Reprogramming Metabolism by Targeting Sirtuin 6 Attenuates Retinal Degeneration
The Journal of Clinical Investigation RESEARCH ARTICLE Reprogramming metabolism by targeting sirtuin 6 attenuates retinal degeneration Lijuan Zhang,1,2,3 Jianhai Du,4 Sally Justus,1,2 Chun-Wei Hsu,1,2 Luis Bonet-Ponce,5 Wen-Hsuan Wu,1,2 Yi-Ting Tsai,1,2 Wei-Pu Wu,1,2 Yading Jia,2 Jimmy K. Duong,6 Vinit B. Mahajan,7 Chyuan-Sheng Lin,8 Shuang Wang,6 James B. Hurley,4 and Stephen H. Tsang1,2,9 1The Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, New York, USA. 2Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York, USA. 3Shanxi Eye Hospital, affiliated with Shanxi Medical University, Xinghualing, Taiyuan, China. 4Department of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington, USA. 5Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, NIH, Bethesda, Maryland, USA. 6Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, New York, USA. 7Omics Lab, University of Iowa, Iowa City, Iowa, USA. 8Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons of Columbia University, New York, New York, USA. 9Departments of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, USA. Retinitis pigmentosa (RP) encompasses a diverse group of Mendelian disorders leading to progressive degeneration of rods and then cones. For reasons that remain unclear, diseased RP photoreceptors begin to deteriorate, eventually leading to cell death and, consequently, loss of vision.
[Show full text]