19 90ApJS. . .72. .1913 contract withtheNationalScience Foundation. the AssociationofUniversitiesfor ResearchinAstronomy,Inc.,under © 1990.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. have focusedonsinglemain-sequencestars(Vaughan and The AstrophysicalJournalSupplementSeries,72:191-230,1990January Preston 1980;Duncan1981;Baliunasetal1983;Soderblom 1985; andothers).Onlyafew attemptshavebeenmadetosee discovered brightemissionlinesinthecoresofstrong ena. Burson 1922;Wellmann1940)revealedHandKabsorp- Further observationsbyseveralauthors(e.g.,Deslandres and strengthening theanalogybetweensolarandstellarphenom- tion reversalsontopoftheHandKemissionlines, Ca iiabsorptionfeaturesofaBoo,Tau,andGem. 3 2 1 VisitingAstronomer,KittPeak National Observatory,operatedby Efforts todetectactiveregionsfromrotationalmodulation Over 70yearsago,EberhartandSchwarzschild(1913) CHROMOSPHERIC CanHANDKHaEMISSIONINSINGLEBINARYSTARS -21 McDonald Observatory,UniversityofTexasatAustin;andCenterExcellenceinInformationSystemsEngineering,TennesseeState Dominion AstrophysicalObservatory,HerzbergInstituteofAstrophysics,NationalResearchCouncilCanada;andDepartment identify correlationsbetweenchromosphericactivityatCanHandKHaeffectivesurfacetemperature levels ofactivitythantheirsinglecounterparts.ChromosphericemissionintheCailHandKlinesdependsalso within theevolvedstarsplaysapparentlynorole,whilemain-sequencebinaryshowgenerallyhigher binary starsofspectraltypeF6toM2andluminosityclassIII,IV,V.Thesampleincludesinactivesingle upon surfacetemperatureinthesensethatfluxdeclineswithcoolertemperature.ThetrendHa used ultravioletCrvemission-linefluxestakenfromtheliteratureandcomparedthemwithpresentdata. binary starsoftheRSCVnandBYDraclasswithatotalrangerotationperiodsfrom0.5to310days.A until log^'(K)~5.8ergscmsisreachedandthenfillsinquiterapidly. equivalent width-log^'(CanK)planeisthatwithincreasingKlinefluxtheHaabsorptioncorefirstdeepens evolved starsaregenerallymoreactivethanmain-sequenceofthesamerotationperiod.Binarityperse determine theirrotationalvelocities.Thesedata,supplementedbypublishedobservations,havebeenusedto of 444spectrahavebeenacquiredandareusedtomeasureabsoluteCanHKemission-linesurfacefluxes and rotation.SeveralnewstarswithchromosphericCailHKemissionhavebeendiscovered.Wealso and BalmerHacoreemissionequivalentwidths.Someofthestarsalsohavebeenobservedat6430Áto and binarystarsaswellmoderatelytoextremelyactivesingleincludingtheFKCom Subject headings:Canemission—lineprofilesstars:binarieschromospheres © American Astronomical Society • Provided by theNASA Astrophysics Data System No singleactivity-rotationrelationcanbederivedforallluminosityclasses,andthereisclearevidencethat We haveobtainedhigh-andmedium-resolutionCanHKand/orHalineprofilesfor100single I. INTRODUCTION : emission-line—late-typerotation 1 Department ofPhysicsandAstronomy,VanderbiltUniversity Department ofPhysicsandAstronomy,UniversityToledo Klaus G.StrassmeierandFrancisC.Fekel Physics andAstronomy,UniversityofToledo OF SPECTRALTYPESF6-M2 Received 1989April7;acceptedJuly5 1 Gregory W.Henry Robert C.Dempsey Bernard W.Bopp ABSTRACT University AND 191 Absolute CaHandKemission-line fluxesandHacore mainly onultravioletemissionlines. (e.g., Rutten1987)and{b)withasimilarstarinbinary chromospheric behaviorifcomparedwith{a)main-sequence mined. Onereasonforthismight bethecomplicationin system (e.g.,Basri,Laurent,andWalter1985;Basri1987; stars withthesamerotationratesandeffectivetemperatures emission equivalentwidthsfor thesestarsrarelyweredeter- cally activebinarystars(=CABS;Strassmeieretal1988). greater thanthatofourSun.Thestellarparametersthese and theBYDravariablesisatleastoneorderofmagnitude systems havebeensummarizedinacatalogofchromospheri- Simon andFekel1987).Moreover,thelatterstudiesarebased the secondarycomponentor the presenceofacontinuum analysis duetothebinarynature ofthesestars,thatis,e.g., the (presumablyunknown)contamination oftheemissionby if rapidlyrotatingsinglesubgiantsandgiantsdifferintheir The activityinclassesofstarssuchastheRSCVnbinaries 19 90ApJS. . .72. .1913 hot componentwhichdilutestheemissionfromprimary. Worden, Schneeberger,andGiampapa(1981),17stars;Gi- ing CailKemission,thegiantstendedtohavedeeperHa (1984), 14stars;Femândez-Figueroaetal(19866),seven Recent CanHandKobservationsfocusedalmostexclu- While thedwarfstarsinsampleof85spectral hshed bythepresenceofemissionincoreHaline. (1988), 50stars.Amoredetailedinvestigationofsubgiants stars; andmostrecentlyPasquini,Pallavicini,Pakull ampapa etal.(1981),sevenstars;Bopp(1983),19 sively onsinglestars,e.g.,Linskyetal(1979),43stars; (Herbig 1985).Chromosphericactivityisthereforealsoestab- Hyades stars(Cayreletal.1983)andothersolar-typedwarfs Moffett, andHenry1986)aswellinrelativelyyoung Ha inveryactivebinarystars(SmithandBopp1982;Fekel, and giantsinbinarysystemsseemedtobeneeded. instrumentation, andin§IIIwediscusstheanalysistech- most oftheHareferencestars,almostallprogram emission andRossbynumber(theratiobetweentherota- cores. Fromasampleofeightshort-periodRSCVnandW will servetheneedsdescribed.Inadditionwetrytoverify of 100mostlyveryactivestarsbutalsoforweakorinactive UMa stars,Barden(1985)foundapossiblecorrelationofHa same brighteningoftheHacore(increasingR)withincreas- niques applied.Thespectraaredescribedin§IV,andV (0.18-0.3 À)andmedium-resolution(0.5-0.9A)spectrawhich obtained withavarietyoftelescopesbetween1981and1989. stars havebeenobservedatCanandHa.Notethatthe stars whichhadsuspectedactivity.Withtheexceptionof and KHeregionand/ortheBalmerHalineforatotal tional periodandtheconvectivetimescale). type F8andlaterofZarroRogers(1983)showedthe some trendsthatmaybepresent.In§IIwedescribethe Our primarygoalistopresentasetofhigh-resolution and Haobservationswerenotsimultaneous.Thedata c o 192 In thispaperwepresentnewobservationsoftheCanH Several authorsnotedsignificantfillinginofthecores © American Astronomical Society • Provided by theNASA Astrophysics Data System 1986 Apr-1988SepRitter1 m EchelleReticon10242.50.3 Ritter0.3 1985 MarKPNOCF CoudéTI-3CCD150.4 KPNOO.4 1985 Sep,Oct,NovKPNOCF CoudéTI-3CCD7.60.2 KPNOO.2 1988 MayKPNOCF CoudéTI-3CCD7.60.18 KPNO0.18 1989 JanKPNOCFCoudéTI-3 CCD 7.60.21KPNOO.21 1981 Jan,MayMcDonald2.7mCoudéReticon 10244.40.352.7McD0.35 1983 Apr,AugMcDonald2.1mCoudéReticon 17289.50.422.1McD0.42 1986 Feb,MayMcDonald2.1mCoudéReticon 17289.50.282.1McD0.28 1988 MayDAO1.8mCassegrainRCA CCD150.5DAOCCD0.5 1987 DecDAO1.8mCassegrainReticon 1872150.5DAORET0.5 1985 MarKPNOCF CoudéRCACCD7.60.5 KPNO0.5 1988 Mar,AprDAO1.8mCassegrainRCA CCD150.9DAOCCD0.9 1988 Mar,MayKPNOCFCoudéTI-3 CCD 4.70.30KPNO0.30 1987 DecKPNOCFCoudéTEK CCD4.70.24KPNOO.24 -1 andMonthTelescopeSpectrographDetector(Amm)(A)Code Telescope-Spectrograph-Detector Combinations STRASSMEIER ETAL Ca ilHandK TABLEI Ha -1 included insomeofthegraphs§V.IndividualCanHand published absoluteHandKfluxesforactivestarswhichwere widths. AppendixAcontainsashortsummaryofpreviously we discusssystematictrendsinthelinefluxesandequivalent K regionplotsforourprogramstarsaregiveninAppendixB. intervals; 1987December,1988March/April,andMay pixel TektronixCCDandhada2-pixelresolutionof0.24A A mm.TheobservationsinDecemberutilizeda512x512 pixel Reticonarrayandhadaspectralresolutionof0.5A. with theCassegrainspectrographfedby1.8mtelescope. grating Aandcamera5atareciprocaldispersionof4.7 May. Thecoudéspectrographwasusedinthirdorderwith observing intervalsin1987December,1988March,and width, aresolutionof0.9Â.Thesamechipwasusedforthe The MarchandAprilobservationsutilizeda512x512pixel The observationsinDecemberwereobtainedwitha1872 data weuseda800XpixelTexasInstruments(TI-3)CCD graph-detector combinations. scope. Table1isasummaryofthedifferenttelescope-spectro- Dominion AstrophysicalObservatory’s(DAO)1.8mtele- Observatory’s (KPNO)0.9mcoudéfeedtelescopeandthe RCA CCDandhad,combinedwiththeslightlylargerslit and aslightlylargerslitwidthresultinginaneffectiveresolu- and awavelengthcoverageof65A.FortheMarchMay signal-to-noise (SNR)ratiosvariedfrom1minuteandSNR tions werecenteredon3950.0A.Theintegrationtimesand tion of0.3Aandawavelengthcoverage56A.Allobserva- SNR «50forHD65195. «150 (attheKlinebottom)forßGem,to90minutesand The DAOdatasetwasobtainedduringthreeobserving The KPNOdatawereobtainedinthecourseofthree Two telescopeshavebeenused;theKittPeakNational Dispersion Resolution II. INSTRUMENTATION a) CalciumHandK Vol. 72 19 90ApJS. . .72. .1913 -1 2 -1 1 Astronomy, Inc.,undercontractwith theNationalScienceFoundation. package forCCDSpectra(PilachowskiandBarnes1987) 0.5 A.Thesignal-to-noiseratiosareinthesamerangeas May observations,butwitheffectivewavelengthresolutionof which isoperatedbytheAssociation ofUniversitiesforResearchin ing the1mreflector. mostly the2.1mtelescope;KPNOusingcoudéfeed vatories: McDonaldObservatory,UniversityofTexas,using KPNO data. A. Forthe1983dataweuseda90¡imslitachievingspectral A mmcoveringawavelengthregionofapproximately265 0.35 Aasearly1981.Thevastmajority,however,was available atKPNOandDAO. the ImageReductionandAnalysisFacility’s(IRAF)sub- intensified 1024pixelReticonarray(Bopp,Dempsey,and resolution of0.28A.TheSNRsforallthreedatasetswerein made witha60jiimwideslitresultinginsomewhatbetter utilized thecoudéspectrographwithgrating2infirstorder A centeredon6570A.TheSNRsfortheseobservationsarein resolution of0.42A,whereasthe1986observationswere reciprocal dispersionof2.5Amm.Thedetectorwasan and the1872pixelReticonhadadispersionof9.5 pass photometryforstarsofvariousspectraltypesandlumi- Willstrop (1964)obtainedabsolutelycalibrated50Aband- runs utilizedcamera5,gratingBorD,andtheTI-3RCA resolution of0.18Awhilecoveringa84fieldcenteredon with theKPNOcoudéfeedtelescopeusingcamera5and taken withthe2.1min1983and1986.Theseobservations telescope anda1024pixelReticonarrayatresolutionof telescope; andRitterObservatory,UniversityofToledo,us- relation toconvertWillstrop’s 3925-3975Afluxesintoabso- color andapparentvisualbrightness.Linskyetalused this nosity classes.BarnesandEvans(1976)haveshownthat the Ha. TheobtainedSNRisapproximately150:1.1985 grating Ainsecondorder.Thedispersionof7mm"and Maniak 1988),whichwhencombinedwitharelativelylarge followed theproceduresoutlinedbyLinskyetal(1979). CCD atresolutionsbetween0.2and0.5A. the rangeof50-150:1. spectral resolutionof0.3A.Thewavelengthcoveragewas60 slit widthinordertodecreaseintegrationtimeresulteda the range50-200:1withmostaround100:1. the TI-3CCDpixelsizeof15ju,mresultedina2-pixelspectral the 1mtelescopeandafiber-fedechellespectrographat angular diameterofastarmaybederivedfromitsV -R No. 1,1990 o 2 -2_ 1 IRAFisdistributedbyNational OpticalAstronomyObservatories, A fewspectrawereobtainedwiththe2.7mMcDonald These observationswereobtainedatthreedifferentobser- The Ritterdatawereobtainedbetween1986and1988with Both datasetswerereducedinthestandardfashionusing Higher resolutionscanswereobtainedin1988,and1989 Our measurementsofthesurfacefluxinergscms III. DESCRIPTIONOFMEASUREDPARAMETERS a) AbsoluteCanHandKSurfaceFlux © American Astronomical Society • Provided by theNASA Astrophysics Data System b) BahnerHa Ca ilHANDKHaEMISSION -2_1 zero-flux level.ThisisdemonstratedinFigure1wherethe where theobservedfluxesarealwaysmeasuredfrom lute surfacefluxesandplottedthemversustheF-Rcolor bottom lineofthegraphshallrepresentzero-fluxlevel. which maybenoted: While thiscalibrationtechniqueplacesallstarsonauniform À bandpass.Thus,allCauHandKspectraforwhichthis color measured relativefluxes,/(AÀ),equaltothecalibratedflux calibration maybeappliedmustcontainthis50Abandpass Knowing theF-Rcolorofastarsonecanderiveitsstellar angstrom, inthe3925-3975ÁbandpassandF-R and foundatightcorrelationwithonly1.4%averagedevia- flux scaleforintercomparisontherearestillseveralproblems centered on3950A. surface continuumfluxinergscmsAthe3925-3975 scribes thentherelationshipbetweenstellarfluxper tion. Apiecewiselinearleast-squaresfittothesedatade- so that calibration ofJ^AA=50A) isderivedfromtheWillstrop A(K)-A(K (Table4)showedinternalerrorsofupto K characteristics. tion (2)includestheHand Kemissionfeaturesbutthe how welltheminimaweredefinedandthereforedepending illustrated inFigure1.Ourmeasurementsof,e.g.,AAiK^= stars whichwereselectedwithout muchregardtotheirHand (CA) starismatchedwiththeappropriatevalueofintrin- lies” ofactiveHyadesstars(Campbell1984)arenotreal but 0.066 mag;Vogt1981).Moreover,severalofourprogram Peg whereabigspotin1977producedF—Rvariationsof on theinstrumentalresolution. ^ indices,aredefinedasthefluxabovezero-fluxlevel colors insteadofobserved. cations listedinKeenan(1983)andFekel,Moffett, and observed F-Rcolor.Tobeonaconsistentscalethroughout for F—Rchangesof<0.03mag(anexceptionmightbeII and Henry1986)whiledarkstarspotsnormallyaccountonly and F-7colorexcessesof0.06-0.10mag(Fekel,Moffett, sic colorinJohnson’s(1966)tables,theCAstarsshowF-R 9%, orapproximately6%intheresultingflux,dependingon and between(e.g.,fortheKline)minima,as due toduplicitywhichmightjustifytheuseoftheoretical Henry (1986).TheseF-RsarelistedinTable2.Recently, catalog or,especiallyforthesinglestars,weusedclassifi- ever possibleweusedthespectraltypesgiveninCABS this paperwedecidedtouseJohnson’s(1966)spectraltype-F stars haveneverbeenobservedinRandtherefore no Soderblom (1989)presentedevidencethatthecolor“anoma- 1Ä1k 1klR — Rcolorrelationforthefluxcalibrationprocedure.When- The HandKemission-linefluxesarederivedbysettingthe 3. Theintegral,/(AX=50Á), inthedenominatorequa- 2. IftheobservedR-Fofachromosphericallyactive 1. Theemission-linesurfacefluxes,alsocalledtheKand x log ^=8.264-3.076(F-R)forF-R<1.3.(1) 50^ <2) 193 19 90ApJS. . .72. .1913 with thosefromotherauthors(Table 7). 194 Usted inTable4.Evenstarswithemissionequivalent widths of>1A,thedifferencesinabsolutelinefluxesare The quantitiesJF(K),W(H)andfF(He)are point (3)mightbesignificant.Toseetowhatextentthis generally lessthan10%butcanreachuptoapproximately namely, measuringactualequivalentwidths(EW)andsub- A resolutionKPNOdataalsoinaslightlydifferentway; would influencetheemission-linefluxeswereduced0.24 boundaries forourfluxintegration(dottedarealabeledW).Thegraphbottomindicatesthezero-fluxlevel.Kand^points,producedby bandpass (dottedarea)includingW(K)andW(H).Rightgraph:DefinitionoftheHa“equivalentwidth”termusedthroughoutthispaper. line reversalintheemissioncenter,markstrengthofabovepseudocontinuum(i.e.dashedlinesshownmiddlegraph). 15% inthecaseofHD106225[JT(K)«2.2À].Aparticular Figure 1,fromtheEWof50Abandpass,labeledWin docontinuum, i.e.,JT(K)andW(Y£)inthemiddlepanelof equivalent widthsoftheKandHemissionfinesmeasuredabovepseudocontinuum(dashedlines),whileWis“equivalentwidth”within50A Figure 1,resultingin tracting theHandKemissionEWmeasuredfrompseu- Middle graph:ShownaretheintegrationboundariesofAX=50Abandpassneededforfluxcalibrationprocedure.W(K)andÍF(H) 02Ä Fig. 2.—Leftpanel:Comparison of theKPNOfluxeswiththosefrom In thecaseofveryactivestars,likeRSCVnbinaries, Fig. 1.—Definitionofmeasuredquantities.Leftgraph:Thered(Æ)andviolet(F)KjpointsthecentralCanKemissiondeterminewavelength © American Astronomical Society • Provided by theNASA Astrophysics Data System 50^ STRASSMEIER ETAL (3) >. Rightpanel:Comparisonofthe KPNO andDAOfluxesfromthispaper problem withthismethodisthedeterminationofcontin- uum. ThisisdemonstratedinthemiddlegraphofFigure1. variable. Weestimatetheinternalprecisionofbothdatasets been obtainedatdifferentepochs,whichisimportantbecause better than«40%takingintoaccountthatthedatahave indices withthoseofotherauthors.Theagreementismostly (KPNO vs.DAO)tobeshghtlybetterthan«20%. most ofourprogramstarsaresupposedtobeintrinsically deviation iswithintheexpectedrangeofexternalerror KPNO andatDAOarecomparedinFigure2a.Theirmean K lineshavebeendetermined,thefluxwhichrisesfrom (KPNO andDAO)tobe«15%,theexternalaccuracy underlying photospheremustbesubtracted.Asdemonstrated approximately 20%.Figure2bcomparesour^andK x The absolutefluxesofstarswhichhavebeenobservedat After theabsolutesurfacefluxesincoresofHand b) HandKLineRadiativeLosses Vol. 72 19 90ApJS. . .72. .1913 _1 by LinskyandAyres(1978),theresultingexcessfluxisnet radiative equilibriummodelatmospheres(i.e.,nochromo- chromospheric radiativelossintheHandKlines,respec- These excessfluxesarelistedinTable3alongwiththe widths andresidualintensitiesofthereferencestars.Inmost uncorrected fluxes. corrected ^andKindices^'(Hx)^'(ICi) sphere), and^reÍKí),whichcanbeusedtoderive tively. Linskyetal(1979)alsopresentHandKindicesfor ing thepreceptsofBopp,Dempsey, andManiak(1988).This the radiativelossesinHandKlinesrepresentedby is schematicallyillustratedin therightsectionofFigure1. cases theprogramstarandreferencewereobserved spectral typeandluminosityclass.ShowninFigure3 are the equivalentwidthofapresumablyinactivestarsame some ofthereferencestarspectra.Table5listsequivalent core bysearchingforthefive to10highestcountsperpixelin First, weestablishedthecontinuum intensityabovetheHa several times.Ifso,weusedtheirmeanvaluesintheanalysis. two relativelyline-free3A windowscenteredat6540and x 1x No. 1,1990CailHANDKHaEMISSION195 coudé feedtelescopeataresolutionof0.18A.Thespectraareshiftedinintensityforbetterdisplay.ordinateispixelswithan arbitrary velocity range of100kms(~2A)indicated.NotetheincreasingHawingswithhotterspectraltype. The Hacoreemissionwasdeterminedbysubtraction of The coreemissionequivalentwidthwasmeasuredfollow- Fig. 3.—Haprofilesfor10referenceabsorption-linestars,(a)Dwarfs;(b);(c)giants.Allobservationsweremadewith theKPNO ^'(H^KO =^(H;K)-^(H.(4) 1re c) HaCoreEmissionEquivalentWidths © American Astronomical Society • Provided by theNASA Astrophysics Data System in Table6Awiththeirrespectivestandarddeviations. If The anglebracketsdenotemeanvaluesforthecaseswhere mÁ fortheKittPeakcoudé feeddata,6mAforthe2.1m zero intensitytothefinebottom. more thanonespectrumwasobtained.Thesevaluesarelisted of referencestarstakenonthe samenightisapproximately4 variable HaprofileandfistedtheindividualresultsinTable 6B. Alsofistedaretheresidual intensities,R,measuredfrom G >0.060A,weconsideredthestartohaveanintrinsically = integration fortheequivalentwidth.Thistechniquenearly in astraightlinetothecontinuumlevelresultslimitsof points. Second,extendingthesidesofabsorptionprofile uncertainties ofthesometimesverybroadHawingsand,in With thenomenclatureinFigure1wefollowed rotationally broadenedwiththeappropriatevalueofvsini eliminates thecontaminationbynearbywatervaporlines, 6590 A.Astraightlinewasthendrawnbetweenthesetwo of theprogramstarandthensubtractedfromeachother. v siniofthestar.Therefore,allreferencespectrawerefirst spheric emissionshouldbefirstvisible. addition, concentratesonthecoreoflinewherechromo- c Wa (Hem )((programstar)-(broad.ref.). (5) The internalprecisionofthe “equivalent width”forspectra This artificial“equivalentwidth”howeverdependsonthe 19 90ApJS. . .72. .1913 _1 196 measured, andtheaveragevaluedetermined.TheFWHM of maxima (FWHM)ofseveralfinesinthe6430Àregionwere double-fined. rotational velocities(Table2)for24systems,fiveofwhich are ence stars).Thus,wedeterminedvaluesoftheprojected value. Althoughspectraltypemismatchescancausespurious yses (Vogt1981)todetermine anempiricalrelationshipbe- uncertain upperlimits(particularlyinthecaseofsomerefer- lems (Z>),(c),and(d)makeitalwayssmaller.Thus,wemight program starandreferencestar,(Z>)anunreliablylargevalue for thesefineswasassumedtobetheinstrumentalprofile. comparison-lamp fineswerealsomeasured,andtheaverage a valueofvsiniintheliteratureorexistingvalues are expect someunfortunatecaseswherealloftheseproblemsare core emissionequivalentwidtheithersmallerorlarger,prob- of vsinitheprogramstar,(c)presenceacomposite smaller thanourcutoffvalueof0.04-0.06Â. added togetherresultinginanunrealisticnegativeemission among starswithHandKemission.Table6Acontains11 This maybecausedby(a)spectraltypemismatchesbetween the finebroadeningdetermined frommodelatmosphereanal- Such instrumentallycorrected FWHMwerecomparedwith “emission” equivalentwidths,theirupperlimitshouldbe stars with{W)<-0.1À.Whileproblem{a)makesthe spectrum, and(d)differencesofthechromosphericstructure sion thanthereferencestarused(comparewithHerbig1985). sion equivalentwidths;i.e.,evenweakerchromosphericemis- echelle spectraforfightscatteringinthespectrograph(Bopp, this problemislesssignificant. Dempsey, andManiak1988)butnotthecoudéspectrawhere value exceedsthe0.18ÁKPNOby25%.Therefore, at most,weaklyactive.NotethatwecorrectedtheRitter than +0.04to0.06Àshouldbeconsideredasnonactiveor, cantly broadenedlines(i;sini=11kms),wheretheRitter stars withHacoreemissionequivalentwidths,less exception: r\Boo,theonlyHareferencestarwithsignifi- The 0.42ÁMcDonaldequivalentwidthsareconsistently Ritter Observatoryechelleequivalentwidthsare«10%larger with the0.28ÁMcDonaldspectra—withoneexception, with approximatelythesameresolution.Theexternalaccu- than acorrespondingcoudéobservation.Thereisagainone though, i.e.,ßVir,wheretheMcDonaldvalueis9%larger. coudé feedspectraagreegenerallytowithinafewpercent racy fortheseobservationsisofcoursesomewhatlarger,say of «40mA.SomethestarsinTable6Bhavebeen observed withdifferenttelescope-spectrographconfigurations McDonald data,and10mÂfortheRitterdata.Theexternal cm at differentepochs,however,hasagreaterrangewithmean accuracy forthecoreemissionsestimatedfromspectrataken « 5%largerthanthe0.18ÂKPNOdata,while0.3À « 60mÂ.Theequivalentwidthsfromthe0.18ÁKPNO To determinetherotationalvelocities,fullwidthhalf- For manyofthestarsinoursamplewewereunabletofind A numberofstarswerefoundtohavenegativecoreemis- © American Astronomical Society • Provided by theNASA Astrophysics Data System d) RotationalVelocities STRASSMEIER ETAL n _1 _1 -1 log ^'(Hi),thechromosphericradiativelossnormalizedto fisted aretheuncorrectedHeindices,log^(He),definedas fine widthsatdifferentlocationsintheHandKfines.This nation explainedinTable1. halfway betweenthemeanfluxatKand^ H, The A\andAAwidthsaredefinedasthewavelength in Figure1.TheAAwidthisdefinedasthewavelength pseudocontinuum). Theotherequivalentwidthmeasuresin width abovetheinterpolatedwingofCauHfine(= column acodeforthetelescope-spectrograph-detectorcombi- respectively. Wefisttheseparameterssothattheymay be The lasttwocolumnsfistthefullwidthathalf-maximum for KPNO spectra.Thefirstcolumnfiststheequivalentwidthof corrected Cau^andKindices,log^'(Ki) Ca IIHjandKindices,log^(KJ^(HJ,the for eachofthe83starsfistedinTable3(includingSun)is tween thesetwoquantities: in Figure4alongwiththeirrespectivereferencestars.Tables used intestingdifferentfineformationtheories. defined asthefullwidthmeasuredbetweenfluxlevels table containsonlydatafromthe0.24Àand0.3Áresolution the totalsurfaceluminosityofstar,Rk>ilast the totalsurfacefluxabovezero-fluxlevel,uncorrected tion fistedinLandolt-Bömstein(Schmidt-Kaler1982).Also given inAppendixB(Fig.10).InTable3thestar’seffective of resultswhenvsiniwasdeterminedfrommorethanone of individualwidthsfromfinetofine,onthereproducibility was assumed.Thefactor0.591isfromtheempiricalrelation- reference stars,whileTable 6A fiststhevaluesforactive separations betweenthetwoHandKpoints,respectively. separation betweenKand(Fig.1),similarlyforAA . the Heemissionfeature(ifpresent),definedasequivalent temperature isgivenfromthespectraltype-temperaturerela- spectrum, andonthecalibrationofsystem. tainties of2-3kms,anestimatebasedontheconsistency earlier forwhichamacroturbulenceof5kms(Gray1982) except forthosegiantstarshavingspectraltypesofG5or The valuesofvsiniweredeterminedusingequation(6)with contains theequivalentwidths andresidualintensitiesforthe the KandHfine,FWHM(K)FWH^H), are this table,J^o(K;H)andIF(K;H),areexplainedin§III ship mentionedabove.Therotationalvelocitieshaveuncer- 5, 6A,and6Bsummarizethe Ha-observationresults.Table5 an assumedmacroturbulence,f,of3kms(Gray1982), x2 2 (K2)H2) (K1) x : H 2 lv1R (H1) v sini=0.591 A representativeexampleofoneCanHandKobservation Listed inTable4arethemeasuredequivalentwidthsand Representative Haregionspectraforfivestarsareshown IV. INDIVIDUALRESULTS (fwhmL-fwhmL*) 1/2 Vol. 72 1/2 (6) 19 90ApJS. . .72. .1913 No. 1,1990 © American Astronomical Society • Provided by theNASA Astrophysics Data System 1 1 ß Com 4 UMi ß Vir T Boo HR 5110 £ UMa(B) 77 Boo FK Com BD+36°2368 BM CVn BD+34°2411 BD+57°1417 6 Vir 31 Com 61 UMa DF UMa LR Hya 70 Vir BD-8°3301 HR 4430 LQ Hya 24 UMa ß Cnc ß Gem Ghese 410 Gliese 380 Ghese 378.1 IL Hya o UMa 7T UMa 35 Cnc 28 Mon 54 Cam BD+42°1790 a Gem x Ori BD+40°2197 K Gem BD+47°1117 Gliese 338A OU Gem HR 2081 HR 1908 BD+03°733 BD+64°487 BD+26°730 V492 Per V491 Per V711 Tan CD-26°2085 BD+0°908 HR 1455 El Eri HR 1176 6 Eri VY Ari a Ari AY Get 1 Gem BD+14°690 HR 1362 UX Ari HR 1023 BD+25°497 12 Cam BD+34°363 HR 454 HR 339 HR 166 6 And Name 10 Tau 98230 82210 99967 95650 91816 88230 86856 118216 82558 81410 80715 45088 41116 124547 116204 69267 65626 65195 62509 40084 39587 121370 120136 117555 117176 116378 115781 114710 113983 113226 111812 106225 102870 79211 71369 65953 62345 62044 37171 33798 32357 101501 72905 72779 34198 31993 31738 30957 29104 28591 27691 27536 26337 25893 23838 23249 22484 22468 21018 21242 9746 6903 3651 3627 HD 19485 17433 12929 7672 12545 K3III F6IV G0IV F2IV/K2IV G5V K1III F/K0III dMOe G2III G4V GOV G8III G8III G0III K0III F9V K2III dM2e K0V/K0V dK8 dKO G8V G5V K7V G4IV-III K3V/K3V K4in KOin Kim Kim MOVe G0III K4in F9IV/F9rV K3V/K5V K4III K0III K0III GOV G5III G5III G8III GOV K0III K2III dK5e K0+IV [F6-7/1K0III G5III G5IV G8:IV F/G5III-II K1III G8IV G5IV F9V-IV gKl GOV G8IV G2III G5IV/K1IV K2in WD/G5III G5V/K0IV G5III G4V/G6V K3-4IV G5IV K0V K3in Type G0III (hot/cool) Spectral Ca ilHANDKHaEMISSION Properties ofObservedStars 4.82 4.95 4.98 4.26 4.87 6.59 2.68 4.50 8.2 8.87 8.13 4.94 6.35 9.52 9.04 4.56 2.83 8.1 3.61 5.33 7.21 7.58 7.5 7.5 10.12 4.14 4.68 4.16 4.41 5.64 6.58 3.36 3.52 6.52 9.12 6.79 5.89 5.94 3.57 6.25 8.6 4.28 7.4 7.7 7.62 8.42 6.36 6.72 6.27 3.54 5.7 6.5 6.38 7.1 7.0 7.53 7.13 6.95 5.66 8.36 6.87 2.00 5.92 5.47 1.14 7.13 5.55 5.87 3.27 7.0 7.6 (mag) V c 0.84 0.54 0.96 0.50 0.40 0.58 0.54 0.54 0.81 0.50 0.70 0.70 0.51 0.77 0.48 0.58 0.64/0.64 0.64 0.65 /0.79 /0.77 1.28 1.50 1.15 1.20 0.81 0.82/0.82 0.50 0.51 0.69 0.50/0.50 0.69 0.77 0.81 0.82/ 0.50 0.64 0.70 0.69 0.77 0.77 0.77 0.84 0.61 0.99 0.81 0.50 0.64 0.61 0.77 0.48 0.69 0.54/0.55 0.84 1.28 1.06 [/]0.77 /0.69 0.64 /0.60 0.85 0.77 0.81 0.51 1.06 1.06 /0.81 /0.77 0.64 0.96 /0.69 (mag) V-E TABLE 2 a m orb 17.76 orbl8.7 orb2.613 20.66 orbl.033 orb3.980 orb6.8 2.40 2.935 [7] [37] .11] [4.2] [14] 76.6 (0.92?) [160] [10] *80] 10.6 17.1 1.5978 orb37.9 4.5 orb 1.9 3.8 orb219. orb4.00 7.36 5.10 28.4 9.8 84.9 21.3 309.6 2.84 orb6.15 orb23.9 19.410 [20] 6.44 48: 10.163 [300] [150] 7.5 [25] 6.2 Prot 12.69 13.0 [20] [240] 76.0 1.945 [100] 17.4 75.12 [260] (days) 240] 2.6] 87] 150] 180] n] b b b b b b b b b b b b b b b b b b -1 b b b 4 5 6 /10 57 25 3.2 2.8 4 7/35 4.9 ll 14.5 120 l: 15 6/6 25 <3 <15 <15 16 <25 4 20 3.1 22 4 91 2.6 5 2.5 6 25 5.6/S.6 6/6 6 6/6 8 24 8 6 50 6/37 6 29 31 /17 /6 6 2.2 8 91 ÏÔ/IO 10 10/14 12 13/38 10/6 176 /4 (km s) <3 15 15

lambda (angstroms)

© American Astronomical Society • Provided by the NASA Astrophysics Data System 19 90ApJS. . .72. .1913 © American Astronomical Society • Provided by theNASA Astrophysics Data System 218 19 90ApJS. . .72. .1913 © American Astronomical Society • Provided by theNASA Astrophysics Data System lambda (angstroms) lambda (angstroms) Ca ilHANDKHaEMISSION Fig. 10—Continued 219 19 90ApJS. . .72. .1913 220 © American Astronomical Society • Provided by theNASA Astrophysics Data System lambda (angstroms) STRASSMEIER ETAL lambda (angstroms) Vol. 72 19 90ApJS. . .72. .1913 No. 1,1990CailHANDKHaEMISSION221 © American Astronomical Society • Provided by theNASA Astrophysics Data System 222 STRASSMEIER ETAL Vol. 72

lambda (angstroms)

3930 3940 3950 3960 3970 3980 lambda (angstroms)

© American Astronomical Society • Provided by the NASA Astrophysics Data System 19 90ApJS. . .72. .1913 No. 1,1990 © American Astronomical Society • Provided by theNASA Astrophysics Data System lambda (angstroms) Ca ilHANDKHaEMISSION lambda (angstroms) 223 19 90ApJS. . .72. .19 224 © American Astronomical Society • Provided by theNASA Astrophysics Data System STRASSMEIER ETAL Vol. 72 19 90ApJS. . .72. .1913 No. 1,1990CaIIHANDKHaEMISSION225 © American Astronomical Society • Provided by theNASA Astrophysics Data System lambda (angstroms) 19 90ApJS. . .72. .1913 226 © American Astronomical Society • Provided by theNASA Astrophysics Data System lambda (angstroms) STRASSMEIER ETAL Fig. 10—Continued Vol. 72 19 90ApJS. . .72. .1913 No. 1,1990CailHANDKHaEMISSION © American Astronomical Society • Provided by theNASA Astrophysics Data System lambda (angstroms) lambda (angstroms) Fig. 10—Continued 19 90ApJS. . .72. .1913 228 © American Astronomical Society • Provided by theNASA Astrophysics Data System STRASSMEIER ETAL lambda (angstroms) lambda (angstroms) Vol. 72 19 90ApJS. . .72. .1913 No. 1,1990CailHANDKHaEMISSION229 © American Astronomical Society • Provided by theNASA Astrophysics Data System lambda (angstroms)„bda lambda (angstroms) Ur 1990ApJS ... 72. .1984,inCoolStars,StellarSystems,andtheSun,ed.S.L. .1984,Ap.J.Suppl.,54,387. Nashville, TN37235 Johnson, H.L.1966,Ann.Rev.Astr.Ap.,4,193. Hartmann, L.,Soderblom,D.R.,Noyes,R.W.,Burnham,N.,and Femández-Figueroa, M.J.,Montesinos,B.,deCastro,É.,Regó,M., Eberhard, G.,andSchwarzschild,K.1913,Ap.J.,38,292. Francis C.FekelandKlausG.Strassmeier:DepartmentofPhysicsAstronomy,VanderbiltUniversity, Box1807B, Herbig, G.H.1985,Ap.J.,289,269. Griffin, R.F.,andRadford,G.A.1976,Observatory,96,188. Gray, D.F.1982,Ap.J.,262,682. Giampapa, M.S.,Worden,S.P.,Schneeberger,T.J.,andCram,L.E. Femández-Figueroa, M.J.,deCastro,E.,Montesinos,B.,Barreiro,F. Fekel, F.C,Moffett,T.J.,andHenry,G.W.1986,Ap.J.Suppl.,60, Duncan, D.K.1981,Ap.J.,248,651. Deslandres, H.A,,andBurson,V.1922,C.R.Acad.Sei.,Paris,175, Cayrel, R.,CayreldeStrobel,G.,Campbell,B.,Mein,N.,P.,and Campbell, B.1984,Ap.J.,283,209. Bopp, B.W.,andFekel,F.C.1977,A.J.,82,490. Bopp, B.W.,Dempsey,R.C,andManiak,S.1988,Ap.J.Suppl.,68, Bopp, B.W.,Ake,T.B.,Goodrich,D.,Africano,J.L.,Noah,P.V., Bopp, B.W.,Africano,J.L.,Stencel,R.E.,Noah,P.V.,andKlimke,A. 230 Merritt Boulevard,Nashville,TN37209-1561 Keenan, P.C.1983,Bull.InformationCDS,No.24,p.19. Cram, L.E.,andGiampapa,M.S.1987,Ap.J.,323,316. Bopp, B.W.1983,inIAUColloquium71,ActivityRedDwarfStars,ed. Beavers, W.L,andGriffin,R.F.1979,Pub.A.S.P.,91,824. Basri, G.,Laurent,R.,andWalter,F.M.1985,Ap.298,761. Basri, G.1987,Ap.316,377. Barnes, T.G.,andEvans,D.S.1976,M.N.R.A.S.,174,489. Barden, S.C.1985,Ap./.,295,162. Barden, S.C.,andNations,H.L.1988,privatecommunication. BaHunas, S.L.,étal.1983,Ap.275,752. Gregory W.Henry:CenterofExcellenceinInformationSystemsEngineering,TennesseeStateUniversity, 3500 JohnA. Bernard W.BoppandRobertC.Dempsey:DepartmentofPhysicsAstronomy,UniversityToledo, OH43606 Vaughan, A.H.1984,Ap.J.,276,254. Giménez, A.,andReglero,V.19S6b,Astr.Ap.,169,219. Giménez, A.,andReglero,V.1986a,Adv.SpaceRes.,6,187. 551. Bahúnas andL.Hartmann(Berlin:Springer),p.128. Dumont, S.1983,Astr.Ap.,123,89. Meredith, R.J.,Palmer,L.H.,andQuigley,1985,Ap.297,691. 1981, Ap.J.,246,502. P. B.ByrneandM.Rodonó(Dordrecht:Reidel),p.363. 121. 803. 1983, Ap.J.,275,691. en, M.,andBarden,S.C.1989,Ap.J.,339,1059. , B.W.,Saar,S.H.,Ambruster,C,Feldman,P.,Dempsey,R., © American Astronomical Society • Provided by theNASA Astrophysics Data System STRASSMEIER ETAL REFERENCES Zarro, D.M.,andRodgers,A.W.1983,Ap.J.Suppl,53,815. Worden, S.P.,Schneeberger,T.J.,andGiampapa,M.1981,Ap.J. Wolff, S.C,Boesgaard,A.M.,andSimon,T.1986,Ap.J.,310,360. Wihstrop, R.V.1964,Mem.R.A.S.,69,83. Wellmann, P.1940,Zs.Ap.,19,236. Walter, F.M.,andBasri,G.S.1982,Ap.J.,260,735. Vogt, S.1981,Ap.J.,241,975. Vaughan, A.H.,andPreston,G.W.1980,Pub.A.S.P.,92,385. Tomkin, J.1980,A.J.,85,294. Uesugi, A.,andFukuda,I.1982,RevisedCatalogofStellarRotational .1989,Ap.J.,342,823. Strassmeier, K.G.,Weichinger,S.,andHanslmeier,A.1986,Inf.Bull. Strassmeier, K.G.,Hall,D.S.,Zeilik,M.,Nelson,E.,Eker,Z.,and Strassmeier, K.G.,Hah,D.S.,Boyd,L.L,andGenet,R.M.1989,Ap. Strassmeier, K.G.,andHall,D.S.1988,Ap.J.Suppl,67,453. Stem, R.A.,Nousek,J.Nugent,J.,Agrawal,P.C,Riegler,G.R., Soderblom, D.R.1985,A.J.,90,2103. Smith, S.E.,andBopp,B.W.1982,Ap.Letters,22,127. Smith, S.E.1984,Ph.D.thesis,TheUniversityofToledo. Simon, T.,Herbig,G.,andBoesgaard,A.M.1985,Ap.J.,293,551. Simon, T.,andFekel,F.C.1987,Ap.J.,316,434. Rutten, R.G.M.,andSchrijver,C.J.1987,Astr.Ap.,Ill,155. Schmidt-Kaler, T.1982,inLandolt-Bömstein,Vol.2b,ed.K.Schaifers Rutten, R.G.M.1987,Astr.Ap.,Ill,131. Noyes, R.W.,Hartmann,L.Bahúnas,S.L.,Duncan,D.K.,and Pilachowski, C.,andBames,J.1987,IRAFReductionofCoudé/CCD Pasquini, L.,Pallavicini,R.,andPakull,M.1988,Astr.Ap.,191,253. Middelkoop, F.1982,Astr.Ap.,107,31. Lloyd-Evans, T.1987,S.A.A.O.Cire.,No.11,p.73. Linsky, J.L.,Worden,S.P.,McClintock,W.,andRobertson,R.M.1979, Linsky, J.L.,andAyres,T.R.1978,Ap.J.,220,619. Kelch, W.L.,Linsky,J.andWorden,S.P.1979,Ap.J.,229,700. Suppl, 46,159. J. Suppl,69,141. Fekel, F.C.1988,Astr.Ap.Suppl,72,291. (Utters), 251,L105. Rosenthal, A.,Pravdo,S.H.,andGarmire,G.P.1981,Ap.J. and H.Voigt(Heidelberg:Springer),p.1. Velocities (Kyoto:KyotoUniversity). Var. Stars,No.2937. Spectra (Tucson:NOAO/KPNO). Vaughan, A.H.1984,Ap.J.,279,763. Ap. J.Suppl.,41,47. Vol. 72