Quick viewing(Text Mode)

Charge-Charge, Charge-Dipole, Dipole-Charge, Dipole-Dipole Interaction

charge-charge, charge-, dipole-charge, dipole-dipole interaction

Masahiro Yamamoto Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan (Dated: December 1, 2008)

In the bulk and at the interface of polar and/or ionic liquids, feel the strong electric field and this strong field distort the cloud of and induces dipole around . To consider this polarization effect we should consider charge-charge, charge-dipole, dipole-charge, dipole-dipole interaction.

I. CHARGE-CHARGE (C-C) INTERACTION

The potential φ from the point charge zie at ri is given by

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 0

5

1 0

0

5

0

5

5

1 0

1 0

FIG. 1: Coulomb potential of negative charge

zie 1 φC(|r − ri|) = (1) 4πϵ0 |r − ri| The electric field is given by the of the potential − i −∇ | − | zie r ri EC(r) = φC( r ri ) = 3 (2) 4πϵ0 |r − ri|

If we put the other point charge zje at at rj the electrostatic energy Vcc is given by

2 zizje 1 Vcc = zjeφC(|rj − ri|) = (3) 4πϵ0 |ri − rj|

II. CHARGE-DIPOLE (C-D) INTERACTION

In this interaction we consider two cases, i.e. (I) the coulomb potential interact with dipole ⃗µj = ezjpj and (II) dipole field interact with point charge. In the case of (I), the C-D interaction becomes

2 2 zi(−zj)e 1 zizje 1 Vcd = + (4) 4πϵ0 |rj − ri| 4πϵ0 |rj + pj − ri| −1/2 2 rj − ri ≡ rji, |rji| = rji, (1 + x) ≅ 1 − x/2 + 3x /8... (5)   " # z z e2 1 1 z z e2 1 V = − i j  − q  = − i j 1 − cd · 2 2 2 1/2 4πϵ0 rji 2 · 2 4πϵ0rji (1 + 2rji pj/rji + pj /rji) rji + 2rji pj + pj 2

"#$%&'

j

*+,-.'()'&"

! i *+,-.'

! j

"#$%&'()'&"

i

FIG. 2: charge-dipole(C-D) and dipole-charge(D-C) interaction

" # 2 · p2 ≅ − zizje − 1 2rji pj 1 j − 3 · 2 2 2 2 1 1 + 2 + 2 (2rji pj/rji + pj /rji) (6) 4πϵ0rji 2 rji 2 rji 8

if we assume rji >> pj 2 · 2 · · −zizje rji pj zizje rij pj zie rij ⃗µj ≡ Vcd = 3 = 3 = 3 , ⃗µj zjepj (7) 4πϵ0 rji 4πϵ0 rij 4πϵ0 rij

In the ordinary method the potential is given by −⃗µ · EC − i −∇ | − | zie r ri EC(r) = φC( r ri ) = 3 (8) 4πϵ0 |r − ri| · · − · i − zie rji ⃗µj zie rij ⃗µj Vcd = ⃗µj EC(rj) = 3 = 3 (9) 4πϵ0 rji 4πϵ0 rij which gives the same results. In the case of (II), the D-C interaction becomes

2 2 (−zi)zje 1 zizje 1 Vdc = + (10) 4πϵ0 |rj − ri| 4πϵ0 |rj − ri − pi|   " # z z e2 1 1 z z e2 1 = − i j  − q  = − i j 1 − − · 2 2 2 1/2 4πϵ0 rji 2 − · 2 4πϵ0rji (1 2rji pi/rji + pi /rji) rji 2rji pi + pi " # 2 − · 2 ≅ − zizje − 1 2rji pi 1 pi − 3 − · 2 2 2 2 1 1 + 2 + 2 ( 2rji pi/rji + pi /rji) . if we assume rji >> pj 4πϵ0rji 2 rji 2 rji 8 2 · 2 · · zizje rji pi −zizje pi rij − 1 ⃗µi rijzje ≡ = 3 = 3 = 3 , ⃗µi ziepi (11) 4πϵ0 rji 4πϵ0 rij 4πϵ0 rij

Please note that C-D and D-C interaction the sign is different. Since the interaction energy is given by zjeφ(|rj − ri|), the dipoler field is given by · − − 1 ⃗µi (r ri) φD(r ri) = 3 (12) 4πϵ0 |r − ri|

3

0 . 4

0 . 2

0

0 . 2

0 . 4

1 0

5

1 0

0

5

0

5

5

1 0

1 0

FIG. 3: dipole field

!"#$%&'(&%!

'!"#$%&'

j i

FIG. 4: dipole-dipole interaction

III. DIPOLE-DIPOLE(D-D) INTERACTION

The dipole-dipole(D-D) interaction can be obtained in the same way. Again we assume rij >> pi, pj.

(−z )(−z )e2 1 (−z )z e2 1 z (−z )e2 1 z z e2 1 V = i j + i j + i j + i j (13) dd 4πϵ |r − r | 4πϵ |r + p − r | 4πϵ |r − r − p | 4πϵ |r + p − r − p | 0 j i 0 j j i 0 j i i 0 j j i i  z z e2 1 1 1 1 = i j  − q − q + q  4πϵ0 rji 2 · 2 2 − · 2 2 − · · 2 2 − · rji + 2rji pj + pj rji 2rji pi + pi rji 2rji pi + 2rji pj + pi + pj 2pi pj " z z e2 1 1 = i j 1 − − 2 2 2 1/2 2 2 2 1/2 4πϵ0rji (1 + 2rji · pj/r + p /r ) (1 − 2rji · pi/r + p /r ) ji j ji ji i #ji 1 + 2 2 2 2 2 2 2 1/2 (1 − 2rji · pi/r + 2rji · pj/r + p /r + p /r − 2pi · pj/r ) " ji ji i ij j ji ji 2 · p2 zizje − 1 2rji pj 1 j − 3 · 2 2 2 2 = 1 1 + 2 + 2 (2rji pj/rji + pj /rji) 4πϵ0rji 2 rji 2 rji 8 1 −2r · p 1 p2 3 −1 + ji i + i − (−2r · p /r2 + p2/r2 )2 2 r2 2 r2 8 ji i ji i ji ji ji   1 −2r · p 1 2r · p 1 p2 1 p2 1 2p · p 3 −2r · p 2r · p p2 p2 2p · p  +1 − ji i − ji j − i − j + i j + ( ji i + ji j + i + j − i j )2 2 r2 2 r2 2 r2 2 r2 2 r2 8 r2 r2 r2 r2 r2  ji ji ji ji | {zji } | ji {z ji } ji ji ji " # survive cross term survive 2 · · · zizje pi pj − (rji pi)(rji pj) = 2 3 4 4πϵ0rji r r " ji ji # · · 1 · − (⃗µi rij)(rij ⃗µj) Vdd = 3 ⃗µi ⃗µj 3 2 (14) 4πϵ0rij rij 4

i If electric field ED from i-th dipole can be calculated from φD given above, and the interaction energy can be obtained − · i by ⃗µj ED(rj). µ ¶ ∂ ∂ ∂ Ei = −∇φ (r − r ) = − i + j + k φ (r − r ) D D i ∂x ∂y ∂z D i 1 µ (x − x ) + µ (y − y ) + µ (z − z ) φ (r − r ) = ix i iy i iz i D i 2 2 2 3/2 4πϵ0 [(x − xi) + (y − yi) + (z − zi) ] 1 1 µ i −∇φ (r − r )| = − ix D i x 3 2 2 2 3/2 4πϵ0 |r − ri| [(x − xi) + (y − yi) + (z − zi) ] 1 ⃗µ · (r − r ) −3 − i i 2(x − x )i 4πϵ − 2 − 2 − 2 5/2 2 i 0 [(x xi)· + (y yi) + (z zi) ] ¸ 1 ⃗µ · (r − r )(r − r ) Ei (r) = − ⃗µ − 3 i i i (15) D 4πϵ |r − r |3 i |r − r |2 0 i " i # · − − · − · i 1 · − ⃗µi (ri rj)(ri rj) ⃗µj Vdd = ⃗µj Ed(rj) = 3 ⃗µi ⃗µj 3 2 (16) 4πϵ0rij rij

This equation is the same as the equation given above.

IV. UNIFIED DEFINITION OF C-C, C-D, D-C, AND D-D INTERACTIONS

The total electrostatic potential is given by [check sign→OK]     X  X X X  4πϵ V = q T q −q T αµ + µ T αq − µ T αβµ  (17) 0 tot |i {zij }j i ij j,α i,α ij j i,α ij j,β i>j  α α α,β  C−C | {z } | {z } | {z } C−D D−C D−D

qi = ezi, ⃗µi = (µix, µiy, µiz) = ezipi = ezi(pix, piy, piz) (18) Here the interaction tensors are given by [check this→OK] 1 Tij = (19) rij α ∇ − −3 Tij = αTij = rij,αrij (20) αβ ∇ ∇ − 2 −5 Tij = α βTij = (3rij,αrij,β rijδαβ)rij (21) αβγ ∇ ∇ ∇ − − 2 −7 Tij = α β γ Tij = [15rij,αrij,βrij,γ 3rij(rij,αδβγ + rij,βδγα + rij,γ δαβ)]rij (22)

∂ αβγ Here ∇α means for α = x, y, z. T will be used in the formulation. ∂rij,α ij

V. POLARIZATION

When a strong electric field is applied to an i, the around atom i starts to deform and a dipole may be induced. j The dipole moment of atom i in the α direction may be written as the superposition of the electric field EC generated j by the charge of atom j and that ED by the dipole of atom j stat ind ≅ ind µi,α = µi,α + µi,α µi,α (23)

static Usually we take µi,α = 0. The electric field at atom i can be written as X j j E(ri) = [EC(ri) + ED(ri)] (24) j(≠ i)

5

+

+

+

+ +

+

+

+

d i p o l e

i n d u c e d

FIG. 5: What’s polarization?

( " #) X ind 1 r − r 1 ⃗µ · (ri − rj)(ri − rj) = z e i j − ⃗µind − 3 j (25) 4πϵ j |r − r |3 |r − r |3 j |r − r |2 0 ̸ i j i j i j j(=i)   X X 1 − α αβ ind Eα(ri) = Tij qj + Tij µj,β (26) 4πϵ0 j(≠ i) β

ind The induced dipole moment µi,α is given by

ind i µi,α = αα,βEβ(ri) (27)

i Here αα,β tensor of atom i. If we assume   αi 0 0 [αi] =  0 αi 0  (28) 0 0 αi then, we have

⃗µind = αiE(r ), µind = αiE (r ) (29) i i  i,α α i  i X X ind α − α αβ ind  µi,α (out) = Tij qj + Tij µj,β (input) (30) 4πϵ0 ̸ β j(=i)   i X X ind α − x xβ ind  µi,x (out) = Tijqj + Tij µj,β (input) (31) 4πϵ0 ̸ β j(=i)   i X X α xij 3xijrij,β − δxβ ind  = 3 qj + [ 5 3 ]µj,β (input) (32) 4πϵ0 r r r ̸ ij β ij ij j(=i)   i X X µind(input) α xij 3xij ind − j,x  = 3 qj + 5 rij,βµj,β (input) 3 (33) 4πϵ0 r r r j(≠ i) ij ij β ij

The last equations should be solved self-consistently. In the fixed charge model the interaction of C-C is calculated by Ewald method. Then when we consider the induced at the atom sites we should C-D, D-C, and D-D interaction. The total C-C, C-D, D-C, D-D interaction is given by [check this]   X X X X  − α ind ind α − ind αβ ind 4πϵ0Vtot = qiTijqj qi Tij µj,α + µi,α Tij qj µi,α Tij µj,β (34) i>j α α α,β 6

From B¨ottcher’s book (Theory off Electric Polarization vol 1 in static field 2nd ed. p110), the energy U of the induced dipole system

− ind · U = ⃗µi E(ri) + Upol (35) where Upol is the of polarization. At equilibrium, the energy will be minimal with an infinitesimal change of induced moment

ind dU = 0, for all d⃗µi (36) Then we have ⃗µind 1 dU = −d[−⃗µind · E(r )] = E(r ) · d⃗µind = i · d⃗µind = d[(µind)2] (37) pol i i i i αi i 2αi i The induced dipole is formed in a reversible process

Z Z ind µi 1 ind 2 1 ind 2 Upol = dUpol = i d[(µi ) ] = i (µi ) (38) 2α 0 2α If we count all the cotribution X 1 U = ⃗µind · ⃗µind (39) pol 2αi i i i The MD code with this polarization scheme is available, e.g. or Lucretius. 7

FIG. 6: long-range electrostatic interaction 8

FIG. 7: Ewald sum convergence