Deoxyribonucleotides as Genetic and Metabolic Regulators Mathews, C. K. (2014). Deoxyribonucleotides as genetic and metabolic regulators. The FASEB Journal, 28(9), 3832-3840. doi:10.1096/fj.14-251249 10.1096/fj.14-251249 Federation of American Societies for Experimental Biology Accepted Manuscript http://cdss.library.oregonstate.edu/sa-termsofuse Deoxyribonucleotides as Genetic and Metabolic Regulators Christopher K. Mathews Oregon State University Department of Biochemistry and Biophysics Corvallis, Oregon, USA Correspondence Department of Biochemistry and Biophysics Oregon State University 2011 Agricultural & Life Sciences Bldg. Corvallis, OR 97331-7305, USA E-mail:
[email protected] Running Title dNTPs as Genetic and Metabolic Regulators 1 Nonstandard abbreviations: dNMP, dNDP, dNTP, deoxyribonucleoside mono-, di-, and triphosphate; rNMP, rNDP, rNTP, ribonucleoside mono-, di-, and triphosphate; RNR, ribonucleoside diphosphate reductase; MMR, mismatch repair 2 Abstract For more than 35 years we have known that the accuracy of DNA replication is controlled in large part by the relative concentrations of the four canonical deoxyribonucleoside 5'- triphosphates (dNTPs) at the replisome. Since this field was last reviewed, about eight years ago, there has been increased understanding of the mutagenic pathways as they occur in living cells. At the same time, aspects of deoxyribonucleotide metabolism have been shown to be critically involved in processes as diverse as cell cycle control, protooncogene expression, cellular defense against HIV infection, replication rate control, telomere length control, and mitochondrial function. Evidence supports a relationship between dNTP pools and microsatellite repeat instability. Relationships between dNTP synthesis and breakdown in controlling steady-state pools have become better defined. In addition, new experimental approaches have allowed definitive analysis of mutational pathways induced by dNTP pool abnormalities, both in E.