 0.828 209875HD 3.297 210272HD 3.007 210312HD 0.813 210320HD 0.769 210329HD 0.463 210507HD 0.241 210573 0.206 HD 211188 0.252 HD 211369HD 0.982 211583HD 0.155 211681HD 1.573 212036HD 0.933 212231HD 1.746 212291 1.549 118 APPENDIX D. APENDIX 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.001 0.012 0.008 0.0020.003 0.039 0.001 0.057 0.002 0.027 0.002 0.047 0.000 0.048 0.001 0.010 0.001 0.018 0.001 0.014 0.020 0.0010.001 0.018 0.003 0.030 0.001 0.063 0.001 0.031 0.013 0.0010.002 0.016 0.002 0.041 0.000 0.043 0.008 0.0000.001 0.008 0.001 0.029 0.001 0.022 0.002 0.022 0.001 0.047 0.004 0.020 0.001 0.078 0.012 0.0010.001 0.010 0.001 0.010 0.001 0.022 0.000 0.020 0.002 0.005 0.002 0.042 0.001 0.044 0.001 0.030 0.001 0.010 0.016 0.0030.001 0.073 0.015 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0060.021 0.055 0.087 0.101 0.025 0.213 0.004 0.102 0.039 0.040 0.077 0.130 0.014 0.190 0.088 0.004 0.037 0.0040.007 0.036 0.038 0.059 0.041 0.138 0.003 0.154 0.028 0.0030.018 0.025 0.100 0.0410.059 0.154 0.004 0.162 0.008 0.033 0.004 0.061 0.008 0.042 0.003 0.063 0.003 0.034 0.011 0.032 0.008 0.075 0.002 0.061 0.039 0.022 0.047 0.139 0.020 0.142 0.004 0.098 0.007 0.037 0.055 0.010 0.072 0.0100.055 0.071 0.008 0.158 0.211 0.062 0.004 0.263 0.147 0.041 0.005 0.248 0.048 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.091 0.659 0.034 0.331 0.016 0.208 0.0150.045 0.205 0.186 0.354 0.223 0.883 0.009 1.012 0.159 0.375 1.481 0.2210.077 1.321 0.199 0.590 0.266 1.039 0.014 1.093 0.045 0.191 0.021 0.371 0.044 0.237 0.013 0.403 0.012 0.197 0.062 0.186 0.044 0.472 0.006 0.371 0.161 0.122 0.212 0.926 0.918 0.0180.154 0.225 0.834 0.110 0.685 0.026 0.440 0.094 0.641 0.0600.224 0.441 0.046 1.077 0.558 0.373 0.022 1.996 0.551 0.239 0.030 1.790 0.280 0.008 0.144 0.104 0.655 0.043 0.336 0.015 0.211 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0390.106 1.088 2.370 0.0680.037 1.980 0.060 0.990 1.611 0.024 0.594 0.016 0.424 0.0200.079 0.439 1.369 0.051 1.105 0.0130.028 0.429 0.053 0.662 0.068 1.481 0.014 1.628 0.311 0.071 0.776 0.057 1.085 0.012 0.274 0.0620.017 1.760 0.035 0.403 0.015 0.654 0.028 0.509 0.017 0.699 0.012 0.400 0.033 0.364 0.032 0.805 0.022 0.668 0.059 0.237 0.053 1.424 0.049 1.537 1.111 0.030 0.605 0.022 0.433 0.0400.059 0.768 0.021 1.642 0.098 0.662 0.019 3.044 0.086 0.509 0.027 2.833 0.522 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.065 2.333 0.155 5.025 0.243 4.352 0.083 2.023 0.086 3.610 0.115 3.760 0.040 0.730 0.046 1.283 0.029 0.833 0.039 0.923 0.162 2.948 0.167 2.394 0.032 0.773 0.060 1.299 0.133 3.191 0.146 3.527 0.027 0.619 0.052 1.647 0.173 2.303 0.052 1.655 0.077 3.561 0.020 0.559 0.048 1.394 0.043 0.971 0.102 1.460 0.058 0.761 0.038 0.713 0.057 1.711 0.071 1.427 0.030 0.437 0.085 3.209 0.083 3.416 0.098 2.238 0.050 1.256 0.028 0.813 0.077 1.402 0.175 6.280 0.048 0.958 0.139 5.839 0.048 1.108 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.233 9.068 0.202 8.370 0.0680.143 3.381 7.013 0.045 1.867 0.031 1.207 0.095 3.298 0.0280.044 1.136 0.091 1.813 0.127 4.388 0.020 5.096 0.878 0.1430.067 6.273 0.107 2.891 0.100 5.165 0.026 5.208 0.092 1.042 0.028 1.939 0.070 1.372 0.023 2.091 0.023 1.062 0.065 0.979 0.040 2.383 0.015 1.935 0.095 0.668 0.132 4.625 0.079 4.979 3.133 0.0270.088 1.259 4.183 0.020 1.142 0.076 2.463 0.079 3.182 0.0550.108 2.368 0.044 5.223 2.098 0.031 1.382 0.044 1.527 0.022 0.809 0.060 1.857 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.137 12.047 0.117 10.967 0.0300.059 4.116 8.152 0.105 7.750 0.019 2.313 0.010 1.250 0.0400.017 3.827 0.049 1.381 4.783 0.0080.011 1.173 0.054 1.985 0.044 5.225 0.007 5.730 0.906 0.014 0.811 0.0590.018 6.021 0.018 1.217 0.025 2.270 0.024 1.444 0.008 2.609 0.015 1.070 0.028 1.189 0.018 3.063 0.008 2.395 0.046 0.717 0.060 5.756 0.027 6.253 3.747 0.0370.058 3.462 6.470 0.0160.018 1.229 2.178 0.021 2.861 0.0210.051 2.835 0.021 6.524 2.533 0.012 1.404 0.015 1.847 0.029 4.071 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.148 13.549 0.0180.070 3.244 6.367 0.1240.040 7.584 0.060 2.703 5.700 0.024 2.089 0.009 0.744 0.0400.017 2.910 0.051 0.948 3.531 0.0070.011 0.597 0.053 1.180 0.051 3.908 0.006 4.744 0.501 0.018 2.089 0.033 3.104 0.010 0.496 0.0540.011 4.245 0.021 0.991 0.025 1.923 0.033 0.917 0.006 2.654 0.013 0.581 0.020 0.839 0.023 3.019 0.006 1.995 0.030 0.449 0.063 5.006 0.014 5.953 3.311 0.0170.023 0.871 1.923 0.0250.033 2.312 0.025 5.555 2.228 0.0110.121 0.854 0.019 11.585 1.614 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 21251 0.364 HD 21313 1.325 HD 21774 1.231 HD 21759 0.269 HD 213519HD 213575 2.005 3.820 HD 214094HD 214385 5.177 HD 214557 1.683 4.075 HD 213628HD 213852 1.668 HD 213941 0.464 2.138 HD 212563HD 212580 0.303 HD 212708 0.584 HD 212801 2.219 HD 212918 2.760 0.248 HD 217618 1.779 HD 214759HD 214867 2.260 HD 214954 0.611 HD 214998 1.122 HD 215625 0.448 HD 215722 1.779 HD 215902 0.235 HD 215906 0.485 HD 216008 2.178 HD 216215 1.231 HD 216275 0.232 HD 216625 3.267 HD 217165 4.247 2.138 HD 217221HD 217395 0.457 1.253 HD 217958HD 218133 1.374 HD 218168 3.582 HD 218235 1.374 HD 10.048 218249HD 218261 0.448 HD 218340 8.205 1.005 119 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.002 0.029 0.002 0.054 0.001 0.036 0.001 0.017 0.003 0.022 0.054 0.0010.001 0.033 0.027 0.0020.001 0.039 0.001 0.012 0.010 0.0010.001 0.030 0.002 0.011 0.003 0.042 0.002 0.068 0.002 0.040 0.050 0.0010.001 0.017 0.024 0.0010.002 0.015 0.034 0.0010.001 0.026 0.017 0.0010.003 0.012 0.001 0.063 0.001 0.027 0.001 0.017 0.000 0.033 0.009 0.0010.002 0.018 0.044 0.0010.001 0.024 0.028 0.0010.001 0.016 0.014 0.001 0.020 0.0010.002 0.019 0.037 0.0000.001 0.009 0.009 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0240.019 0.105 0.018 0.093 0.077 0.098 0.185 0.0330.004 0.123 0.003 0.038 0.032 0.0060.013 0.053 0.022 0.085 0.004 0.102 0.034 0.0100.049 0.071 0.005 0.180 0.030 0.050 0.116 0.0270.007 0.119 0.059 0.0170.006 0.091 0.055 0.0070.047 0.058 0.004 0.147 0.096 0.040 0.209 0.1060.037 0.231 0.055 0.133 0.012 0.166 0.014 0.083 0.095 0.044 0.141 0.0050.004 0.052 0.038 0.006 0.063 0.0060.024 0.055 0.003 0.108 0.008 0.030 0.036 0.066 0.122 0.018 0.095 0.0030.003 0.027 0.031 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0170.012 0.215 0.189 0.147 0.807 0.0550.304 0.446 0.032 1.245 0.172 0.297 0.075 0.750 0.037 0.596 0.326 0.3510.131 1.349 0.044 0.743 0.360 0.106 0.587 0.093 0.647 0.116 0.699 0.4790.143 1.622 0.193 0.853 0.069 1.144 0.084 0.532 0.033 0.603 0.016 0.308 0.220 0.0130.200 0.200 0.929 0.080 0.556 0.111 0.660 0.043 0.321 0.0370.092 0.322 0.011 0.684 0.051 0.171 0.151 0.407 0.009 0.776 0.012 0.149 0.175 0.4070.090 1.470 0.631 0.221 0.988 0.014 0.224 0.039 0.339 0.038 0.382 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.1060.066 2.058 1.283 0.041 1.032 0.041 1.038 0.0220.018 0.449 0.052 0.377 1.146 0.056 1.309 0.0130.101 0.407 1.540 0.033 0.900 0.046 1.147 0.0270.091 0.788 0.023 1.921 0.058 0.550 0.041 1.385 0.018 0.987 0.024 0.598 0.578 0.023 0.628 0.0660.041 2.292 1.011 0.080 1.647 0.014 0.473 0.0960.069 2.563 0.065 1.377 0.036 1.664 0.047 0.860 0.029 0.985 0.014 0.573 0.030 0.450 0.645 0.0510.047 0.604 0.012 1.116 0.032 0.343 0.068 0.754 0.018 1.345 0.013 0.298 0.028 0.351 0.731 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.055 1.655 0.228 4.423 0.144 2.751 0.100 1.398 0.051 2.099 0.092 2.245 0.032 0.895 0.033 0.719 0.059 2.436 0.104 2.886 0.181 5.223 0.030 0.788 0.245 3.218 0.112 1.980 0.107 2.388 0.212 4.099 0.057 1.084 0.158 2.726 0.076 2.208 0.042 1.252 0.053 1.231 0.050 1.211 0.207 4.808 0.180 2.202 0.172 3.338 0.053 0.925 0.167 3.108 0.176 3.904 0.112 1.977 0.071 2.132 0.095 1.207 0.062 0.883 0.099 1.370 0.109 2.443 0.029 0.660 0.063 1.453 0.165 2.843 0.031 0.591 0.030 0.686 0.054 1.444 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.052 2.297 0.155 5.758 0.181 6.525 0.102 3.904 0.051 1.966 0.063 3.070 0.095 3.211 0.026 1.205 0.030 1.045 0.080 3.564 0.088 4.164 0.242 7.542 0.091 4.532 0.137 5.622 0.020 1.115 0.102 4.838 0.068 2.891 0.080 3.420 0.044 1.557 0.074 3.728 0.072 3.173 0.041 1.734 0.046 1.752 0.036 1.763 0.068 3.597 0.020 0.932 0.156 6.797 0.153 3.098 0.119 4.659 0.030 1.251 0.069 2.654 0.093 3.197 0.044 1.746 0.034 1.269 0.039 1.951 0.045 2.002 0.092 4.063 0.019 0.829 0.025 0.973 0.045 2.024 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.020 2.448 0.063 7.022 0.014 1.822 0.092 8.207 0.023 4.120 0.019 2.424 0.034 3.417 0.043 3.827 0.014 1.320 0.019 1.238 0.036 4.568 0.042 5.050 0.070 7.728 0.040 5.202 0.055 6.452 0.023 3.125 0.020 1.208 0.052 5.830 0.034 3.685 0.032 4.131 0.033 4.493 0.035 3.884 0.017 2.109 0.016 2.076 0.025 1.974 0.026 3.877 0.012 1.037 0.021 2.343 0.094 8.063 0.033 3.771 0.045 5.604 0.021 1.428 0.030 3.730 0.036 2.089 0.017 1.381 0.028 2.369 0.040 4.752 0.011 0.804 0.017 1.125 0.018 2.426 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.053 4.528 0.018 1.445 0.043 6.791 0.017 1.513 0.038 3.564 0.048 3.801 0.099 9.053 0.016 2.228 0.024 2.032 0.035 2.488 0.050 3.133 0.010 0.758 0.013 1.037 0.019 4.324 0.064 5.099 0.048 4.352 0.050 5.444 0.013 2.443 0.019 3.220 0.032 1.964 0.013 0.711 0.047 5.151 0.024 3.664 0.039 3.510 0.020 1.803 0.019 1.754 0.021 1.367 0.030 2.805 0.009 0.643 0.034 1.527 0.035 3.973 0.008 0.405 0.098 6.791 0.029 3.220 0.061 4.874 0.021 1.143 0.014 0.929 0.029 2.015 0.014 0.926 0.023 1.995 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 21977 1.277 HD 21938 2.099 HD 22177 2.099 HD 22104 1.072 HD 22282 1.199 HD 219420HD 6.728 219538 1.102 HD 219249 1.452 HD 218750HD 0.368 218885HD 0.689 219172 2.925 HD 218730 2.871 HD 221974HD 0.352 222033 3.207 HD 221638 2.643 HD 220256HD 0.735 220367HD 4.635 220456HD 0.942 220507HD 2.080 220894 2.595 HD 221343 1.052 HD 223171HD 4.112 223238 1.987 HD 223084HD 3.297 223121 0.583 HD 222335HD 2.687 222422HD 2.588 222480HD 3.389 222595HD 1.413 222669HD 2.023 222697HD 1.168 222721 0.523 HD 223282HD 0.769 223691HD 1.607 224047HD 0.333 224063HD 1.413 224156HD 2.363 224230HD 0.185 224287HD 0.523 224393 1.265 120 APPENDIX D. APENDIX 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.000 0.009 0.0010.001 0.013 0.000 0.020 0.001 0.005 0.002 0.013 0.002 0.046 0.003 0.036 0.057 0.0010.001 0.023 0.011 0.0010.001 0.013 0.020 0.0010.002 0.029 0.036 0.0010.001 0.018 0.001 0.018 0.001 0.011 0.002 0.013 0.003 0.032 0.056 0.0020.004 0.040 0.088 0.0020.001 0.045 0.002 0.033 0.000 0.041 0.007 0.0020.000 0.033 0.002 0.008 0.002 0.043 0.001 0.042 0.001 0.023 0.002 0.012 0.038 0.0010.001 0.016 0.019 0.001 0.023 0.001 0.020 0.000 0.010 0.0030.001 0.068 0.022 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0110.004 0.078 0.005 0.036 0.009 0.045 0.068 0.0030.004 0.028 0.007 0.040 0.059 0.0150.030 0.094 0.120 0.0360.152 0.132 0.008 0.287 0.007 0.064 0.060 0.0020.004 0.021 0.042 0.039 0.031 0.156 0.081 0.123 0.042 0.194 0.023 0.153 0.035 0.107 0.003 0.138 0.024 0.0060.008 0.056 0.030 0.063 0.003 0.114 0.028 0.012 0.080 0.009 0.068 0.0030.004 0.033 0.026 0.040 0.068 0.111 0.191 0.003 0.031 0.0970.010 0.234 0.076 0.0370.042 0.141 0.009 0.144 0.005 0.075 0.037 0.043 0.129 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.009 0.155 0.0180.037 0.236 0.091 0.373 0.163 0.607 0.759 0.1850.008 0.888 0.141 0.0260.006 0.407 0.020 0.123 0.214 0.222 0.152 1.001 0.382 0.773 0.249 1.325 0.108 0.981 0.661 0.018 0.206 0.024 0.260 0.062 0.491 0.067 0.513 0.0620.453 0.424 0.066 1.545 0.473 0.0450.013 0.360 0.022 0.189 0.126 0.228 0.303 0.700 1.273 0.009 0.181 0.553 2.018 0.048 0.389 0.142 0.883 0.0090.179 0.156 0.226 0.889 0.057 0.942 0.021 0.442 0.148 0.254 0.835 0.047 0.380 0.124 0.770 0.041 0.336 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0390.009 0.758 0.232 0.018 0.426 0.021 0.316 0.025 0.505 0.0180.029 0.493 0.040 0.700 0.055 0.999 0.035 1.344 0.874 0.0280.011 0.656 0.383 0.161 3.095 0.028 0.703 0.0500.009 1.502 0.058 0.279 1.400 0.0190.069 0.492 0.056 1.745 0.068 1.263 0.075 2.116 0.036 1.618 1.149 0.0100.070 0.306 1.487 0.033 0.688 0.042 1.402 0.030 0.880 0.0430.106 0.771 0.039 2.508 0.025 0.841 0.620 0.0290.055 0.460 0.095 1.171 2.068 0.020 0.339 0.0510.025 1.544 0.021 0.789 0.064 0.464 1.375 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.072 1.631 0.013 0.477 0.033 0.899 0.206 3.729 0.045 0.804 0.034 0.643 0.043 1.036 0.041 0.923 0.071 1.388 0.091 2.153 0.132 2.826 0.115 1.879 0.046 1.345 0.036 0.739 0.048 0.873 0.091 2.599 0.155 6.716 0.038 1.467 0.196 3.224 0.017 0.543 0.145 3.165 0.134 2.894 0.298 4.638 0.116 3.528 0.076 2.446 0.032 0.611 0.235 3.322 0.158 3.277 0.080 1.692 0.060 1.380 0.165 2.698 0.081 1.889 0.091 1.611 0.288 5.504 0.083 1.760 0.055 1.283 0.161 4.490 0.036 0.691 0.051 0.980 0.130 3.042 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.027 0.927 0.059 2.307 0.020 0.692 0.027 1.233 0.106 5.323 0.089 4.039 0.021 1.100 0.028 1.495 0.053 1.346 0.084 2.036 0.083 2.978 0.073 3.976 0.063 2.549 0.049 1.863 0.023 1.022 0.038 1.295 0.086 3.670 0.164 6.487 0.304 9.365 0.049 2.087 0.098 4.627 0.014 0.785 0.099 4.629 0.417 6.593 0.127 5.237 0.087 3.591 0.019 0.908 0.108 4.636 0.166 4.776 0.046 2.288 0.039 1.384 0.055 1.989 0.100 3.906 0.073 2.671 0.051 2.242 0.198 7.443 0.070 2.497 0.045 1.801 0.023 0.889 0.093 4.277 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.025 0.972 0.010 1.463 0.025 2.763 0.014 0.832 0.018 1.225 0.052 6.066 0.045 5.092 0.070 8.093 0.028 5.298 0.009 1.136 0.011 1.448 0.021 2.455 0.018 3.114 0.027 4.398 0.042 3.243 0.028 3.285 0.011 1.963 0.010 1.056 0.019 1.414 0.058 4.435 0.037 6.837 0.063 9.694 0.014 2.293 0.036 5.084 0.011 0.854 0.066 5.971 0.036 4.095 0.015 0.916 0.044 5.570 0.049 5.625 0.012 2.373 0.015 1.754 0.035 5.031 0.019 2.476 0.035 4.511 0.018 2.636 0.069 8.959 0.003 3.172 0.015 2.103 0.016 1.044 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.019 0.666 0.011 1.127 0.028 2.312 0.018 1.940 0.032 2.709 0.010 0.787 0.013 0.642 0.068 5.670 0.059 4.874 0.046 7.556 0.021 2.779 0.033 3.517 0.008 0.649 0.010 0.812 0.026 2.883 0.050 3.075 0.034 3.019 0.014 1.754 0.011 1.180 0.010 0.565 0.015 1.008 0.070 4.176 0.018 4.021 0.011 0.575 0.035 6.791 0.015 1.527 0.030 3.558 0.009 0.570 0.049 7.132 0.012 0.553 0.053 4.812 0.033 5.296 0.008 1.148 0.020 1.585 0.044 3.801 0.023 2.032 0.035 3.752 0.041 7.487 0.027 2.881 0.017 1.599 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 2567 1.862 HD 2587 0.900 HD 23030 1.753 HD 23472HD 23901 0.287 HD 24112 3.672 HD 24213 3.207 HD 24238 4.990 HD 24341 1.439 2.243 HD 22610HD 22897 0.315 0.397 HD 25120HD 25357 0.594 HD 25565 0.267 HD 25587 0.529 HD 25665 2.933 1.965 HD 25673 0.306 HD 24892HD 25105 3.785 0.813 HD 24365HD 24558 2.008 HD 24727 0.330 5.300 HD 26430HD 26729 0.270 HD 26754 2.862 HD 26794 3.582 HD 26887 0.523 HD 26990 1.092 2.366 HD 25912HD 25918 1.231 2.232 HD 25682HD 25790 0.968 HD 25825 4.452 1.835 HD 233641 0.547 HD 224432 0.350 HD 224433HD 0.622 224578HD 1.535 224789HD 0.960 225261HD 1.582 225297 2.080 121 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.001 0.022 0.0020.001 0.049 0.001 0.026 0.002 0.036 0.001 0.035 0.002 0.016 0.002 0.037 0.034 0.0020.000 0.034 0.001 0.010 0.001 0.027 0.001 0.017 0.023 0.0020.001 0.032 0.001 0.017 0.003 0.022 0.003 0.070 0.002 0.057 0.001 0.034 0.009 0.0010.001 0.020 0.000 0.012 0.001 0.010 0.002 0.022 0.001 0.041 0.001 0.015 0.001 0.017 0.012 0.0020.001 0.052 0.002 0.016 0.002 0.032 0.001 0.053 0.014 0.0010.002 0.019 0.001 0.053 0.001 0.020 0.003 0.021 0.001 0.072 0.002 0.011 0.045 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.010 0.072 0.0270.003 0.112 0.012 0.033 0.008 0.092 0.012 0.061 0.052 0.078 0.016 0.163 0.089 0.0290.006 0.114 0.029 0.057 0.028 0.112 0.114 0.028 0.115 0.0080.005 0.064 0.003 0.043 0.011 0.030 0.045 0.076 0.005 0.140 0.007 0.051 0.005 0.056 0.025 0.045 0.006 0.109 0.054 0.1250.081 0.238 0.028 0.196 0.003 0.117 0.031 0.008 0.069 0.0080.054 0.060 0.009 0.185 0.009 0.069 0.110 0.067 0.004 0.246 0.044 0.036 0.058 0.157 0.005 0.167 0.025 0.051 0.109 0.005 0.046 0.061 0.170 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.057 0.448 0.1190.013 0.711 0.191 0.1210.038 0.719 0.135 0.344 0.107 0.806 0.722 0.033 0.571 0.1070.128 0.600 0.736 0.0470.015 0.387 0.008 0.250 0.066 0.177 0.204 0.473 0.900 0.0660.235 0.488 1.117 0.046 0.373 0.4020.319 1.612 0.126 1.293 0.011 0.748 0.173 0.0380.049 0.322 0.401 0.0440.203 0.359 0.052 1.182 0.042 0.423 0.445 0.399 1.758 0.028 0.290 0.0260.125 0.255 0.684 0.043 0.338 0.015 0.264 0.0310.128 0.297 0.189 0.687 1.147 0.015 0.210 0.282 1.125 0.244 1.026 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.027 0.787 0.0410.014 1.174 0.045 0.388 0.905 0.0300.050 0.978 1.210 0.0340.064 0.850 1.784 0.022 0.668 0.0560.028 1.208 0.046 0.618 0.064 1.372 1.138 0.0320.029 0.678 0.010 0.466 0.034 0.329 0.061 0.853 1.506 0.0280.030 0.592 0.735 0.024 0.532 0.0190.055 0.513 1.202 0.019 0.596 0.0940.068 2.553 0.048 2.096 0.012 1.266 0.336 0.0380.080 0.650 0.028 1.870 0.033 0.747 0.095 0.728 2.731 0.0250.038 0.539 0.065 1.196 1.721 0.018 0.423 0.063 1.846 0.072 1.675 0.025 0.495 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.071 1.641 0.135 2.662 0.057 1.266 0.082 2.589 0.048 0.766 0.057 2.116 0.054 2.043 0.086 2.691 0.064 1.829 0.100 4.106 0.054 1.412 0.110 2.394 0.115 2.669 0.155 5.685 0.121 4.583 0.106 1.435 0.071 0.954 0.043 0.707 0.067 1.765 0.089 3.314 0.064 1.253 0.070 1.572 0.031 1.084 0.043 1.016 0.144 2.505 0.061 1.219 0.052 2.579 0.021 0.697 0.048 1.014 0.052 1.405 0.174 4.160 0.066 1.526 0.032 1.509 0.273 5.738 0.056 1.181 0.062 2.596 0.121 3.937 0.027 0.801 0.159 3.801 0.159 3.711 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.194 8.232 0.084 2.331 0.0730.027 3.691 0.084 1.064 2.961 0.050 1.907 0.0810.063 3.660 0.097 1.834 0.078 3.512 3.777 0.0650.099 2.910 3.893 0.0700.045 2.102 0.025 1.312 0.102 0.952 0.079 2.525 0.029 4.587 1.481 0.0740.149 2.664 6.053 0.037 1.841 0.1770.150 8.008 0.078 6.581 0.020 3.798 0.979 0.0370.050 1.839 2.101 0.0740.111 2.085 0.059 5.708 0.053 2.316 2.075 0.031 1.145 0.0270.086 1.410 3.554 0.110 5.080 0.040 1.438 0.0480.091 1.519 0.125 3.725 5.716 0.107 5.232 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.031 2.835 0.0320.021 4.415 0.045 2.298 0.033 4.071 0.028 4.476 2.531 0.0510.008 4.406 0.027 1.235 3.513 0.0380.048 3.513 5.101 0.0180.016 2.078 0.090 3.343 8.069 0.0610.082 9.596 0.043 8.552 0.016 4.709 0.021 1.105 2.501 0.0130.018 1.633 0.005 1.176 0.024 2.998 0.005 4.752 1.315 0.0220.012 2.359 1.999 0.0200.021 2.219 0.028 1.607 4.060 0.017 1.685 0.0390.024 5.751 0.018 2.778 0.070 2.515 10.011 0.011 1.402 0.0160.036 1.990 0.058 4.310 6.762 0.0470.037 5.966 5.798 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.034 2.269 0.038 3.467 0.028 2.228 0.045 3.250 0.039 3.630 0.031 2.013 0.016 1.393 0.011 0.973 0.056 3.698 0.010 0.903 0.034 2.937 0.041 2.728 0.035 5.247 0.016 1.270 0.026 2.813 0.067 9.772 0.028 7.378 0.081 8.052 0.042 4.245 0.012 0.856 0.027 2.249 0.030 2.837 0.031 2.582 0.023 2.546 0.017 2.398 0.003 0.373 0.030 2.368 0.008 0.853 0.027 2.128 0.011 1.127 0.031 3.047 0.016 1.259 0.019 1.940 0.043 7.654 0.014 1.191 0.020 1.754 0.032 3.531 0.055 5.753 0.059 5.057 0.042 4.054 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 283 0.676 HD 2768 0.518 HD 3079 2.845 HD 3220 0.776 HD 3277 2.281 HD 27063 1.400 HD 27471 2.345 HD 28187 1.845 HD 28701 1.730 HD 28344HD 1.769 28676 7.266 HD 28807HD 3.820 28821HD 2.061 28969HD 1.535 29137HD 1.880 29150HD 2.099 29263HD 1.277 29303HD 0.859 29428HD 0.584 29461HD 1.559 29883HD 1.154 29985 0.141 HD 30339 1.617 HD 30053HD 1.439 30295HD 0.617 30306 1.683 HD 30523HD 0.334 30708HD 4.386 30736 5.512 HD 30858HD 0.449 31103HD 1.452 31560HD 1.268 31822HD 1.699 31827HD 1.043 31966 4.635 HD 32804HD 1.072 32963 2.198 HD 32724 3.207 HD 33636HD 3.751 33811 0.689 122 APPENDIX D. APENDIX 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.001 0.020 0.019 0.0020.003 0.044 0.003 0.050 0.002 0.066 0.001 0.053 0.002 0.029 0.040 0.0030.001 0.059 0.011 0.0010.002 0.013 0.001 0.050 0.001 0.030 0.010 0.0020.001 0.049 0.001 0.021 0.001 0.009 0.001 0.013 0.001 0.018 0.014 0.0020.001 0.034 0.028 0.002 0.034 0.0010.001 0.022 0.024 0.0010.002 0.029 0.032 0.0010.001 0.014 0.003 0.016 0.001 0.061 0.001 0.014 0.001 0.010 0.011 0.0030.001 0.068 0.012 0.004 0.066 0.0030.001 0.053 0.013 0.0010.001 0.030 0.025 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0870.004 0.197 0.038 0.042 0.062 0.148 0.163 0.009 0.071 0.0080.005 0.064 0.046 0.044 0.016 0.154 0.004 0.099 0.039 0.0260.013 0.111 0.042 0.090 0.009 0.160 0.069 0.018 0.094 0.026 0.114 0.0710.064 0.222 0.172 0.0360.010 0.136 0.011 0.077 0.080 0.0220.016 0.101 0.102 0.1010.004 0.234 0.005 0.040 0.006 0.042 0.053 0.005 0.041 0.143 0.214 0.003 0.032 0.0080.005 0.062 0.052 0.048 0.004 0.171 0.042 0.0160.011 0.098 0.079 0.0810.005 0.204 0.004 0.046 0.004 0.034 0.037 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.054 0.420 0.0880.017 0.628 0.227 0.0450.023 0.386 0.210 0.257 0.982 0.077 0.646 0.1150.098 0.716 0.105 0.641 0.663 0.2850.271 1.189 0.267 1.514 1.177 0.1490.059 0.858 0.060 0.462 0.489 0.019 0.236 0.153 0.930 0.327 1.319 0.025 0.242 0.3770.089 1.619 0.065 0.630 0.487 0.0490.011 0.427 0.188 0.0440.024 0.378 0.252 0.280 0.023 1.161 0.242 0.077 0.557 0.234 1.039 0.110 0.711 0.0380.307 0.324 0.024 1.410 0.013 0.262 0.014 0.199 0.214 0.016 0.228 0.021 0.246 0.400 1.597 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.1250.110 1.921 2.214 0.017 0.511 0.045 0.767 0.066 1.506 0.0620.025 1.036 0.086 0.464 2.116 0.0320.021 0.693 0.069 0.494 1.650 0.0390.018 0.734 0.357 0.044 0.951 0.073 1.737 0.044 0.927 0.0600.043 1.211 0.035 1.082 0.056 1.072 1.230 0.077 1.850 0.0650.033 1.415 0.039 0.817 0.845 0.0270.118 0.600 2.133 0.019 0.436 0.018 0.455 0.025 0.499 0.0850.048 2.405 0.039 1.049 0.105 0.844 2.497 0.0440.019 0.673 0.071 0.529 0.024 1.798 0.460 0.0230.013 0.488 0.020 0.375 0.399 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.222 3.995 0.187 4.997 0.163 3.966 0.048 1.040 0.098 1.576 0.122 3.410 0.093 2.325 0.047 0.889 0.174 4.672 0.072 1.495 0.029 0.971 0.170 3.544 0.047 0.920 0.051 1.640 0.039 0.730 0.096 1.420 0.093 2.074 0.103 3.749 0.098 2.295 0.155 2.727 0.140 2.359 0.075 2.368 0.117 2.532 0.132 3.084 0.068 1.802 0.061 1.770 0.045 1.238 0.150 4.759 0.038 1.029 0.021 0.771 0.035 0.879 0.045 0.954 0.190 5.151 0.155 2.253 0.087 1.767 0.315 5.444 0.063 1.058 0.244 3.847 0.068 0.968 0.028 0.819 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.077 2.259 0.090 3.416 0.166 5.742 0.203 7.019 0.133 5.721 0.104 4.202 0.036 1.523 0.141 4.892 0.101 3.247 0.032 1.270 0.167 6.509 0.045 2.068 0.035 1.355 0.131 5.113 0.038 1.331 0.101 2.290 0.021 1.048 0.044 2.051 0.033 1.446 0.063 2.972 0.116 5.310 0.077 3.814 0.086 3.295 0.080 3.388 0.082 3.742 0.062 2.719 0.054 2.463 0.048 1.799 0.191 6.784 0.032 1.420 0.024 1.108 0.031 1.249 0.030 1.209 0.034 1.344 0.259 7.640 0.075 3.170 0.079 2.618 0.193 7.446 0.121 5.404 0.029 1.346 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.020 2.780 0.020 2.583 0.017 1.475 0.038 4.263 0.054 6.663 0.069 8.490 0.091 6.882 0.043 5.352 0.029 3.224 0.023 1.685 0.047 5.879 0.035 4.048 0.015 1.334 0.044 6.265 0.057 6.184 0.016 1.535 0.026 3.120 0.018 1.215 0.019 2.487 0.012 1.694 0.050 6.590 0.038 3.408 0.060 5.999 0.034 4.617 0.033 4.041 0.040 4.330 0.038 4.468 0.018 2.811 0.016 2.152 0.114 8.639 0.011 1.488 0.018 1.266 0.011 1.446 0.009 1.436 0.018 1.616 0.095 9.386 0.034 4.056 0.027 3.186 0.079 9.088 0.018 1.514 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.024 2.208 0.025 2.128 0.013 0.912 0.076 6.136 0.044 4.092 0.040 3.660 0.034 5.914 0.045 7.446 0.105 6.606 0.039 4.245 0.037 3.107 0.021 1.977 0.021 1.633 0.031 5.104 0.047 3.836 0.011 0.816 0.035 3.159 0.016 1.169 0.099 9.417 0.018 2.805 0.011 0.991 0.023 2.051 0.014 1.282 0.032 5.444 0.013 0.964 0.041 2.779 0.056 4.324 0.042 3.531 0.051 4.364 0.050 4.092 0.018 1.706 0.144 8.285 0.008 0.794 0.010 0.955 0.013 1.148 0.010 1.028 0.018 1.270 0.046 3.698 0.018 2.910 0.051 8.549 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 361 3.716 HD 3569 0.415 HD 3674 2.829 HD 3770 2.717 HD 3964 0.996 HD 3808 0.682 HD 3861 6.731 HD 33822 1.289 HD 34449HD 34688 1.337 HD 34745 0.472 4.150 HD 36108HD 36379 4.854 4.386 HD 36889HD 37006 2.643 HD 37213 2.012 1.143 HD 35974 3.327 HD 35627 2.547 HD 35854 1.448 HD 37990HD 38078 1.915 0.589 HD 38110HD 38265 1.242 HD 38277 0.748 HD 38355 3.452 0.485 HD 37962HD 37986 1.699 2.323 HD 37216HD 37548 2.177 HD 37588 2.260 3.102 HD 40483HD 40503 6.005 HD 41087 0.355 HD 41248 0.547 0.728 HD 39213HD 39427 0.518 0.748 HD 38772HD 38949 2.501 HD 38973 1.915 5.522 HD 358564 0.858 123 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.003 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.001 0.019 0.0020.002 0.044 0.002 0.049 0.001 0.053 0.001 0.025 0.001 0.024 0.001 0.026 0.001 0.011 0.020 0.0030.000 0.065 0.003 0.010 0.000 0.072 0.001 0.011 0.001 0.028 0.011 0.0030.003 0.062 0.001 0.063 0.002 0.024 0.002 0.029 0.002 0.043 0.002 0.045 0.003 0.035 0.059 0.0010.004 0.016 0.002 0.083 0.001 0.037 0.003 0.016 0.003 0.062 0.001 0.049 0.002 0.020 0.046 0.0010.003 0.014 0.002 0.065 0.003 0.047 0.002 0.058 0.001 0.036 0.002 0.011 0.001 0.052 0.001 0.011 0.011 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.008 0.064 0.0990.003 0.216 0.102 0.031 0.004 0.231 0.014 0.036 0.004 0.092 0.041 0.034 0.032 0.141 0.052 0.157 0.171 0.0120.012 0.083 0.011 0.076 0.004 0.081 0.008 0.036 0.006 0.065 0.182 0.052 0.031 0.275 0.006 0.118 0.101 0.053 0.054 0.205 0.008 0.168 0.044 0.068 0.085 0.153 0.086 0.210 0.208 0.0120.019 0.078 0.041 0.100 0.042 0.149 0.031 0.146 0.080 0.120 0.005 0.191 0.071 0.049 0.050 0.222 0.066 0.151 0.033 0.189 0.004 0.121 0.050 0.037 0.004 0.169 0.004 0.034 0.038 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.048 0.373 0.3460.011 1.513 0.412 0.179 1.607 0.0910.157 1.079 0.069 1.094 0.067 0.535 0.032 0.483 0.016 0.480 0.045 0.209 0.044 0.384 0.520 0.307 0.138 2.033 0.037 0.759 0.395 0.310 1.438 0.013 0.203 0.0120.181 0.192 0.922 0.079 0.570 0.257 1.160 0.3270.069 1.445 0.083 0.489 0.159 0.641 0.238 0.974 0.138 0.893 0.369 0.815 0.020 1.366 0.479 0.298 0.162 1.480 0.283 0.979 0.137 1.301 0.015 0.774 0.241 0.211 1.096 0.1860.286 1.016 1.438 0.049 0.409 0.013 0.191 0.019 0.209 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.027 0.697 0.0930.013 2.305 0.091 0.340 2.527 0.0910.073 1.540 0.038 1.655 0.919 0.016 0.401 0.0130.053 0.363 1.526 0.032 0.973 0.0340.030 0.842 0.020 0.847 0.028 0.410 0.029 0.685 0.140 0.245 0.043 2.910 0.025 1.281 0.102 0.591 0.076 2.346 1.838 0.0970.038 2.220 0.838 0.0780.105 1.566 2.126 0.030 0.733 0.0550.052 1.032 0.066 1.598 0.060 1.664 0.098 1.427 0.030 2.122 0.099 0.575 0.086 2.429 0.082 1.500 0.056 1.942 0.020 1.309 0.095 0.418 0.016 1.765 0.380 0.022 0.430 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.058 1.384 0.159 5.053 0.049 0.682 0.152 5.479 0.150 3.677 0.084 3.951 0.074 1.944 0.071 1.770 0.073 1.826 0.052 0.763 0.037 0.768 0.163 3.168 0.047 2.060 0.033 0.827 0.055 1.426 0.067 1.200 0.176 6.338 0.079 2.777 0.051 1.186 0.212 4.834 0.111 3.939 0.183 5.006 0.093 1.803 0.101 2.314 0.098 3.326 0.139 3.548 0.205 4.951 0.060 1.541 0.141 3.388 0.060 2.507 0.210 4.442 0.103 1.129 0.240 5.115 0.161 3.583 0.151 4.454 0.157 2.902 0.048 0.831 0.144 3.815 0.044 0.770 0.029 0.886 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.244 9.118 0.033 1.895 0.1770.022 7.183 0.215 0.976 0.027 7.840 1.021 0.054 2.810 0.1380.113 5.266 0.066 5.732 0.059 2.784 0.052 2.502 0.023 2.344 0.041 1.172 0.042 1.910 1.659 0.0950.037 4.073 0.191 1.677 0.135 6.981 6.017 0.0210.119 1.016 4.421 0.037 2.089 0.1740.080 6.866 0.064 2.652 0.093 3.323 0.114 4.608 0.078 4.955 0.134 3.627 0.055 6.320 0.256 1.627 0.112 7.232 0.190 5.145 0.141 6.308 0.021 4.249 0.112 1.115 0.020 5.374 1.086 0.1460.167 4.856 7.183 0.032 1.229 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.104 11.048 0.009 1.772 0.0710.010 8.358 0.079 1.204 0.007 9.720 1.027 0.0220.014 2.949 0.040 1.167 5.381 0.0290.038 3.427 0.012 3.037 0.021 2.349 0.010 1.395 0.024 1.833 1.897 0.0430.016 5.149 0.086 2.017 0.068 7.679 7.328 0.0550.043 6.536 6.787 0.0130.053 1.992 0.062 6.094 8.632 0.0200.024 3.497 0.041 4.208 0.031 5.366 0.072 4.460 0.016 7.665 0.063 2.071 0.058 8.170 0.053 6.426 0.041 7.952 0.015 5.264 0.042 1.264 0.006 6.088 1.053 0.0530.046 8.228 3.330 0.011 1.279 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.006 0.661 0.0180.045 3.104 0.008 2.779 0.014 0.879 0.007 1.159 0.020 0.715 0.101 1.294 10.278 0.059 4.655 0.0630.012 7.052 0.054 1.066 0.005 8.628 0.479 0.0730.022 6.024 5.247 0.0180.011 1.585 0.048 0.765 4.364 0.0190.017 2.128 0.043 1.752 0.015 4.447 0.051 3.766 0.020 7.869 0.071 1.786 0.074 6.843 0.026 6.335 6.426 0.0190.090 1.763 0.047 6.239 7.406 0.0260.058 6.426 3.341 0.0100.072 0.937 0.032 5.806 7.446 0.0260.013 4.487 0.023 0.802 0.005 4.528 0.469 0.008 0.792 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 457 1.932 HD 4457 0.228 HD 4597 1.880 HD 4838 0.289 HD 4903 3.178 HD 4915 3.740 HD 5349HD 5372 2.334 HD 5388 2.323 HD 5470 5.573 HD 5562 1.102 3.862 HD 5065 4.944 HD 42505 0.255 HD 42618HD 4.282 42902HD 0.664 43947 5.836 HD 44985HD 3.964 45391 3.358 HD 44573HD 0.755 44804HD 0.400 44821 2.595 HD 45977HD 0.339 48115 0.748 HD 48611HD 0.708 48938 6.825 HD 49035 1.049 HD 49736 5.057 HD 51419 4.037 HD 50590HD 0.423 50639 3.927 HD 52449HD 2.410 52456HD 1.052 52919 0.713 HD 55693HD 4.041 56124HD 4.037 56303HD 2.819 56380HD 0.459 56560HD 2.524 57568 0.210 HD 58489 0.354 124 APPENDIX D. APENDIX 0.002 0.001 0.002 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0020.001 0.051 0.002 0.030 0.051 0.0010.001 0.019 0.001 0.017 0.001 0.024 0.001 0.012 0.001 0.020 0.001 0.024 0.010 0.001 0.011 0.002 0.049 0.0020.001 0.043 0.002 0.011 0.001 0.037 0.001 0.015 0.002 0.013 0.002 0.036 0.000 0.034 0.003 0.007 0.001 0.071 0.012 0.0020.001 0.047 0.005 0.009 0.001 0.100 0.002 0.031 0.002 0.033 0.001 0.042 0.018 0.002 0.040 0.001 0.028 0.0010.001 0.031 0.004 0.011 0.002 0.079 0.002 0.046 0.002 0.033 0.001 0.041 0.001 0.021 0.003 0.016 0.073 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.007 0.064 0.004 0.038 0.051 0.167 0.0190.062 0.098 0.025 0.172 0.004 0.117 0.031 0.042 0.006 0.118 0.005 0.056 0.028 0.045 0.030 0.116 0.003 0.113 0.121 0.027 0.004 0.221 0.060 0.042 0.166 0.050 0.149 0.038 0.130 0.0060.013 0.054 0.004 0.080 0.008 0.037 0.012 0.066 0.004 0.079 0.028 0.035 0.004 0.107 0.140 0.038 0.059 0.263 0.026 0.155 0.040 0.109 0.012 0.142 0.006 0.065 0.130 0.054 0.012 0.241 0.082 0.249 0.353 0.003 0.033 0.0170.025 0.094 0.045 0.110 0.008 0.140 0.064 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.208 1.061 0.0910.290 0.635 0.107 1.132 0.023 0.717 0.157 0.241 0.050 0.728 0.029 0.339 0.128 0.262 0.044 0.725 0.731 0.0380.068 0.325 0.019 0.524 0.045 0.212 0.069 0.404 0.014 0.504 0.130 0.197 0.020 0.773 0.659 0.220 0.231 1.901 0.109 1.042 0.206 0.706 0.940 0.048 0.382 0.016 0.219 0.0090.401 0.153 1.515 0.288 1.103 0.025 0.247 0.734 2.904 0.012 0.190 0.0940.127 0.623 0.250 0.746 0.053 0.915 0.395 0.221 1.007 0.126 0.867 0.0500.040 0.403 0.504 0.321 0.074 1.724 0.529 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.024 0.622 0.035 0.687 0.063 1.687 0.016 0.452 0.0510.088 1.039 0.058 1.886 0.018 1.220 0.045 0.480 0.023 1.274 0.024 0.641 0.050 0.523 0.059 1.227 0.015 1.108 0.077 0.298 2.445 0.070 1.841 0.018 0.482 0.011 0.373 0.073 1.652 0.048 1.300 0.0430.013 0.872 0.037 0.441 0.042 0.730 0.026 0.894 0.051 0.408 0.017 1.238 0.099 0.438 0.053 3.250 0.039 1.709 0.057 1.165 0.025 1.583 0.023 0.714 0.109 0.642 0.037 2.711 0.911 0.144 3.607 0.0490.047 1.024 0.051 1.230 0.027 1.553 0.710 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.243 7.797 0.228 4.051 0.0830.119 2.303 0.059 4.131 0.052 2.608 0.129 0.956 0.048 2.734 0.047 1.364 0.107 1.022 0.135 2.699 2.652 0.0430.071 1.229 0.051 1.939 0.088 0.855 0.099 1.526 0.062 1.878 0.185 0.821 0.049 2.392 0.251 0.855 0.155 5.997 0.070 3.584 0.095 2.509 3.420 0.062 1.445 0.061 0.882 0.0210.176 0.598 5.257 0.165 3.805 0.031 0.987 0.045 0.754 0.1090.077 2.195 0.123 2.561 0.075 3.277 1.491 0.203 3.464 0.158 3.083 0.0740.077 1.526 0.190 1.246 0.048 5.643 1.931 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.254 11.458 0.141 5.638 0.0730.152 3.350 0.074 6.150 0.031 3.580 0.096 1.293 0.043 3.879 0.034 1.928 0.107 1.412 0.102 3.749 0.022 3.664 0.355 0.875 7.357 0.0390.056 1.775 0.023 2.652 0.067 1.136 0.061 2.177 0.025 2.677 0.102 1.141 0.027 3.518 0.154 1.213 0.110 8.255 0.079 5.439 0.123 3.643 0.053 5.154 0.035 2.106 1.701 0.036 2.024 0.034 1.254 0.145 5.266 0.034 1.444 0.035 1.035 0.0770.077 3.124 0.123 3.653 0.075 4.621 2.139 0.131 4.785 0.133 4.506 0.2130.079 7.647 2.869 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.117 13.781 0.045 6.651 0.0290.052 3.942 0.021 6.862 0.009 3.810 0.050 1.462 0.019 4.509 0.014 2.334 0.035 1.751 0.042 4.476 0.016 4.610 0.061 1.017 8.972 0.059 6.071 0.016 1.556 0.055 5.995 0.0290.015 3.399 0.024 1.322 0.025 2.682 0.013 3.163 0.048 1.286 0.011 4.593 0.053 1.454 0.056 8.784 0.042 6.288 0.089 4.743 0.024 6.685 0.021 2.735 0.117 1.901 0.032 9.631 3.564 0.026 2.254 0.016 2.146 0.014 1.376 0.0390.036 3.618 0.047 4.411 0.016 5.803 2.404 0.018 1.098 0.052 6.173 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.026 4.874 0.0180.062 3.162 0.015 5.648 0.010 2.120 0.055 1.028 0.022 3.597 2.045 0.0380.011 3.162 0.032 0.802 0.029 2.582 0.013 2.737 0.035 0.970 0.013 5.199 0.038 1.159 5.218 0.025 2.530 0.014 1.137 0.011 0.780 0.0160.040 1.499 0.057 3.766 0.013 4.570 0.072 0.853 6.606 0.056 4.245 0.017 1.161 0.105 11.585 0.0410.047 2.857 0.059 3.908 0.017 5.151 1.722 0.012 0.655 0.033 5.596 0.032 6.680 0.0370.029 6.080 0.084 4.612 0.034 8.758 0.016 2.654 0.138 1.127 0.041 8.478 3.480 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± HD 67 0.695 Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 6558 1.728 HD 6348 0.690 HD 7134 2.571 HD 6735 4.037 HD 65562 0.573 HD 64640 0.396 HD 58781 2.793 HD 59711HD 1.950 59747HD 3.361 60491HD 1.045 61051HD 0.552 61383HD 2.281 61447HD 1.216 61686HD 0.883 62128HD 2.198 62364HD 3.120 62847HD 0.481 63433 3.927 HD 63685 2.345 HD 70889 3.615 HD 70843 4.965 HD 66039HD 2.042 66040HD 0.404 66168HD 1.714 66221HD 1.592 66340HD 0.547 66740 3.820 HD 67199 2.573 HD 67556HD 3.148 68168HD 5.672 68287HD 1.845 68607HD 0.584 69655HD 5.772 69809 2.253 HD 70903HD 0.339 71148HD 7.146 71334 1.714 HD 71479HD 3.207 71835 0.933 125 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.002 0.053 0.0010.002 0.027 0.003 0.051 0.001 0.077 0.002 0.017 0.001 0.037 0.003 0.029 0.066 0.0010.001 0.032 0.001 0.033 0.003 0.023 0.002 0.060 0.052 0.0020.002 0.041 0.001 0.041 0.001 0.028 0.002 0.018 0.001 0.050 0.002 0.022 0.046 0.0010.001 0.019 0.003 0.015 0.001 0.040 0.002 0.019 0.003 0.045 0.002 0.056 0.044 0.0020.001 0.039 0.001 0.026 0.001 0.016 0.001 0.012 0.002 0.044 0.036 0.0020.001 0.033 0.001 0.017 0.001 0.012 0.001 0.023 0.000 0.015 0.001 0.009 0.017 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.054 0.177 0.0250.023 0.103 0.011 0.108 0.085 0.077 0.063 0.200 0.015 0.171 0.062 0.093 0.164 0.0050.036 0.050 0.019 0.125 0.116 0.094 0.217 0.165 0.257 0.0090.005 0.066 0.029 0.048 0.008 0.156 0.054 0.063 0.077 0.151 0.045 0.186 0.041 0.147 0.036 0.136 0.137 0.0090.054 0.066 0.010 0.161 0.045 0.072 0.150 0.018 0.092 0.0250.006 0.107 0.004 0.055 0.012 0.038 0.006 0.078 0.003 0.052 0.008 0.030 0.035 0.059 0.012 0.133 0.007 0.082 0.055 0.0210.023 0.107 0.109 0.005 0.044 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.214 1.194 0.0930.104 0.667 0.740 0.0190.142 0.282 0.087 0.804 0.486 0.591 1.639 0.069 0.481 0.2500.539 1.158 1.868 0.0570.029 0.415 0.083 0.278 0.044 0.843 0.374 0.3190.078 1.138 0.617 0.398 1.425 0.0490.198 0.406 0.062 1.076 0.130 0.470 0.982 0.252 1.018 0.2020.104 0.870 0.580 0.1040.040 0.705 0.020 0.331 0.053 0.226 0.036 0.498 0.312 0.2410.186 0.962 0.863 0.369 1.290 0.0860.110 0.697 0.744 0.010 0.166 0.0650.038 0.521 0.028 0.336 0.253 0.148 0.872 0.041 0.361 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.076 1.855 0.0600.043 1.109 0.033 1.143 0.847 0.0660.145 1.794 2.854 0.0740.033 1.872 1.014 0.087 2.263 0.0260.071 0.571 0.053 1.336 0.084 1.018 2.625 0.0280.025 0.725 0.057 0.532 0.043 1.271 0.049 0.676 1.661 0.0510.037 1.481 1.038 0.0530.059 1.645 1.477 0.068 2.073 0.0400.071 0.707 0.033 1.644 0.073 0.793 1.407 0.0540.021 1.090 0.016 0.610 0.033 0.467 0.028 0.835 0.027 0.586 0.342 0.0420.031 0.887 0.019 0.619 0.507 0.073 1.377 0.024 0.659 0.0450.061 1.066 1.187 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.187 3.929 0.075 1.159 0.137 2.857 0.080 2.424 0.093 2.568 0.045 1.730 0.178 3.955 0.210 6.064 0.221 4.028 0.121 2.136 0.220 4.730 0.074 2.147 0.163 5.081 0.100 1.482 0.224 3.858 0.065 1.505 0.063 1.063 0.192 3.076 0.045 1.370 0.099 3.554 0.069 3.090 0.078 2.221 0.204 3.407 0.078 3.205 0.176 4.340 0.058 1.684 0.120 3.441 0.096 2.432 0.187 2.551 0.045 1.272 0.044 0.846 0.099 1.723 0.060 1.048 0.046 0.660 0.080 1.879 0.070 1.290 0.037 0.976 0.200 3.045 0.041 1.314 0.097 2.551 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.221 8.439 0.171 5.632 0.0780.101 3.612 0.053 3.759 2.470 0.184 6.628 0.0370.088 1.599 0.077 4.141 0.198 3.070 7.377 0.122 5.679 0.0550.027 2.149 0.099 1.498 0.053 4.261 0.106 2.116 5.109 0.1410.069 5.711 3.135 0.162 6.148 0.0630.152 2.054 0.055 5.295 0.096 2.427 4.478 0.0960.077 4.409 3.240 0.0760.069 3.444 0.035 1.814 0.059 1.196 0.044 2.282 0.024 1.479 0.973 0.1050.105 4.821 4.699 0.044 1.921 0.0880.100 3.597 3.650 0.0590.040 2.567 0.038 1.821 1.395 0.090 4.429 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.048 6.416 0.0110.033 1.555 0.028 4.787 0.092 3.642 0.030 8.964 2.619 0.0450.041 4.683 0.028 4.559 2.882 0.0550.127 7.381 10.416 0.0690.069 7.698 0.036 6.663 4.147 0.0190.073 2.543 0.033 6.358 0.028 2.842 0.021 4.949 3.605 0.0160.038 1.631 0.020 5.097 0.052 2.419 6.399 0.0410.032 5.187 3.987 0.0660.048 7.643 0.040 5.988 5.423 0.0290.041 4.131 4.530 0.0230.022 2.138 0.013 1.456 0.020 2.478 0.015 1.825 1.096 0.0360.027 3.207 0.010 2.264 1.582 0.0170.036 2.402 5.120 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.058 5.199 0.008 0.804 0.037 3.597 0.033 3.019 0.090 9.118 0.035 2.167 0.008 0.895 0.067 4.884 0.057 4.487 0.026 2.013 0.029 6.667 0.141 9.203 0.059 6.763 0.068 5.011 0.051 3.944 0.023 2.051 0.080 5.296 0.039 2.376 0.028 2.992 0.016 2.089 0.024 1.659 0.019 1.180 0.035 4.092 0.027 2.187 0.033 5.596 0.036 4.017 0.038 3.495 0.044 7.176 0.067 5.247 0.047 4.324 0.026 3.104 0.056 4.445 0.014 1.419 0.022 1.472 0.012 0.817 0.038 2.582 0.032 1.940 0.011 1.117 0.020 1.870 0.043 3.908 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 750 0.447 HD 7228 3.630 HD 8038 1.005 HD 8406 1.578 HD 8328HD 8331 1.102 2.345 HD 72234 3.148 HD 72528HD 3.091 72579 1.102 HD 73344 4.509 HD 72760HD 4.023 72769HD 2.819 72780 2.768 HD 73524HD 5.890 73583HD 0.325 74014HD 1.987 74698HD 1.812 74868HD 6.111 74957 1.452 HD 75302HD 2.393 75328HD 1.452 75782 3.549 HD 76752 2.455 HD 75881HD 4.765 76188HD 3.615 76218 2.572 HD 76909HD 2.078 78538HD 1.265 78612HD 3.358 79601HD 1.622 80133HD 1.507 80367 1.052 HD 80635HD 0.689 80883HD 0.735 81700HD 0.925 82783 0.429 HD 84305 1.337 HD 85119HD 0.617 85301HD 1.779 85683 3.035 126 APPENDIX D. APENDIX 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0010.001 0.014 0.017 0.0020.001 0.033 0.001 0.017 0.001 0.018 0.001 0.014 0.004 0.030 0.001 0.088 0.002 0.011 0.062 0.0010.002 0.019 0.001 0.043 0.002 0.018 0.003 0.036 0.002 0.059 0.001 0.042 0.002 0.023 0.001 0.037 0.024 0.0000.001 0.009 0.001 0.026 0.001 0.015 0.000 0.016 0.001 0.008 0.003 0.016 0.002 0.061 0.040 0.0010.000 0.014 0.001 0.007 0.002 0.015 0.003 0.049 0.001 0.062 0.001 0.022 0.001 0.022 0.001 0.012 0.019 0.0010.001 0.011 0.003 0.019 0.001 0.068 0.025 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.004 0.044 0.0070.008 0.058 0.041 0.067 0.008 0.143 0.017 0.062 0.089 0.118 0.039 0.203 0.010 0.136 0.027 0.072 0.013 0.122 0.027 0.082 0.010 0.111 0.007 0.056 0.061 0.264 0.299 0.0050.025 0.045 0.099 0.0030.067 0.034 0.004 0.193 0.003 0.041 0.005 0.024 0.056 0.051 0.058 0.174 0.011 0.200 0.011 0.076 0.004 0.076 0.008 0.038 0.003 0.062 0.014 0.031 0.006 0.090 0.052 0.0060.003 0.052 0.006 0.030 0.094 0.052 0.034 0.203 0.004 0.132 0.007 0.038 0.080 0.060 0.011 0.222 0.079 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.027 0.249 0.0430.051 0.361 0.187 0.417 0.047 0.947 0.066 0.366 0.388 0.753 0.232 1.406 0.887 0.709 2.334 0.0350.043 0.334 0.027 0.368 0.104 0.262 0.648 0.0130.299 0.190 0.026 1.348 0.007 0.247 0.031 0.136 0.357 0.310 0.354 1.061 0.065 1.394 0.489 0.057 0.461 0.0690.145 0.533 0.753 0.144 0.783 0.0870.035 0.577 0.034 0.315 0.008 0.304 0.037 0.174 0.355 0.315 0.164 1.549 0.015 0.862 0.041 0.225 0.463 0.375 0.066 1.575 0.507 0.064 0.497 0.0490.011 0.382 0.170 0.016 0.216 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.017 0.520 0.0260.033 0.652 0.064 0.745 0.038 1.553 0.058 0.652 0.104 1.158 0.087 2.240 1.516 0.0210.031 0.599 0.022 0.672 0.520 0.032 0.800 0.0400.049 0.894 1.220 0.055 1.302 0.115 3.289 0.051 1.099 0.0160.067 0.385 0.019 2.039 0.009 0.563 0.027 0.269 0.076 0.578 0.074 1.902 0.042 2.183 0.825 0.0500.029 0.981 0.026 0.574 0.643 0.031 0.897 0.0220.017 0.678 0.353 0.018 0.462 0.0220.022 0.325 0.111 0.589 0.046 2.187 0.021 1.390 0.027 0.453 0.130 0.641 0.036 2.525 0.880 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.055 1.001 0.276 6.949 0.068 1.355 0.069 1.504 0.096 3.283 0.086 1.414 0.133 2.749 0.159 4.685 0.106 3.064 0.036 1.261 0.077 1.380 0.063 0.999 0.102 2.305 0.056 1.653 0.116 1.886 0.115 2.662 0.133 2.994 0.051 0.766 0.109 4.520 0.062 0.903 0.028 0.556 0.035 1.089 0.135 3.950 0.221 4.707 0.071 1.738 0.080 2.099 0.064 1.207 0.065 1.234 0.026 0.656 0.076 1.211 0.062 1.684 0.089 1.405 0.041 0.688 0.048 0.857 0.148 4.655 0.088 3.121 0.038 0.863 0.061 1.381 0.247 5.223 0.072 1.836 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.261 9.663 0.037 1.425 0.0400.046 1.838 0.112 2.189 0.051 4.520 0.086 2.024 0.134 3.999 0.089 6.642 0.047 4.409 2.333 0.102 4.366 0.0400.048 1.848 0.034 1.905 0.071 1.386 3.262 0.0320.180 1.016 0.050 6.551 0.015 1.216 0.039 0.803 0.105 1.576 0.168 5.647 0.052 7.065 0.066 2.488 2.502 0.0780.083 2.738 3.798 0.026 1.187 0.0660.048 2.992 0.040 1.662 0.022 1.756 0.040 0.959 0.145 1.747 0.097 6.703 0.020 4.549 0.040 1.209 0.219 1.937 0.065 7.446 2.514 0.0480.023 2.047 0.973 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.149 11.806 0.016 1.477 0.0270.024 2.184 0.039 2.519 0.019 5.293 0.040 2.388 0.068 4.670 0.036 7.273 0.020 5.078 2.697 0.017 2.184 0.0430.029 5.266 0.034 3.267 4.488 0.031 3.848 0.0150.077 1.193 0.012 8.474 0.021 1.320 0.013 0.884 0.036 1.862 0.082 5.701 0.021 8.671 0.043 2.998 3.097 0.0230.012 2.256 1.539 0.0090.020 1.208 0.012 2.473 1.034 0.0130.019 1.126 0.076 2.164 0.046 8.273 0.009 5.568 0.020 1.235 0.104 2.422 0.021 8.800 3.049 0.0250.015 3.578 0.015 1.782 2.051 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.016 0.878 0.0160.026 1.486 0.046 1.737 0.024 4.245 0.026 2.070 4.364 0.0290.166 3.104 10.762 0.0130.054 0.832 0.011 8.316 0.015 0.839 0.016 0.759 0.027 1.406 3.510 0.0640.042 4.938 0.022 3.908 2.128 0.0150.023 1.629 0.011 1.659 0.895 0.0430.040 4.638 0.038 3.133 3.664 0.0150.027 0.937 0.053 2.089 0.043 8.240 0.008 4.570 0.027 0.643 0.111 2.187 7.536 0.0560.025 8.870 0.053 2.312 3.104 0.0290.014 2.754 0.018 1.106 1.650 0.0070.026 0.643 0.013 2.147 0.654 0.025 2.333 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 870 2.692 HD 8638HD 8648 1.082 2.524 HD 8765 1.208 HD 8859 0.960 HD 8907HD 8912 5.890 0.455 HD 8930 0.851 HD 8941 6.111 HD 8985 2.219 HD 9224HD 9246 2.952 0.327 HD 9280 1.349 HD 86065 0.429 HD 86171 0.851 HD 86652HD 1.277 86819 2.819 HD 87359 2.281 HD 88371 1.014 HD 87836HD 2.758 87838HD 2.158 88072 2.272 HD 88656HD 0.472 88725HD 1.987 88742HD 6.952 88885 0.455 HD 89147 0.398 HD 89391 1.842 HD 89454 1.349 HD 90722HD 1.563 90812 0.578 HD 89965HD 0.295 90081HD 1.426 90133 0.343 HD 90926HD 0.959 91345HD 0.634 91379HD 1.466 91638 5.782 HD 92547HD 1.479 92719 4.653 127 0.002 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.002 0.054 0.0020.002 0.041 0.004 0.034 0.002 0.071 0.001 0.048 0.002 0.022 0.001 0.033 0.001 0.016 0.023 0.0010.001 0.017 0.001 0.011 0.002 0.024 0.001 0.033 0.001 0.030 0.030 0.0030.002 0.068 0.002 0.041 0.001 0.043 0.001 0.017 0.002 0.016 0.002 0.037 0.002 0.032 0.031 0.0010.001 0.018 0.001 0.012 0.001 0.019 0.004 0.023 0.002 0.053 0.002 0.047 0.001 0.037 0.002 0.018 0.003 0.033 0.064 0.0020.004 0.033 0.003 0.060 0.003 0.067 0.004 0.066 0.003 0.081 0.004 0.067 0.081 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.071 0.180 0.0070.004 0.057 0.012 0.037 0.027 0.080 0.025 0.109 0.020 0.106 0.031 0.097 0.024 0.132 0.111 0.1010.050 0.239 0.009 0.155 0.026 0.071 0.006 0.110 0.010 0.053 0.007 0.071 0.005 0.058 0.007 0.042 0.010 0.058 0.055 0.079 0.027 0.192 0.033 0.158 0.007 0.112 0.023 0.059 0.115 0.111 0.109 0.215 0.042 0.228 0.139 0.0400.006 0.140 0.007 0.053 0.036 0.056 0.029 0.120 0.026 0.106 0.024 0.107 0.078 0.111 0.060 0.210 0.098 0.227 0.163 0.212 0.112 0.272 0.154 0.215 0.272 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.361 1.264 0.0360.015 0.346 0.067 0.217 0.500 0.119 0.687 0.1140.536 0.710 0.225 1.640 0.053 1.018 0.123 0.433 0.035 0.722 0.055 0.325 0.050 0.450 0.021 0.357 0.041 0.245 0.048 0.356 0.228 0.476 0.067 1.109 0.120 1.075 0.735 0.0970.161 0.635 0.866 0.104 0.700 0.1770.196 0.918 0.039 0.939 0.039 0.325 0.123 0.340 0.112 0.805 0.111 0.708 0.122 0.702 0.438 0.711 0.372 1.369 1.559 0.039 0.359 0.3540.659 1.482 0.322 1.949 1.552 0.4140.464 1.616 1.596 0.107 0.713 0.344 1.943 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.069 2.073 0.0210.015 0.640 0.042 0.440 0.055 0.860 1.155 0.0510.094 1.190 2.596 0.0330.068 1.033 1.436 0.051 1.138 0.0630.039 1.710 0.049 0.772 0.025 1.200 0.047 0.584 0.025 0.786 0.042 0.629 0.028 0.489 0.033 0.643 0.073 0.859 0.058 1.783 0.091 1.483 1.203 0.0680.053 1.441 1.530 0.030 0.650 0.0860.100 2.389 2.596 0.051 1.182 0.0290.030 0.583 0.044 0.611 0.048 1.211 0.046 1.137 0.046 1.166 0.100 1.219 0.080 2.288 2.509 0.0780.101 2.232 0.111 2.983 0.099 2.253 2.691 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.123 4.141 0.042 1.284 0.036 0.809 0.061 1.767 0.107 2.491 0.085 2.644 0.183 5.653 0.101 3.817 0.057 1.646 0.123 2.220 0.194 3.197 0.065 2.412 0.092 2.544 0.090 1.193 0.051 1.643 0.057 1.277 0.042 0.982 0.090 1.318 0.128 1.809 0.209 3.794 0.129 3.732 0.062 2.751 0.100 3.209 0.123 3.218 0.050 1.208 0.067 1.262 0.097 1.365 0.210 5.194 0.213 5.444 0.072 2.618 0.064 2.815 0.122 2.482 0.103 2.470 0.152 2.509 0.192 4.707 0.251 5.444 0.133 4.965 0.200 6.432 0.292 5.034 0.227 6.309 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.187 9.059 0.230 9.126 0.172 5.822 0.0410.029 1.903 0.038 1.154 0.073 2.434 3.515 0.080 3.525 0.1030.148 3.868 0.139 7.647 0.054 5.505 0.104 2.288 0.056 3.684 0.087 1.721 0.054 2.307 0.031 1.831 0.051 1.356 0.058 1.919 0.315 2.532 0.115 5.664 0.097 5.189 0.043 3.987 1.923 0.0800.097 2.899 4.478 0.081 3.728 0.1060.138 4.540 0.036 4.587 0.036 1.735 0.095 1.661 0.093 4.118 0.091 3.486 0.112 3.610 0.208 3.577 0.166 6.741 7.570 0.183 7.229 0.178 7.216 0.1690.162 7.350 7.459 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.1670.139 9.929 11.295 0.1060.111 9.667 11.904 0.055 6.932 0.0150.016 2.241 0.009 1.293 0.053 2.166 4.406 0.0520.039 4.354 0.048 3.615 5.537 0.0500.026 6.308 0.033 2.930 0.017 4.350 0.040 2.078 0.019 2.968 0.012 2.235 0.020 1.598 0.029 2.399 0.070 3.175 0.045 6.850 0.046 6.230 0.016 5.022 2.229 0.0410.297 4.680 8.449 0.0290.067 4.419 0.081 8.760 8.350 0.0300.024 2.158 0.054 1.939 0.042 5.451 0.034 4.382 0.034 4.278 0.074 4.200 0.070 8.381 9.005 0.0720.060 5.771 5.182 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.034 5.969 0.0300.034 5.422 0.020 2.779 0.022 3.597 0.049 1.888 0.025 2.910 0.014 2.032 0.027 1.282 0.039 2.187 3.133 0.0160.014 1.659 0.006 0.847 0.059 0.683 3.836 0.0530.039 4.426 5.047 0.0560.039 3.732 0.032 2.857 5.199 0.0370.012 2.155 0.059 1.318 0.059 5.345 0.045 4.528 0.031 3.732 0.051 3.314 0.084 8.008 7.584 0.0740.027 6.904 0.045 4.919 0.020 4.528 1.706 0.0800.064 5.199 4.324 0.0320.085 3.191 0.076 7.243 5.876 0.238 12.065 0.163 10.072 0.113 10.421 0.115 10.942 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) HD 967 1.082 HD 984 3.178 HR 1981HR 3404 9.920 HR 5307 6.812 HR 5630 7.686 7.793 HD 9331 0.949 HD 9472 2.865 HD 9608 1.337 HD 9782 3.327 HD 9986 4.551 HD 92987 3.682 HD 93351HD 0.490 93380HD 0.260 93745 2.455 HD 93932HD 2.345 94151HD 1.637 94280 3.452 HD 94765HD 2.648 94771HD 3.242 94964HD 1.862 95521HD 2.198 95542HD 1.219 95922 2.042 HD 96116HD 0.784 96276HD 1.439 96290HD 2.119 96418HD 5.004 96423HD 2.898 96574 3.035 HD 97004HD 1.746 97037HD 4.593 97343 3.192 HD 97998HD 2.692 98284HD 1.535 98356HD 0.658 98388 4.000 HD 98553HD 2.455 98618HD 2.109 98697 5.522 128 APPENDIX D. APENDIX 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.002 0.002 0.003 0.002 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0030.000 0.071 0.000 0.007 0.001 0.008 0.001 0.011 0.000 0.008 0.000 0.007 0.008 0.004 0.087 0.003 0.069 0.004 0.084 0.0040.002 0.099 0.002 0.040 0.002 0.044 0.003 0.038 0.001 0.064 0.002 0.024 0.001 0.040 0.029 0.000 0.009 0.001 0.013 0.0000.000 0.010 0.001 0.007 0.001 0.010 0.001 0.012 0.001 0.011 0.001 0.014 0.002 0.012 0.040 0.0020.002 0.035 0.001 0.050 0.026 0.0020.003 0.053 0.001 0.046 0.019 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.127 0.237 0.205 0.302 0.1660.107 0.281 0.224 0.1150.039 0.317 0.137 0.003 0.026 0.0040.003 0.038 0.003 0.033 0.003 0.026 0.003 0.026 0.027 0.003 0.027 0.0030.002 0.029 0.004 0.022 0.004 0.037 0.003 0.038 0.004 0.035 0.004 0.041 0.039 0.038 0.004 0.132 0.043 0.031 0.127 0.0320.052 0.119 0.013 0.163 0.086 0.041 0.143 0.0860.012 0.206 0.035 0.077 0.018 0.132 0.098 0.0660.058 0.175 0.008 0.160 0.062 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.008 0.149 0.0150.010 0.221 0.009 0.183 0.008 0.154 0.009 0.143 0.153 0.009 0.155 0.0100.006 0.167 0.014 0.120 0.015 0.210 0.014 0.216 0.192 0.466 1.662 0.390 2.077 0.391 1.534 0.489 2.000 0.156 0.782 0.1220.243 0.799 0.080 1.068 0.566 0.1810.169 0.873 0.937 0.3790.061 1.388 0.140 0.494 0.095 0.855 0.649 0.2530.274 1.174 0.048 1.044 0.387 0.547 2.084 0.0200.015 0.237 0.150 0.215 0.845 0.015 0.239 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.011 0.285 0.103 2.637 0.129 2.942 0.104 2.370 0.105 3.036 0.0690.065 1.571 1.483 0.0140.012 0.426 0.014 0.360 0.011 0.298 0.014 0.281 0.306 0.138 3.317 0.018 0.308 0.0170.018 0.337 0.017 0.240 0.017 0.418 0.017 0.416 0.018 0.405 0.020 0.462 0.066 0.437 1.325 0.022 0.488 0.067 1.356 0.0520.060 1.336 0.033 1.744 0.922 0.0730.030 2.165 0.046 0.823 0.044 1.287 1.066 0.0840.062 1.783 0.023 1.712 0.686 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± flux (Jy) W1 flux (Jy) W2 flux (Jy) W3 flux (Jy) W4 flux (Jy) s K 0.332 7.020 0.021 0.583 0.0300.040 0.872 0.026 0.748 0.024 0.591 0.022 0.574 0.588 0.021 0.619 0.0220.035 0.636 0.035 0.520 0.035 0.804 0.031 0.853 0.764 0.263 5.571 0.114 5.374 0.208 6.710 0.120 2.810 0.1520.213 2.669 0.099 3.630 1.980 0.1700.176 3.132 3.375 0.1960.107 4.409 0.150 1.786 0.053 2.953 2.257 0.1350.090 3.951 0.035 3.745 1.463 0.226 7.137 0.0580.065 0.931 0.105 0.828 3.107 0.030 1.002 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.274 8.408 0.251 10.016 0.214 7.754 0.236 9.425 0.310 9.451 0.016 0.801 0.0230.026 1.214 0.022 0.986 0.014 0.823 0.017 0.824 0.814 0.023 0.867 0.0230.017 0.901 0.018 0.753 0.024 1.119 0.020 1.147 0.029 1.029 0.022 1.288 1.114 0.087 3.947 0.0740.119 3.756 0.064 5.038 2.994 0.0910.092 4.395 4.776 0.1150.054 5.914 0.087 2.525 0.072 4.065 3.217 0.1110.114 5.632 0.056 5.433 2.091 0.102 4.376 0.028 1.346 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.146 11.827 0.127 12.204 0.116 12.453 0.076 10.123 0.0140.012 0.949 0.015 0.910 0.015 0.842 0.868 0.013 0.854 0.008 1.229 0.0080.024 0.957 0.005 0.815 0.014 1.034 0.009 1.111 0.006 0.945 0.004 1.163 1.034 0.046 5.552 0.011 0.937 0.022 1.441 0.100 10.244 0.022 3.938 0.024 3.321 0.0220.032 3.824 5.396 0.2370.021 5.922 2.955 0.025 3.733 0.0460.055 6.682 0.016 6.529 2.321 0.0300.034 4.946 5.239 0.033 4.700 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 0.0110.010 0.383 0.016 0.625 0.016 0.536 0.552 0.010 0.461 0.007 0.581 0.0080.022 0.602 0.005 0.661 0.350 0.008 0.581 0.106 9.870 0.169 10.537 0.041 9.203 0.134 12.529 0.015 2.208 0.028 2.558 0.0150.023 2.159 3.136 0.0200.024 2.676 2.269 0.021 2.511 0.044 5.011 0.0220.037 2.994 3.664 0.039 3.564 0.118 11.490 0.0100.008 0.501 0.004 0.337 0.003 0.421 0.296 0.031 5.011 0.021 0.832 0.0720.013 6.009 1.599 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Name B flux (Jy) V flux (Jy) J flux (Jy) H flux (Jy) L 10-27L 0.216 79-96 0.272 HR 6994 7.055 HR 6669 6.340 HR 6496 9.105 HR 8250 7.193 LTT 826 0.123 L 112-126 0.290 LTT 1850LTT 2630 0.150 LTT 2661 0.368 LTT 2697 0.281 0.290 LTT 3152LTT 4442 0.330 LTT 4625 0.393 LTT 8253 0.224 0.222 LTT 8750LTT 9605 0.176 0.111 V* BZ Cet 1.464 V* FT Cet 1.027 V* NS Aqr 1.300 V* AF Lep 8.041 V* NT Aqr 2.119 V* LQ Hya 1.336 V* XZ LMi 0.900 V* EW Cet 2.005 NLTT 13839 0.372 V* V443 Lac 1.493 V* V417 HyaV* V419 1.036 Hya 1.555 NAME Perky 3.358 V* V344 And 1.400 V* V450 AndV* V451 3.007 And 3.890 Bibliography

Absil, O., et al. 2006, Astronomy and Astrophysics, 452, 237 Adams, F. C., & Shu, F. H. 1986, The Astrophysical Journal, 308, 836 Aumann, H. H., et al. 1984, The Astrophysical Journal, 278, L23 Backman, D. E., Dasgupta, A., & Stencel, R. E. 1995, The Astrophysical Journal, 450, L35 Bailey, et al. 2014, The Astrophysical Journal, 780, L4 Baraffe, I., Chabrier, G., & Barman, T. 2010, Reports on Progress in Physics, 73, 1 Batalha, N. M. 2014, arXiv:1409.1904v1 Bessell, M. S. 1979, Publications of the Astronomical Society of the Pacific, 543, 589 Bonafanti, A., Ortolani, S., Piotto, G., & Nascimbeni, V. 2015, Astronomy and Astro- physics, 575A, 18 Bowler, B. P., Liu, M. C., Dupuy, T. J., & Cushing, M. C. 2010, The Astrophysical Journal, 723, 850 Burns, J. A., LAmy, P. L., & Soter, S. 1979, Icarus, 40, 1 Butler, R. P., Vogt, S. S., Marcy, G. W., et al. 2000, The Astrophysical Journal, 545, 504 Carpenter, J. M., et al. 2009, The Astrophysical Journal, 705, 1646 Casagrande, L., et al. 2011, Astronomy and Astrophysics, 530, A138 Castelli, F., & Kurucz, R. L. 2003, Astronomical Society of the Pacific: San Franciso, 0, A20 Chen, C. H., Fitzgerald, M. P., & Smith, P. S. 2008, Astrophysical Journal, 689, 539 Chen, C. H., et al. 2014, The Astrophysical Journal Supplement Series, 211, 25 Cruz-Saenz de Miera, F., Chavez, M., Bertone, E., & Vega, O. 2014, Monthly Notices of the Royal Astronomical Society, 437, 391

129 130 BIBLIOGRAPHY

Cruz-Saenz de Miera, F., et al. 2012, Master’s thesis, Instituto Nacional de Astrof´ısica, Optica´ y Electr´onica Currie, T., et al. 2007, The Astrophysical Journal, 663, L105 Cutri, R. 2013, CDS/ADC Collection of Electronic Catalogues, 2328, 1 Cutri, R., et al. 2012, CDS/ADC Collection of Electronic Catalogues, 2311, 1 Cutri, R. M., et al. 2003, CDS/ADC Collection of Electronic Catalogues, 2246, 1 D’Alessio, P., Cant´o,J., Calvet, N., & Lizano, S. 1998, The Astrophysical Journal, 500, 411 Draine, T. 2006, The Astrophysical Journal, 636, 1114 Dullemond, C. P., & Monnier, J. D. 2010, Annu. Rev. Astron. Astrophys., 48, 205 Eiroa, C., et al. 2013, Astronomy and Astrophysics, 555, A11 Ertel, S., Wolf, S., Metchev, S., et al. 2011, Astronomy and Astrophysics, 533A, 132 Faber, P., & Quillen, A. C. 2007, Monthly Notices of the Royal Astronomical Society, 382, 1823 Fischer, D. A., & Valenti, J. A. 2005, Astrophysical Journal, 622, 1102F Greaves, J. S., Fischer, D. A., & Wyatt, M. C. 2006, Monthly Notices of the Royal Astronomical Society, 366, 283 Greaves, J. S., et al. 1998, The Astrophysical Journal, 506, L133 Gr¨un,E., Gustafson, B. A. S., Dermott, S., & Fetchtig, H. 2001, Interplanetary Dust (Springer) Haywood, M. 2001, Monthly Notices of the Royal Astronomical Society, 325, 1365 Heap, S. R., et al. 2000, The Astrophysical Journal, 539, 435 Hillenbrand, L. A., et al. 1992, The Astrophysical Journal, 397, 613 Hughes, A. M., Wilner, D. J., Andrews, S. M., & Williams, J. P. 2011, The Astrophys- ical Journal, 740, 38 Jackson, A. P., & Wyatt, M. C. 2012, Monthly Notices of the Royal Astronomical Society, 425, 657 Jarrett, T. H., et al. 2011, The Astrophysical Journal, 735, 112 Jewitt, D., Moro-Martin, A., & Lacerda, P. 2009, The Kuiper Belt and Other Debris Disks, 1st edn. (Springer) Jones, D. H., Saunders, W., et al. 2009, Monthly Notices of the Royal Astronomical Society, 399, 633 BIBLIOGRAPHY 131

Kennedy, G. M., & Wyatt, M. C. 2012, Monthly Notices of the Royal Astronomical Society, 426, 91 Kenyon, S. J., & Bromley, B. C. 2004, The Astrophysical Journal, 602, L133 Krivov, A. V. 2010, Research in Astronomy and Astrophysics, 10, 383 Kroupa, P. 1998, Monthly Notices of the Royal Astronomical Society, 300, 200 Lagrange, A., et al. 2010, Science, 329, 57 Lisse, C. M., H., C. C., Wyatt, M. C., et al. 2009, The Astrophysical Journal, 701, 2019 Lodieu, N., Perez-Garrido, A., et al. 2014, Astronomy and Astrophysics, 569, A120 Markwardt, C. B. 2009, Astronomical Society of the Pacific: San Franciso, 411, 251 Marois, C., Zuckerman, B., et al. 2010, Nature, 468, 1080 Marshall, J. P., et al. 2014, Astronomy and Astrophysics, 565, 14 Massey, F. J. 1952, Annals of Mathematical Statistics, 23, 435 Mathieu, R. 1994, Annu. Rev. Astron. Astrophys., 32, 465 Matthews, B. C., Krivov, A. V., Wyatt, M. C., et al. 2014, prpl. conf., 521 Mayor, M., & Queloz, D. 1995, Nature, 378, 355 Morales, F. Y., et al. 2012, The Astrophysical Journal, 757, 7 Murray, C. D., & Dermott, S. F. 1999, Solar system dynamics (Princeton) Mustill, A. J., & Wyatt, M. C. 2009, Monthly Notices of the Royal Astronomical Society, 399, 1403 —. 2011, Monthly Notices of the Royal Astronomical Society, 413, 554 Neudebauer, G., et al. 1984, The Astrophysical Journal, 278, L1 Patel, R. I., Metchev, S. A., & Heinze, A. 2014, The American Astronomical Society, 212, 10 Pecaut, M. J., Mamajek, E. E., & Bubar, E. J. 2012, The Astrophysical Journal, 746, 154 Perryman, M. 2011, The Exoplanet Handbook, 1st edn. (Cambridge University Press) Quillen, A. C. 2006, Monthly Notices of the Royal Astronomical Society, 372, L14 Reidemeister, M., et al. 2011, Astronomy and Astrophysics, 527, A57 Ricci, L., Carpenter, J. M., Hughes, B., et al. 2015, The Astrophysical Journal, 798, 124R 132 BIBLIOGRAPHY

Rieke, G. H., & Lebofsky, M. J. 1985, The Astrophysical Journal, 288, 618 Rieke, G. H., Su, K. Y. L., et al. 2005, The Astrophysical Journal, 620, 1010 Sheret, I., Dent, W. R. F., & Wyatt, M. C. 2004, Monthly Notices of the Royal Astronomical Society, 348, 1282 Sibthorpe, B., et al. 2013, Monthly Notices of the Royal Astronomical Society, 428, L6 Siegler, N., et al. 2007, The Astrophysical Journal, 654, 580 Sierchio, J. M., Rieke, G. H., Su, K. Y. L., & Gaspar, A. 2014, The Astrophysical Journal, 785, 33 Sinclair, J. A., Helling, C., & Greaves, J. S. 2010, Monthly Notices of the Royal Astronomical Society, 409, L49 Skrutskie, M. F., Cutri, et al. 2006, The Astronomical Journal, 131, 1163 Smalley, B., et al. 2012, Astronomy and Astrophysics, 547, A61 Soubiran, C., et al. 2010, Astronomy and Astrophysics, 515, A111 Sousa, S. G., et al. 2008, Astronomy and Astrophysics, 487, 373 —. 2011, Astronomy and Astrophysics, 533, A141 Su, K. Y. L. 2006, The Astrophysical Journal, 653, 675 Su, K. Y. L., et al. 2009, The Astrophysical Journal, 705, 314 Trilling, D. E., et al. 2008, The Astrophysical Journal, 674, 1086 Valenti, J. A., & Fischer, D. A. 2005, The Astrophysical Journal Supplement Series, 159, 141 Vican, L., & Scheider, A. 2014, The Astrophysical Journal, 780, 154 Waters, L. B. M., & Waelkens, C. 1998, Annu. Rev. Astron. Astrophys., 36, 233 Weinberger, A. J., Becklin, E. E., Song, I., & Zuckerman, B. 2011, Astrophysical Journal, 726, 72 Williams, D. R., & Wetherhill, G. W. 1994, Icarus, 107, 117 Williams, J. P., & Cieza, L. A. 2011, Annu. Rev. Astron. Astrophys., 49, 67 Williams, J. P., Najita, J., Liu, M. C., et al. 2004, The Astrophysical Journal, 604, 414 Wisdom, J. 1980, The Astronomical Journal, 85, 1122 Wright, E. L., et al. 2010, The Astronomical Journal, 140, 1868 Wyatt, M. C. 1999, PhD thesis, University of Florida BIBLIOGRAPHY 133

—. 2003, The Astrophysical Journal, 598, 1321 —. 2006, Astrophysical Journal, 639, 1153 —. 2008, Annu. Rev. Astron. Astrophys., 46, 339 Wyatt, M. C., Kennedy, G., et al. 2012, Monthly Notices of the Royal Astronomical Society, 424, 1206 Zuckerman, B. 2001, Annu. Rev. Astron. Astrophys., 39, 549