ROSAT Observations of Superflares on RS Cvn Systems

Total Page:16

File Type:pdf, Size:1020Kb

ROSAT Observations of Superflares on RS Cvn Systems ROSAT Observations of Superflares on RS CVn Systems Vito Giuseppe GrafFagnino Thesis submitted for the degree of Doctor of Philosophy, in the Faculty of Science of the University of London. UCL Mullard Space Science Laboratory Department of Space & Climate Physics U n i v e r s i t y • C o l l e g e • L o n d o n 2000 ProQuest Number: U642316 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642316 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ,,. A Mia Moglie E Miei Genitori A bstract The following thesis involves the analysis of a number of X-ray observations of two RS CVn systems, made using the ROSAT satellite. These observa­ tions have revealed a number of long-duration flares lasting several days (much longer than previously observed in the X-ray energy band) and emitting ener­ gies which total a few percent of the available magnetic energy of the stellar system and thus far greater than previously encountered. Calculations based on the spectrally fitted parameters show that simple flare mechanisms and standard two-ribbon flare models cannot explain the observations satisfacto­ rily and continued heating was observed during the outbursts. This is the first time that such departures from two-ribbon flare models have been identified unambiguously for such large flares, however for some of these outbursts the situation is complicated by the fact that other flaring activity may have been superimposed on the observed lightcurves. By analysing the general decay of the flares, loop heights were derived. Although these loop heights are depen- dendent on the amount of heating assumed, the calculations were performed for a wide range of reasonable heating values. For these cases the flare heights obtained for these outbursts were of the order of the inter-binary separation and inter-binary flares are suggested as the cause of the outbursts. C ontents A b stra c t........................................................................................................... 3 Table of Contents 4 List of Tables ................................................................................................. 8 List of Figures..................................................................................................... 10 Acknowledgements ........................................................................................... 16 1 An Introduction to Stellar Extremists — RS CVns 18 1.1 INTRODUCTION ................................................................................ 18 1.2 THE RS CVn BINARY SY S T E M S .....................................................19 1.2.1 RS CVns and evolution.............................................................. 21 1.3 X-RAY OBSERVATIONS OF RS CVn SYSTEMS...........................22 1.3.1 A Brief Historical Introduction ..............................................22 1.3.2 Stellar X-ray Luminosity R elationships .................................23 1.3.3 Development of Spectral Models to Fit Stellar Coronae . 27 1.3.4 A Brief Review Of Characteristics At Other Wavelengths 32 1.4 STELLAR F L A R E S ............................................................................. 39 1.4.1 Types of Stellar Flares .............................................................. 42 1.4.2 Simple Analysis and Inference of Stellar Flare Parameters 43 1.4.3 X-ray flare observations ...........................................................45 1.4.4 In This T hesis .............................................................................. 50 2 HR 5110—A Source Of Inter-Binary Flaring? 53 2.1 INTRODUCTION ................................................................................ 53 2.2 THE D A T A ............................................................................................. 55 2.3 THE A N A LY SIS....................................................................................56 2.3.1 The WFC Survey Tim e-Series ................................................. 56 2.3.2 The Survey PSPC Time-Series .................................................. 57 2.3.3 The Pointed WFC Time-Series ..................................................59 2.3.4 The Pointed PSPC Time-Series ..............................................59 2.3.5 The Spectral Analysis .............................................................. 61 2.4 DISCUSSION.......................................................................................... 69 2.4.1 A Two-Ribbon Flare? .............................................................. 73 2.5 SUM M ARY............................................................................................. 86 3 HR 5110—You Can’t Keep A Good Flare Down 91 3.1 INTRODUCTION ................................................................................ 91 3.2 THE D A T A ............................................................................................. 92 3.3 THE A N A LY SIS....................................................................................92 3.3.1 The Time-Series ............................................................................92 3.3.2 The Spectral Analysis .............................................................. 96 3.3.3 Emission Measure Distribution Va ria tio n s............................97 3.3.4 Analyses of the Observed Fla re s ................................................99 3.3.5 General Decay Phase of the fla re s .......................................... 106 3.4 DISCUSSION........................................................................................ I l l 3.5 SUM M ARY............................................................................................113 4 CF Tucanæ — A Southern Perspective 115 4.1 NOTES ON CF TUCANÆ ...............................................................115 4.2 THE D A T A ............................................................................................117 4.3 THE A N A LY SIS...................................................................................117 4.3.1 The Lightcurves ........................................................................118 4.3.2 Spectral Analysis and Comparison of Spectral Models . 118 4.3.3 Flare A nalysis ...........................................................................129 4.4 SUM M ARY.............................................................................................136 5 CF Tucanæ— The Aftermath 138 5.1 THE POST-FLARE/QUIESCENT STA GE ...................................138 5.1.1 Comparison With The Survey Observations .................... 152 5.2 A DISCUSSION OF KÜRSTER AND SCHMITT’S 1996 PAPER154 5.3 SUMMARY OF RESULTS FOR CF T U C ......................................157 6 A Final Discussion And Conclusions 159 6.1 A SUMMARY OF RESULTS ............................................................ 159 6.1.1 Flare Light curve Characteristics ...........................................160 6.1.2 Flare Analyses R e s u lts ...........................................................164 6.1.3 Flare Spectral C haracteristics .............................................. 168 6.2 SPECTRAL RESULTS FROM CONTEMPORANEOUS OB­ SERVATIONS ......................................................................................... 169 6.3 FUTURE W O R K ...................................................................................170 6.4 A FINAL W O R D ...................................................................................174 7 Bibliography 175 A Spectral Modelling of Stellar Coronae 198 A.l X-RAYS FROM HOT OPTICALLY THIN PLASMAS ...............198 A. 1.1 One-temperature and Two-temperature Thermal Plasma M odels ......................................................................................... 200 A. 1.2 Continuous emission measure m odels................................. 201 A.1.3 Multi-Temperature and Differential emission measure mod­ els ................................................................................................202 A. 1.4 Loop M odelling ......................................................................... 202 A.2 THE NON-UNIQUENESS OF X-RAY SPECTRAL MODEL FITTING ................................................................................................205 B The ROSAT Mission 220 B.l AN OVERVIEW OF THE MISSION ................................................220 B.2 THE ROSAT PSPC .............................................................................222 B.3 THE ROSAT W FC .............................................................................. 224 C Beyond ROSAT... 227 C.l Introduction........................................................................................... 227 List of Tables 1.1 Details of the major X-ray flares observed in RSCVn systems and reported in the literature ...................................................................47 1.2 Major X-ray flares: continued ..................................................................48 1.3 Major X-ray flares: continued
Recommended publications
  • VLBI Imaging of the RS Cvn Binary Star System HR 5110
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Accepted to the Astrophysical Journal on 2002 December 12 VLBI imaging of the RS CVn binary star system HR 5110 R. R. Ransom, N. Bartel and M. F. Bietenholz Department of Physics and Astronomy, York University 4700 Keele St., Toronto, Ontario, Canada M3J 1P3 M. I. Ratner, D. E. Lebach and I. I. Shapiro Harvard-Smithsonian Center for Astrophysics 60 Garden St., Cambridge, MA 02138 and J.-F. Lestrade Observatoire de Paris/DEMIRM 77 av. Denfert Rochereau, F-75014 Paris, France ABSTRACT We present VLBI images of the RS CVn binary star HR 5110 (=BH CVn; HD 118216), obtained from observations made at 8.4 GHz on 1994 May 29/30 in support of the NASA/Stanford Gravity Probe B project. Our images show an emission region with a core-halo morphology. The core was 0:39 0:09 mas ± (FWHM) in size, or 66% 20% of the 0:6 0:1 mas diameter of the chromospher- ± ± ically active K subgiant star in the binary system. The halo was 1:95 0:22 mas ± (FWHM) in size, or 1:8 0:2timesthe1:1 0:1 mas separation of the centers of ± ± the K and F stars. (The uncertainties given for the diameter of the K star and its separation from the F star each reflect the level of agreement of the two most recent published determinations.) The core increased significantly in brightness over the course of the observations and seems to have been the site of flare activ- ity that generated an increase in the total flux density of 200% in 12 hours.
    [Show full text]
  • The Radio Astronomy of Bruce Slee
    CSIRO PUBLISHING Review www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2004, 21, 23–71 From the Solar Corona to Clusters of Galaxies: The Radio Astronomy of Bruce Slee Wayne Orchiston Australia Telescope National Facility, PO Box 76, Epping NSW 2121, Australia (e-mail: [email protected]) Received 2003 May 8, accepted 2003 September 27 Abstract: Owen Bruce Slee is one of the pioneers of Australian radio astronomy. During World War II he independently discovered solar radio emission, and, after joining the CSIRO Division of Radiophysics, used a succession of increasingly more sophisticated radio telescopes to examine an amazing variety of celestial objects and phenomena. These ranged from the solar corona and other targets in our solar system, to different types of stars and the ISM in our Galaxy, and beyond to distant galaxies and clusters of galaxies. Although long retired, Slee continues to carry out research, with emphasis on active stars and clusters of galaxies. A quiet and unassuming man, Slee has spent more than half a century making an important, wide-ranging contribution to astronomy, and his work deserves to be more widely known. Keywords: biographies — Bruce Slee — radio continuum: galaxies — radio continuum: ISM — radio continuum: stars — stars: flare — Sun: corona 1 Introduction Radio astronomy is so new a discipline that it has yet to acquire an extensive historical bibliography. With founda- tions dating from 1931 this is perhaps not surprising, and it is only since the publication of Sullivan’s classic work, The Early Years of Radio Astronomy, in 1984 that schol- ars have begun to take a serious interest in the history of this discipline and its ‘key players’.
    [Show full text]
  • A Circular Polarisation Survey for Radio Stars with the Australian SKA Pathfinder
    MNRAS 000,1–18 (2021) Preprint 4 February 2021 Compiled using MNRAS LATEX style file v3.0 A circular polarisation survey for radio stars with the Australian SKA Pathfinder Joshua Pritchard,1,2,3¢ Tara Murphy,1,3y Andrew Zic,1,2 Christene Lynch,4,5 George Heald,6 David L. Kaplan,7 Craig Anderson,8,2 Julie Banfield,2 Catherine Hale,6 Aidan Hotan,6 Emil Lenc,2 James K. Leung,1,2,3 David McConnell,2 Vanessa A. Moss,2,1 Wasim Raja,2 Adam J. Stewart,1 and Matthew Whiting2 1Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia 2CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia 3ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav), Hawthorn, Victoria, Australia 4International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA, Australia 5ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO3D), Bentley, WA, Australia 6CSIRO Astronomy and Space Science, PO Box 1130, Bentley, WA 6102, Australia 7Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin 53201, USA. 8National Radio Astronomy Observatory, 1003 Lopezville Rd, Socorro, NM 87801, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present results from a circular polarisation survey for radio stars in the Rapid ASKAP Continuum Survey (RACS). RACS is a survey of the entire sky south of X = ¸41◦ being conducted with the Australian Square Kilometre Array Pathfinder telescope (ASKAP) over a 288 MHz wide band centred on 887.5 MHz. The data we analyse includes Stokes I and V polarisation products to an RMS sensitivity of 250 µJy PSF−1.
    [Show full text]
  • The Washburn Observer
    The Washburn Observer Volume 3, No. 2 • Fall 2013 • www.astro.wisc.edu New Faces in the Department This Fall Inside This Issue he Astronomy Department welcomes the Charee Peters has an MA degree incoming 2013–14 class of graduate students, in physics from the Fisk-Vanderbilt Letter from the Chair 2 T visiting faculty and postdocs. Masters-to-PhD Bridge Program and a John Chisholm Bitten by BS degree in physics from the University Astronomy and Travel Bugs 3 Elijah Bernstein-Cooper has a BS degree in phys- of Denver (Colorado). She is working with Professor Eric Wilcots on observing SKA Pathfinders: A Bright ics, with an astronomy emphasis, from Macalester Radio Future 4 College in St. Paul, Minnesota. He is working with HI regions (interstellar clouds of neutral Professor Snezana Stanimirovic to answer what hydrogen) in intermediate galaxies to Department Welcomes better understand star formation, galaxy Second Grainger Fellow 5 role atomic hydrogen plays in the formation of molecular hydrogen in giant molecular clouds. formation and evolution, and/or cosmic Solar System’s in Good magnetic fields. Hands with Anne Kinney 6 Yi-Hao Chen has an MS degree in astrophysics For Garret Frankson, from Ludwig-Maximillian University in Munich, Brianna Smart has a BS degree in astron- Astronomy Is a Passion 6 Germany and a BS degree in physics from National omy and physics from the University of Arizona in Tucson. She is working with News Notes 7 Taiwan University in Taipei. He is working with Professor Sebastian Heinz on studying the effect senior scientist Matt Haffner on studying of magnetic fields on propagation of jets from the ISM using the Wisconsin H-Alpha compact objects.
    [Show full text]
  • Radio Astrometry of the Close Active Binary Hr5110
    DRAFT VERSION AUGUST 20, 2021 Preprint typeset using LATEX style emulateapj v. 12/16/11 RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR5110 1E. ABBUHL, 1R. L. MUTEL, 1C. LYNCH, 2M. GUEDEL¨ 1Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, Iowa 52242, USA and 2Department of Astronomy, University of Vienna, Vienna, Austria Draft version August 20, 2021 ABSTRACT The close active binary HR 5110 was observed at six epochs over 26 days using a global VLBI array at 15.4 GHz. We used phase-referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emission model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic electron densities are of order 10 G and 105 cm−3 respectively in the source region. 1. INTRODUCTION in order to simultaneously solve for the astrometric param- Late-type stars in short-period binary systems often exhibit eters (parallax, proper motion, orbital motion) with sub-mas signposts of enhanced magnetic activity. These include per- accuracy. sistent photospheric spots, ultraviolet chromospheric emis- The first measurements of this type were made by Lestrade sion, x-ray emission from hot coronae, and non-thermal radio et al.
    [Show full text]
  • Rachel Ann Osten
    Rachel Ann Osten Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 410-338-4762 [email protected] Professionaly 2016-present: Deputy Mission Head, HST Mission Office, Space Telescope Science Institute 2016-present: Associate Astronomer w/Tenure, Space Telescope Science Institute 2015-2016: Mission Scientist, HST Mission Office, Space Telescope Science Institute 2013-2015: JWST Deputy Project Scientist, Space Telescope Science Institute 2013-present: Associate Astronomer, Space Telescope Science Institute 2011-present: Associate Research Scientist, Johns Hopkins University Center for Astrophysical Sciences 2008-2013: Instrument Scientist, COS/STIS team, Space Telescope Science Institute 2008-2013: Assistant Astronomer, Space Telescope Science Institute 2005-2008: Hubble Fellow, University of Maryland and NASA Goddard Space Flight Center 2002-2005: Jansky Research Fellow, National Radio Astronomy Observatory y Functional positions listed in italics Education 2002: PhD, Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO Advisors: T. R. Ayres, A. Brown 1998: M.S., Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 1996: A.B., cum laude in physics and astronomy, Harvard University, Cambridge, MA Expertise • X-ray observations of late-type stars: time-domain, high-resolution spectroscopy • radio observations of late-type stars: time-domain, frequency-time analysis • high-resolution spectroscopy of late-type stars from the UV through X-ray spectral regions • multiwavelength synthesis
    [Show full text]
  • Coherent Radio Emission from a Population of RS Canum Venaticorum Systems S
    Astronomy & Astrophysics manuscript no. aanda ©ESO 2021 July 15, 2021 Coherent radio emission from a population of RS Canum Venaticorum systems S. E. B. Toet1;2, H. K. Vedantham2;3, J. R. Callingham1;2, K. C. Veken1;2, T. W. Shimwell1;2, P. Zarka4;5, H. J. A. Röttgering1, A. Drabent6, 1Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands 2ASTRON, the Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4,7991 PD Dwingeloo, The Netherlands 3Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands 4Station de Radioastronomie de Nançay, Observatoire de Paris, PSL Research University, CNRS, Université Orlèans, OSUC, 18330 Nançay, France 5LESIA, Observatoire de Paris, CNRS, PSL, Meudon, France 6Thüringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany ABSTRACT Coherent radio emission from stars can be used to constrain fundamental coronal plasma parameters, such as plasma density and magnetic field strength. It is also a probe of chromospheric and magnetospheric acceleration mechanisms. Close stellar binaries, such as RS Canum Venaticorum (RS CVn) systems, are particularly interesting as their heightened level of chromospheric activity and possible direct magnetic interaction make them a unique laboratory to study coronal and magnetospheric acceleration mechanisms. RS CVn binaries are known to be radio-bright but coherent radio emission has only conclusively been detected previously in one system. Here, we present a population of 14 coherent radio emitting RS CVn systems. We identified the population in the ongoing LOFAR Two Metre Sky Survey as circularly polarised sources at 144 MHz that are astrometrically associated with known RS CVn binaries.
    [Show full text]
  • Bibliography from ADS File: Byrne.Bib June 27, 2021 1
    Bibliography from ADS file: byrne.bib Foster, D. C., Byrne, P. B., Rolleston, W. R. J., & Hawley, S. L., “VRI photometry August 16, 2021 of the young open cluster IC 2602”, 1996ASPC..109..357F ADS Lanzafame, A. C. & Byrne, P. B., “Helium lines in late-type dwarfs.”, 1995A&A...303..155L ADS Zboril, M., Byrne, P. B., & Rolleston, W. R. J., “Erratum: Metallicity and pho- Keenan, F. P., Brekke, P., Byrne, P. B., & Greer, C. J., “The OV tospheric abundances in field K and M dwarfs”, 1998MNRAS.301.1104Z 1371.29A/1218.35A emission-line ratio in solar and stellar spectra”, ADS 1995MNRAS.276..915K ADS Short, C. I., Byrne, P. B., & Panagi, P. M., “The chromosphere of II Pegasi: multi- Barrado, D. & Byrne, P. B., “VizieR Online Data Catalog: BVRI CCD photom- line modelling of an RS Canum Venaticorum star”, 1998A&A...338..191S etry of NGC 5460 (Barrado+, 1995)”, 1995yCat..41110275B ADS ADS Vennes, S., Mathioudakis, M., Doyle, J. G., Thorstensen, J. R., & Byrne, P. B., Zboril, M. & Byrne, P. B., “Metallicity and photospheric abundances in field K “Discovery of a white dwarf companion (EUVE J0254-053) to the K0 IV star and M dwarfs”, 1998MNRAS.299..753Z ADS HD18131”, 1995A&A...299L..29V ADS Byrne, P. B., Abdul Aziz, H., Amado, P. J., et al., “The photosphere and chromo- Byrne, P. B., Panagi, P. M., Lanzafame, A. C., et al., “The photosphere and sphere of the RS Canum Venaticorum star, II Pegasi. II. A multi-wavelength chromosphere of the RS Canum Venaticorum star, II Pegasi I. Spots and chro- campaign in August/September 1992”, 1998A&AS..127..505B ADS mospheric emission in 1991.”, 1995A&A...299..115B ADS Theissen, A., Foster, D.
    [Show full text]
  • Bibliography from ADS File: Shibata.Bib August 16, 2021 1
    Bibliography from ADS file: shibata.bib Airapetian, V. S., Barnes, R., Cohen, O., et al., “Impact of space August 16, 2021 weather on climate and habitability of terrestrial-type exoplanets”, 2020IJAsB..19..136A ADS Seki, D., Otsuji, K., Ishii, T. T., et al., “SMART/SDDI Filament Disappearance Sakaue, T. & Shibata, K., “M-dwarf’s Chromosphere, Corona and Wind Con- Catalogue”, 2020arXiv200303454S ADS nection via the Nonlinear Alfvén Wave”, 2021arXiv210612752S ADS Namekata, K., Davenport, J. R. A., Morris, B. M., et al., “Temporal Evolution of Seki, D., Otsuji, K., Isobe, H., et al., “Small-scale Turbulent Motion Spatially Resolved Individual Star Spots on a Planet-hosting Solar-type Star: of the Plasma in a Solar Filament as the Precursor of Eruption”, Kepler-17”, 2020ApJ...891..103N ADS 2021arXiv210611875S ADS Shimojo, M., Kawate, T., Okamoto, T. J., et al., “Estimating the Tempera- Namekata, K., Maehara, H., Sasaki, R., et al., “Erratum: Optical and X-ray ture and Density of a Spicule from 100 GHz Data Obtained with ALMA”, observations of stellar flares on an active M dwarf AD Leonis with Seimei 2020ApJ...888L..28S ADS Telescope, SCAT, NICER, and OISTER”, 2021PASJ...73..485N ADS Tei, A., Gunár, S., Heinzel, P., et al., “IRIS Mg II Observations and Gutierrez, M. V., Otsuji, K., Asai, A., et al., “A three-dimensional ve- Non-LTE Modeling of Off-limb Spicules in a Solar Polar Coronal Hole”, locity of an erupting prominence prior to a coronal mass ejection”, 2020ApJ...888...42T ADS 2021PASJ...73..394G ADS Notsu, Y., Kowalski, A., Maehara, H.,
    [Show full text]
  • ZEEMAN EFFECT OBSERVATIONS in the RS Cvn STAR HR 5110 and in LATE-TYPE STARS with STRONG Ca II EMISSION
    ZEEMAN EFFECT OBSERVATIONS IN THE RS CVn STAR HR 5110 AND IN LATE-TYPE STARS WITH STRONG Ca II EMISSION Walter K. Bonsack and Theodore Simon Institute for Astronomy 2680 Woodlawn Drive Honolulu, Hawaii 96822 USA 1. INTRODUCTION Although magnetic fields are presumed to be of substantial importance in the physics of stellar chromospheres (e.g., Vaiana et al. 1981), firm detections of magnetic fields in stars later than type A are rare, if not entirely absent• For example, Boesgaard (1974) made careful photographic measurements of longitudinal fields in a number of dwarf stars, and obtained 5 a or greater detection of fields at the level of 100 G in the G8 V stars in £ Boo A and in the KO V star 70 Oph A. Robinson et al, (1980) studied £ Boo A by means of an analysis of the widths of magnetically sensitive lines, and obtained a mean field magnitude of 2600 G. However, Marcy (1981) used the same technique and found no significant field in this star. Brown and Landstreet (1981) looked for longitudinal fields in a variety of late type stars with an adaptation of a Griffin-type radial velocity spectrometer, which yielded standard errors near 10 G. They found no fields in any of the stars which they surveyed, including £ Boo A, 70 Oph A, and a number of RS CVn stars and other stars with strong Ca II K and He I 10830 A emission. Because of the wide range of possible field strengths in late stars suggested by indicators of chromospheric activity, further measurements remain of interest.
    [Show full text]
  • Radio Astrometry of the Close Active Binary Hr 5110 E
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by espace@Curtin The Astrophysical Journal, 811:33 (8pp), 2015 September 20 doi:10.1088/0004-637X/811/1/33 © 2015. The American Astronomical Society. All rights reserved. RADIO ASTROMETRY OF THE CLOSE ACTIVE BINARY HR 5110 E. Abbuhl1, R. L. Mutel1, C. Lynch1, and M. Güedel2 1 Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, Iowa 52242, USA 2 Department of Astronomy, University of Vienna, Vienna, Austria Received 2015 March 26; accepted 2015 August 15; published 2015 September 17 ABSTRACT The close active binary HR 5110 was observed at six epochs over 26 days using a global very long baseline interferometry array at 15.4 GHz. We used phase referencing to determine the position of the radio centroid at each epoch with an uncertainty significantly smaller than the component separation. After correcting for proper motion and parallax, we find that the centroid locations of all six epochs have barycenter separations consistent with an emission source located on the KIV secondary, and not in an interaction region between the stars or on the F primary. We used a homogeneous power-law gyrosynchrotron emission model to reproduce the observed flux densities and fractional circular polarization. The resulting ranges of mean magnetic field strength and relativistic − electron densities are of the order of 10 G and 105 cm 3, respectively, in the source region. Key words: astrometry – binaries: close – stars: chromospheres – stars: magnetic field 1. INTRODUCTION years are needed in order to simultaneously solve for the astrometric parameters (parallax, proper motion, orbital Late-type stars in short-period binary systems often exhibit motion) with sub-mas accuracy.
    [Show full text]
  • Transient Nature of J195754+353513 3
    Mon. Not. R. Astron. Soc. 000, 1–9 (2017) Printed 14 June 2021 (MN LATEX style file v2.2) Transient nature of J195754+353513 Sabyasachi Pal1⋆ Dusmanta Patra1 Monique Hollick2,3 Sandip K. Chakrabarti4,1 1Indian Centre for Space Physics, 43 Chalantika, Garia Station Road, 700084, India 2Defense Science and Technology Group, West Avenue, Edinburgh, South Australia, 5111, Australia 3University of New South Wales, Anzac Parade, Kensington, NSW, 2052, Australia 4S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata, 700098, India ABSTRACT We have searched for transient and/or variable radio sources in the field of Galactic micro-quasar Cygnus X-1 in 1.4 GHz (L band) using data from the Karl G. Jansky Very Large Array (JVLA). We used twenty years of data between 1983 and 2003. We found a source J195754+353513 showing transient behavior. The source was also mentioned earlier in NVSS and WENSS catalog but its transient nature was not reported earlier. The source is located 23.8 arcminutes far from Cygnus X-1. It is detected many times during the span of our study and it varied between less than 0.3 mJy to 201 mJy. J195754+353513 also showed high intra-day variability. In one occasion, the source rose from ∼ 20 mJy to ∼ 180 mJy 700 second. For limited number of cases circularly polarized emission could be detected from the source with V/I vary between 0.15 to 0.25. 2MASS J19575420+3535152 may be the near-infrared counterpart of the source. We compared the properties of the source with other Galactic transient sources having similar properties.
    [Show full text]