Class 35: Magnetic Moments and Intrinsic Spin

Total Page:16

File Type:pdf, Size:1020Kb

Class 35: Magnetic Moments and Intrinsic Spin Class 35: Magnetic moments and intrinsic spin A small current loop produces a dipole magnetic field. The dipole moment, m, of the current loop is a vector with direction perpendicular to the plane of the loop and magnitude equal to the product of the area of the loop, A, and the current, I, i.e. m = AI . A magnetic dipole placed in a magnetic field, B, τ experiences a torque =m × B , which tends to align an initially stationary N dipole with the field, as shown in the figure on the right, where the dipole is represented as a bar magnetic with North and South poles. The work done by the torque in turning through a small angle dθ (> 0) is θ dW==−τθ dmBsin θθ d = mB d ( cos θ ) . (35.1) S Because the work done is equal to the change in kinetic energy, by applying conservation of mechanical energy, we see that the potential energy of a dipole in a magnetic field is V =−mBcosθ =−⋅ mB , (35.2) where the zero point is taken to be when the direction of the dipole is orthogonal to the magnetic field. The minimum potential occurs when the dipole is aligned with the magnetic field. An electron of mass me moving in a circle of radius r with speed v is equivalent to current loop where the current is the electron charge divided by the period of the motion. The magnetic moment has magnitude π r2 e1 1 e m = =rve = L , (35.3) 2π r v 2 2 m e where L is the magnitude of the angular momentum. Taking into account the sign of the electron charge, this can be written in vector form as e m= − L . (35.4) 2me In the hydrogen atom, states with l ≠ 0 have magnetic moments. The z-component of the magnetic moment is e e ℏ mz=− Lm z =− =− m µ B , (35.5) 2me 2 m e where the quantity eℏ µ B = , (35.6) 2me is called the Bohr magneton . It has the numerical value 9.27× 10−24 J T − 1 . Here T is the symbol for the SI unit of magnetic flux density, the tesla. Force on a magnetic dipole in a non-uniform magnetic field The potential energy of a magnetic dipole in a magnetic field is given by equation (35.2). We see that if the magnetic field is not uniform, the potential energy will vary with position and hence there will be a force F acting on the dipole where F= ∇( m ⋅ B ). (35.7) Since the force depends on the magnetic moment m, a non-uniform magnetic field will split a beam of atoms into components of different m. Since for a given l, there are 2 l + 1 allowed values of m, a beam of hydrogen atoms should be split into an odd number of components. The Stern-Gerlach experiment In a 1922 experiment, Stern & Gerlach found that a non-uniform magnetic field split a beam of atoms of silver into two components. In the ground state silver atoms have l = 0, and so no splitting is expected. The observed splitting was later explained by the electron having intrinsic spin. Since the beam was split into two components, the electron must have two spin states. To differentiate spin from orbital angular momentum, s is used to denote the spin angular momentum quantum number of a particle. The electron has spin s = 1/2. The magnetic quantum number for the electron has the allowed values, ms = ±1/2. The electron magnetic moment Since the electron is charged and has intrinsic spin, it has a magnetic dipole moment. From equation (35.5), we might expect that the electron magnetic moment has magnitude equal to µB 2. In fact, it has a magnitude which is about twice this value. This difference is accounted for by introducing a g factor , such that the electron magnetic momentum is S m = g µ , (35.8) s e B ℏ where S is the spin angular momentum of the electron and the electron g factor has the value ge = − 2.002319. .
Recommended publications
  • Basic Magnetic Measurement Methods
    Basic magnetic measurement methods Magnetic measurements in nanoelectronics 1. Vibrating sample magnetometry and related methods 2. Magnetooptical methods 3. Other methods Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The unit of the magnetic flux density, Tesla (1 T=1 Wb/m2), as a derive unit of Si must be based on some measurement (force, magnetic resonance) *the alternative name is magnetic induction Introduction Magnetization is a quantity of interest in many measurements involving spintronic materials ● Biot-Savart law (1820) (Jean-Baptiste Biot (1774-1862), Félix Savart (1791-1841)) Magnetic field (the proper name is magnetic flux density [1]*) of a current carrying piece of conductor is given by: μ 0 I dl̂ ×⃗r − − ⃗ 7 1 - vacuum permeability d B= μ 0=4 π10 Hm 4 π ∣⃗r∣3 ● The Physikalisch-Technische Bundesanstalt (German national metrology institute) maintains a unit Tesla in form of coils with coil constant k (ratio of the magnetic flux density to the coil current) determined based on NMR measurements graphics from: http://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilung_2/2.5_halbleiterphysik_und_magnetismus/2.51/realization.pdf *the alternative name is magnetic induction Introduction It
    [Show full text]
  • Magnetic Polarizability of a Short Right Circular Conducting Cylinder 1
    Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics Vol. 64B, No.4, October- December 1960 Magnetic Polarizability of a Short Right Circular Conducting Cylinder 1 T. T. Taylor 2 (August 1, 1960) The magnetic polarizability tensor of a short righ t circular conducting cylinder is calcu­ lated in the principal axes system wit h a un iform quasi-static but nonpenetrating a pplied fi eld. On e of the two distinct tensor components is derived from res ults alread y obtained in co nnection wi th the electric polarizabili ty of short conducting cylinders. The other is calcu­ lated to an accuracy of four to five significan t fi gures for cylinders with radius to half-length ratios of }~, }~, 1, 2, a nd 4. These results, when combin ed with t he corresponding results for the electric polari zability, are a pplicable to t he proble m of calculating scattering from cylin­ cl ers and to the des ign of artifi c;al dispersive media. 1. Introduction This ar ticle considers the problem of finding the mftgnetie polariz ability tensor {3ij of a short, that is, noninfinite in length, righ t circular conducting cylinder under the assumption of negli gible field penetration. The latter condition can be realized easily with avail able con­ ductin g materials and fi elds which, although time varying, have wavelengths long compared with cylinder dimensions and can therefore be regftrded as quasi-static. T he approach of the present ar ticle is parallel to that employed earlier [1] 3 by the author fo r fin ding the electric polarizability of shor t co nductin g cylinders.
    [Show full text]
  • PH585: Magnetic Dipoles and So Forth
    PH585: Magnetic dipoles and so forth 1 Magnetic Moments Magnetic moments ~µ are analogous to dipole moments ~p in electrostatics. There are two sorts of magnetic dipoles we will consider: a dipole consisting of two magnetic charges p separated by a distance d (a true dipole), and a current loop of area A (an approximate dipole). N p d -p I S Figure 1: (left) A magnetic dipole, consisting of two magnetic charges p separated by a distance d. The dipole moment is |~µ| = pd. (right) An approximate magnetic dipole, consisting of a loop with current I and area A. The dipole moment is |~µ| = IA. In the case of two separated magnetic charges, the dipole moment is trivially calculated by comparison with an electric dipole – substitute ~µ for ~p and p for q.i In the case of the current loop, a bit more work is required to find the moment. We will come to this shortly, for now we just quote the result ~µ=IA nˆ, where nˆ is a unit vector normal to the surface of the loop. 2 An Electrostatics Refresher In order to appreciate the magnetic dipole, we should remind ourselves first how one arrives at the field for an electric dipole. Recall Maxwell’s first equation (in the absence of polarization density): ρ ∇~ · E~ = (1) r0 If we assume that the fields are static, we can also write: ∂B~ ∇~ × E~ = − (2) ∂t This means, as you discovered in your last homework, that E~ can be written as the gradient of a scalar function ϕ, the electric potential: E~ = −∇~ ϕ (3) This lets us rewrite Eq.
    [Show full text]
  • Magnetism, Angular Momentum, and Spin
    Chapter 19 Magnetism, Angular Momentum, and Spin P. J. Grandinetti Chem. 4300 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin In 1820 Hans Christian Ørsted discovered that electric current produces a magnetic field that deflects compass needle from magnetic north, establishing first direct connection between fields of electricity and magnetism. P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Biot-Savart Law Jean-Baptiste Biot and Félix Savart worked out that magnetic field, B⃗, produced at distance r away from section of wire of length dl carrying steady current I is 휇 I d⃗l × ⃗r dB⃗ = 0 Biot-Savart law 4휋 r3 Direction of magnetic field vector is given by “right-hand” rule: if you point thumb of your right hand along direction of current then your fingers will curl in direction of magnetic field. current P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Microscopic Origins of Magnetism Shortly after Biot and Savart, Ampére suggested that magnetism in matter arises from a multitude of ring currents circulating at atomic and molecular scale. André-Marie Ampére 1775 - 1836 P. J. Grandinetti Chapter 19: Magnetism, Angular Momentum, and Spin Magnetic dipole moment from current loop Current flowing in flat loop of wire with area A will generate magnetic field magnetic which, at distance much larger than radius, r, appears identical to field dipole produced by point magnetic dipole with strength of radius 휇 = | ⃗휇| = I ⋅ A current Example What is magnetic dipole moment induced by e* in circular orbit of radius r with linear velocity v? * 휋 Solution: For e with linear velocity of v the time for one orbit is torbit = 2 r_v.
    [Show full text]
  • Section 14: Dielectric Properties of Insulators
    Physics 927 E.Y.Tsymbal Section 14: Dielectric properties of insulators The central quantity in the physics of dielectrics is the polarization of the material P. The polarization P is defined as the dipole moment p per unit volume. The dipole moment of a system of charges is given by = p qiri (1) i where ri is the position vector of charge qi. The value of the sum is independent of the choice of the origin of system, provided that the system in neutral. The simplest case of an electric dipole is a system consisting of a positive and negative charge, so that the dipole moment is equal to qa, where a is a vector connecting the two charges (from negative to positive). The electric field produces by the dipole moment at distances much larger than a is given by (in CGS units) 3(p⋅r)r − r 2p E(r) = (2) r5 According to electrostatics the electric field E is related to a scalar potential as follows E = −∇ϕ , (3) which gives the potential p ⋅r ϕ(r) = (4) r3 When solving electrostatics problem in many cases it is more convenient to work with the potential rather than the field. A dielectric acquires a polarization due to an applied electric field. This polarization is the consequence of redistribution of charges inside the dielectric. From the macroscopic point of view the dielectric can be considered as a material with no net charges in the interior of the material and induced negative and positive charges on the left and right surfaces of the dielectric.
    [Show full text]
  • New Measurements of the Electron Magnetic Moment and the Fine Structure Constant
    S´eminaire Poincar´eXI (2007) 109 – 146 S´eminaire Poincar´e Probing a Single Isolated Electron: New Measurements of the Electron Magnetic Moment and the Fine Structure Constant Gerald Gabrielse Leverett Professor of Physics Harvard University Cambridge, MA 02138 1 Introduction For these measurements one electron is suspended for months at a time within a cylindrical Penning trap [1], a device that was invented long ago just for this purpose. The cylindrical Penning trap provides an electrostatic quadrupole potential for trapping and detecting a single electron [2]. At the same time, it provides a right, circular microwave cavity that controls the radiation field and density of states for the electron’s cyclotron motion [3]. Quantum jumps between Fock states of the one-electron cyclotron oscillator reveal the quantum limit of a cyclotron [4]. With a surrounding cavity inhibiting synchrotron radiation 140-fold, the jumps show as long as a 13 s Fock state lifetime, and a cyclotron in thermal equilibrium with 1.6 to 4.2 K blackbody photons. These disappear by 80 mK, a temperature 50 times lower than previously achieved with an isolated elementary particle. The cyclotron stays in its ground state until a resonant photon is injected. A quantum cyclotron offers a new route to measuring the electron magnetic moment and the fine structure constant. The use of electronic feedback is a key element in working with the one-electron quantum cyclotron. A one-electron oscillator is cooled from 5.2 K to 850 mK us- ing electronic feedback [5]. Novel quantum jump thermometry reveals a Boltzmann distribution of oscillator energies and directly measures the corresponding temper- ature.
    [Show full text]
  • Magnetic Fields
    Welcome Back to Physics 1308 Magnetic Fields Sir Joseph John Thomson 18 December 1856 – 30 August 1940 Physics 1308: General Physics II - Professor Jodi Cooley Announcements • Assignments for Tuesday, October 30th: - Reading: Chapter 29.1 - 29.3 - Watch Videos: - https://youtu.be/5Dyfr9QQOkE — Lecture 17 - The Biot-Savart Law - https://youtu.be/0hDdcXrrn94 — Lecture 17 - The Solenoid • Homework 9 Assigned - due before class on Tuesday, October 30th. Physics 1308: General Physics II - Professor Jodi Cooley Physics 1308: General Physics II - Professor Jodi Cooley Review Question 1 Consider the two rectangular areas shown with a point P located at the midpoint between the two areas. The rectangular area on the left contains a bar magnet with the south pole near point P. The rectangle on the right is initially empty. How will the magnetic field at P change, if at all, when a second bar magnet is placed on the right rectangle with its north pole near point P? A) The direction of the magnetic field will not change, but its magnitude will decrease. B) The direction of the magnetic field will not change, but its magnitude will increase. C) The magnetic field at P will be zero tesla. D) The direction of the magnetic field will change and its magnitude will increase. E) The direction of the magnetic field will change and its magnitude will decrease. Physics 1308: General Physics II - Professor Jodi Cooley Review Question 2 An electron traveling due east in a region that contains only a magnetic field experiences a vertically downward force, toward the surface of the earth.
    [Show full text]
  • Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
    GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends.
    [Show full text]
  • Assembling a Magnetometer for Measuring the Magnetic Properties of Iron Oxide Microparticles in the Classroom Laboratory Jefferson F
    APPARATUS AND DEMONSTRATION NOTES The downloaded PDF for any Note in this section contains all the Notes in this section. John Essick, Editor Department of Physics, Reed College, Portland, OR 97202 This department welcomes brief communications reporting new demonstrations, laboratory equip- ment, techniques, or materials of interest to teachers of physics. Notes on new applications of older apparatus, measurements supplementing data supplied by manufacturers, information which, while not new, is not generally known, procurement information, and news about apparatus under development may be suitable for publication in this section. Neither the American Journal of Physics nor the Editors assume responsibility for the correctness of the information presented. Manuscripts should be submitted using the web-based system that can be accessed via the American Journal of Physics home page, http://web.mit.edu/rhprice/www, and will be forwarded to the ADN edi- tor for consideration. Assembling a magnetometer for measuring the magnetic properties of iron oxide microparticles in the classroom laboratory Jefferson F. D. F. Araujo, a) Joao~ M. B. Pereira, and Antonio^ C. Bruno Department of Physics, Pontifıcia Universidade Catolica do Rio de Janeiro, Rio de Janeiro 22451-900, Brazil (Received 19 July 2018; accepted 9 April 2019) A compact magnetometer, simple enough to be assembled and used by physics instructional laboratory students, is presented. The assembled magnetometer can measure the magnetic response of materials due to an applied field generated by permanent magnets. Along with the permanent magnets, the magnetometer consists of two Hall effect-based sensors, a wall-adapter dc power supply to bias the sensors, a handheld digital voltmeter, and a plastic ruler.
    [Show full text]
  • The G Factor of Proton
    The g factor of proton Savely G. Karshenboim a,b and Vladimir G. Ivanov c,a aD. I. Mendeleev Institute for Metrology (VNIIM), St. Petersburg 198005, Russia bMax-Planck-Institut f¨ur Quantenoptik, 85748 Garching, Germany cPulkovo Observatory, 196140, St. Petersburg, Russia Abstract We consider higher order corrections to the g factor of a bound proton in hydrogen atom and their consequences for a magnetic moment of free and bound proton and deuteron as well as some other objects. Key words: Nuclear magnetic moments, Quantum electrodynamics, g factor, Two-body atoms PACS: 12.20.Ds, 14.20.Dh, 31.30.Jv, 32.10.Dk Investigation of electromagnetic properties of particles and nuclei provides important information on fundamental constants. In addition, one can also learn about interactions of bound particles within atoms and interactions of atomic (molecular) composites with the media where the atom (molecule) is located. Since the magnetic interaction is weak, it can be used as a probe to arXiv:hep-ph/0306015v1 2 Jun 2003 learn about atomic and molecular composites without destroying the atom or molecule. In particular, an important quantity to study is a magnetic moment for either a bare nucleus or a nucleus surrounded by electrons. The Hamiltonian for the interaction of a magnetic moment µ with a homoge- neous magnetic field B has a well known form Hmagn = −µ · B , (1) which corresponds to a spin precession frequency µ hν = B , (2) spin I Email address: [email protected] (Savely G. Karshenboim). Preprint submitted to Elsevier Science 1 February 2008 where I is the related spin equal to either 1/2 or 1 for particles and nuclei under consideration in this paper.
    [Show full text]
  • Physics 2102 Lecture 2
    Physics 2102 Jonathan Dowling PPhhyyssicicss 22110022 LLeeccttuurree 22 Charles-Augustin de Coulomb EElleeccttrriicc FFiieellddss (1736-1806) January 17, 07 Version: 1/17/07 WWhhaatt aarree wwee ggooiinngg ttoo lleeaarrnn?? AA rrooaadd mmaapp • Electric charge Electric force on other electric charges Electric field, and electric potential • Moving electric charges : current • Electronic circuit components: batteries, resistors, capacitors • Electric currents Magnetic field Magnetic force on moving charges • Time-varying magnetic field Electric Field • More circuit components: inductors. • Electromagnetic waves light waves • Geometrical Optics (light rays). • Physical optics (light waves) CoulombCoulomb’’ss lawlaw +q1 F12 F21 !q2 r12 For charges in a k | q || q | VACUUM | F | 1 2 12 = 2 2 N m r k = 8.99 !109 12 C 2 Often, we write k as: 2 1 !12 C k = with #0 = 8.85"10 2 4$#0 N m EEleleccttrricic FFieieldldss • Electric field E at some point in space is defined as the force experienced by an imaginary point charge of +1 C, divided by Electric field of a point charge 1 C. • Note that E is a VECTOR. +1 C • Since E is the force per unit q charge, it is measured in units of E N/C. • We measure the electric field R using very small “test charges”, and dividing the measured force k | q | by the magnitude of the charge. | E |= R2 SSuuppeerrppoossititioionn • Question: How do we figure out the field due to several point charges? • Answer: consider one charge at a time, calculate the field (a vector!) produced by each charge, and then add all the vectors! (“superposition”) • Useful to look out for SYMMETRY to simplify calculations! Example Total electric field +q -2q • 4 charges are placed at the corners of a square as shown.
    [Show full text]
  • Deuterium by Julia K
    Progress Towards High Precision Measurements on Ultracold Metastable Hydrogen and Trapping Deuterium by Julia K. Steinberger Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY August 2004 - © Massachusetts Institute of Technology 2004. All rights reserved. Author .............. Department of Physics Augulst 26. 2004 Certifiedby......... .. .. .. .. .I- . .... Thom4. Greytak Prof or of Physics !-x. Thesis SuDervisor Certified by........................ Danil/Kleppner Lester Wolfe Professor of Physics Thesis Supervisor Accepted by... ...................... " . "- - .w . A. ....... MASSACHUSETTS INSTITUTE /Thom . Greytak OF TECHNOLOGY Chairman, Associate Department Head Vr Education SEP 14 2004 ARCHIVES LIBRARIES . *~~~~ Progress Towards High Precision Measurements on Ultracold Metastable Hydrogen and Trapping Deuterium by Julia K. Steinberger Submitted to the Department of Physics on August 26, 2004, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract Ultracold metastable trapped hydrogen can be used for precision measurements for comparison with QED calculations. In particular, Karshenboim and Ivanov [Eur. Phys. Jour. D 19, 13 (2002)] have proposed comparing the ground and first excited state hyperfine splittings of hydrogen as a high precision test of QED. An experiment to measure the 2S hyperfine splitting using a field-independent transition frequency in the 2S manifold of hydrogen is described. The relation between the transition frequency and the hyperfine splitting requires incorporating relativistic and bound state QED corrections to the electron and proton g-factors in the Breit-Rabi formula. Experimental methods for measuring the magnetic field of an ultracold hydrogen sample are developed for trap fields from 0 to 900 G.
    [Show full text]