1 Introduction 2 the K0 Meson and Its Anti-Particle

Total Page:16

File Type:pdf, Size:1020Kb

1 Introduction 2 the K0 Meson and Its Anti-Particle Physics 195a Course Notes The K0: An Interesting Example of a “Two-State” System 021029 F. Porter 1 Introduction An example of a two-state system is considered. Interesting complexities involve: 1. Treatment of a decaying particle. 2. Superposition of states with different masses. 2TheK0 Meson and its Anti-particle The K0 meson is a pseudoscalar state consisting (for present purposes) of a d quark and ans ¯ antiquark: |K0 = |ds¯. (1) 0 Its antiparticle is the K : 0 |K = |ds¯ . (2) If we define a “strangeness” operator, S, (which counts strange quarks), these states are eigenstates, with: S|K0 = |K0, (3) 0 0 S|K = −|K . (4) S 10 |K0 |K0 We may write as the two-by-two matrix 0 −1 in the , basis, but a convenient “basis-independent” form is: 0 0 S = |K0K0|−|K K |. (5) These are not eigenstates of C, the charge conjugation operator (which changes particles to antiparticles). It is convenient to pick the antiparticle phases such that: 0 C|K0 = −|K , (6) 0 C|K = −|K0. (7) 1 If we multiply the C operator by the parity operator P ,wehave: 0 CP|K0 = |K , (8) 0 CP|K = |K0. (9) 0 We thus have, in the |K0, |K basis: 01 CP = , (10) 10 which we may also express in the basis-independent form: 0 0 CP = |K0K | + |K K0|. (11) The eigenstates of CP are (the choice of nomenclature will shortly be moti- vated): 0 1 0 0 |KS = √ |K + |K , with CP =+1, (12) 2 0 1 0 0 |KL = √ |K −|K , with CP = −1. (13) 2 0 We remark that the K0 (or K ) is the lowest mass particle containing the strange quark. Thus, the only permitted decays must be via the weak interaction. To a good approximation (but not exactly!), CP is conserved in the weak interaction (and even more so in the strong and electromagnetic interactions); we shall assume this here. 0 A neutral K meson (K0 or K ) is observed to decay sometimes to two pions and sometimes to three pions. For example, consider the observed process K0 → π0π0. Since all of the particles in this decay are spinless, the decay must proceed with zero orbital angular momentum (“S-wave” decay). Thus, the parity of the π0π0 system in the final state must be positive. But we said that the K0 is a pseudoscalar particle, i.e., has negative parity. Thus, this is a parity-violating decay. The weak interaction is known to violate parity (i.e., parity is not conserved in the weak interaction), so this is all right. The π0 is its own anti-particle, hence the |π0π0 final state is an eigenstate of C with eigenvalue +1. Thus, the |π0π0 final state is also an eigenstate of CP with eigenvalue +1. Under our approximation that CP is conserved in the weak interaction, we therefore conclude that the observation of a K0 → π0π0 decay projects 2 0 0 0 out the KS component of the K meson (likewise for the K ). The 2π decay mode is favored by phase space over decays to greater numbers of pions. 0 However, the KL → 2π decay is forbidden by CP conservation. Hence, the 0 0 KL → 3π decay is important for KL. Because the phase space is considerably 0 0 suppressed, the KL decay rate is much slower than the KS rate. The observed 0 0 lifetimes of the KS and KL are, respectively: −11 τS =9× 10 s(90ps), (14) −8 τL =5× 10 s(50ns). (15) 3 Time Evolution of a Kaon State Suppose that at time t = 0we have the state 0 ψ(0) = |KS. (16) How does this state evolve in time? We should have, at time t, −iHt 0 ψ(t)=e |KS. (17) 2 2 For a free particle, the energy is ωS = p + mS,wheremS is the mass of 0 the KS. But if we just use this for H, we won’t have a particle which decays in time. We know that, if we start with a particle at t = 0the probability to find it undecayed at a later time t if it has a lifetime τS =1/ΓS is: P (t)=e−ΓS t. (18) Thus, the amplitude should have an exp(−ΓSt/2) time dependence, in addi- tion to the phase variation: −iωSt−ΓS t/2 0 ψ(t)=e |KS. (19) 2 2 0 Letting ωL = p + mL,wheremL is the mass of the KL,andΓL =1/τL, 0 0 we similarly have for an intial KL state (ψ(0) = |KL): −iωLt−ΓLt/2 0 ψ(t)=e |KL. (20) 0 0 In the |KS, |KL basis, the Hamiltonian operator is: ωS − iΓS/20 H = . (21) 0 ωL − iΓL/2 3 This requires some further discussion. For example, how did I know that 0 H is diagonal in this basis (and not, perhaps, in the |K0, |K basis)? The answer is that we are assuming that CP is conserved. Hence, [H, CP]=0. The Hamiltonian cannot mix states of differing CP quantum numbers, so 0 0 there are no off-diagonal terms in H in the |KS, |KL basis. The second point is that we have allowed the possibility that the masses of the two CP eigenstates are not the same (having already noted that the lifetimes are different). This might be a bit worrisome – the C operation does not 1 0 0 change mass. However, the |KS and |KL are not antiparticles of one another, so there is no constraint that their masses must be equal. So, we allow the possibility that they may be different. We will address shortly the measurement of the mass difference. 0 Now suppose that at time t = 0we have a pure K state: 0 ψ(0) = |K . (22) Experimentally, this is a reasonable proposition, since we may produce such states via the strong interaction. For example, if we collide two particles with no initial strangeness (perhaps a proton and an anit-proton), we make strange particles in “associated production”, i.e., in the production of ss¯ pairs. Thus, 0 we might have the reactionpp ¯ → nΛK (see Fig. 1). The presence of the Λ, 0 which contains thes ¯ quark, tells us that the kaon produced is a K , since it contains the s quark. 0 So, we can realistically imagine producing a K at t =0. Butthetime- evolution to later times is governed by the Hamiltonian, which is not diagonal 0 in the |K0, |K basis. Thus, we might expect that at some later time we 0 0 may observe a K . What is the probability, PK0 (t)thataK meson is 0 observed at time t, given a pure√K state at t = 0? The answer, noting that 0 0 0 ψ(0) = |K =(|KS−|KL) / 2, is: 0 2 PK0 (t)=|K |ψ(t)| (23) 1 0 0 −iωSt−ΓS t/2 0 0 −iωLt−ΓLt/2 2 = |K |KSe −K |KLe | 2 ΓS+ΓL 1 −ΓSt −ΓLt − t = e + e − 2e 2 cos [(ωS − ωL)t] . (24) 4 1Actually, this is only an assumption here. But it is a fundamental theorem in rela- tivistic quantum mechanics that particle and anti-particle have the same mass (as well as the same total lifetime). 4 _ d _ _ u Λ _ _ } _ d_ s p u { _ u _ _ 0 s K d } u p { u d d u } n d 0 Figure 1: A possible reaction to produce an K meson. The lines indicate flow of quark flavors from left to right. No interactions are shown. Note that 0 the production of the antibaryon tells us that it is a K ,notaK0. By measuring the frequency of the oscillation in the last term, we may 0 0 measure the mass difference between the KS and the KL. When the mo- mentum is small, ωS − ωL ≈ mS − mL. Because this difference is very small, it is experimentally intractable to attempt this with direct kinematic mea- surements. Measurements of the oscillation frequency yield a mass difference of 10 −1 |mS − mL| =0.5 × 10 s (25) 0.5 × 1010 s−1 = 200 × 106 eV-fm 3 × 1023 fm/s =3µeV, (26) a difference comparable to the energy of a microwave photon. Since the mass of the kaon is approximately 500 MeV, this is a fractional difference of order one part in 1014! We remark that this example shows that sometimes, even in non-relativistic quantum mechanics, the rest mass term in the energy must be included. This is because we may have a superpostion of states with different masses, and the time evolution of the components is correspondingly different, such that there is a time-dependent interference. 5 P (t) K 0 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 5 10 15 20 25 30 35 t/τ s 0 Figure 2: Upper curve: the K → K0 oscillation probability as a function of time (in units of τS). Lower curve: the oscillation probability if mS = mL. 4Exercises 0 1. Find the neutral kaon Hamiltonian in the |K0, |K basis. Is the symmetry of your result consistent with the notion that the masses of particles and antiparticles are the same? Same question for the decay rates? 2. Repeat the derivation of Eqn. 24, but work in the density matrix for- malism. We did not consider the possibility of decay when we develped this formalism, so be careful – you may find that you need to modify some of our discussion. 3. In this note, we discussed the neutral kaon (K) meson, in particular the phenomenon of K0 − K¯ 0 mixing.
Recommended publications
  • The Role of Strangeness in Ultrarelativistic Nuclear
    HUTFT THE ROLE OF STRANGENESS IN a ULTRARELATIVISTIC NUCLEAR COLLISIONS Josef Sollfrank Research Institute for Theoretical Physics PO Box FIN University of Helsinki Finland and Ulrich Heinz Institut f ur Theoretische Physik Universitat Regensburg D Regensburg Germany ABSTRACT We review the progress in understanding the strange particle yields in nuclear colli sions and their role in signalling quarkgluon plasma formation We rep ort on new insights into the formation mechanisms of strange particles during ultrarelativistic heavyion collisions and discuss interesting new details of the strangeness phase di agram In the main part of the review we show how the measured multistrange particle abundances can b e used as a testing ground for chemical equilibration in nuclear collisions and how the results of such an analysis lead to imp ortant con straints on the collision dynamics and spacetime evolution of high energy heavyion reactions a To b e published in QuarkGluon Plasma RC Hwa Eds World Scientic Contents Introduction Strangeness Pro duction Mechanisms QuarkGluon Pro duction Mechanisms Hadronic Pro duction Mechanisms Thermal Mo dels Thermal Parameters Relative and Absolute Chemical Equilibrium The Partition Function The Phase Diagram of Strange Matter The Strange Matter Iglo o Isentropic Expansion Trajectories The T ! Limit of the Phase Diagram
    [Show full text]
  • (Anti)Proton Mass and Magnetic Moment
    FFK Conference 2019, Tihany, Hungary Precision measurements of the (anti)proton mass and magnetic moment Wolfgang Quint GSI Darmstadt and University of Heidelberg on behalf of the BASE collaboration spokesperson: Stefan Ulmer 2019 / 06 / 12 BASE – Collaboration • Mainz: Measurement of the magnetic moment of the proton, implementation of new technologies. • CERN Antiproton Decelerator: Measurement of the magnetic moment of the antiproton and proton/antiproton q/m ratio • Hannover/PTB: Laser cooling project, new technologies Institutes: RIKEN, MPI-K, CERN, University of Mainz, Tokyo University, GSI Darmstadt, University of Hannover, PTB Braunschweig C. Smorra et al., EPJ-Special Topics, The BASE Experiment, (2015) WE HAVE A PROBLEM mechanism which created the obvious baryon/antibaryon asymmetry in the Universe is not understood One strategy: Compare the fundamental properties of matter / antimatter conjugates with ultra-high precision CPT tests based on particle/antiparticle comparisons R.S. Van Dyck et al., Phys. Rev. Lett. 59 , 26 (1987). Recent B. Schwingenheuer, et al., Phys. Rev. Lett. 74, 4376 (1995). Past CERN H. Dehmelt et al., Phys. Rev. Lett. 83 , 4694 (1999). G. W. Bennett et al., Phys. Rev. D 73 , 072003 (2006). Planned M. Hori et al., Nature 475 , 485 (2011). ALICE G. Gabriesle et al., PRL 82 , 3199(1999). J. DiSciacca et al., PRL 110 , 130801 (2013). S. Ulmer et al., Nature 524 , 196-200 (2015). ALICE Collaboration, Nature Physics 11 , 811–814 (2015). M. Hori et al., Science 354 , 610 (2016). H. Nagahama et al., Nat. Comm. 8, 14084 (2017). M. Ahmadi et al., Nature 541 , 506 (2017). M. Ahmadi et al., Nature 586 , doi:10.1038/s41586-018-0017 (2018).
    [Show full text]
  • Interactions of Antiprotons with Atoms and Molecules
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 1988 INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES Mitio Inokuti Argonne National Laboratory Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Inokuti, Mitio, "INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES" (1988). US Department of Energy Publications. 89. https://digitalcommons.unl.edu/usdoepub/89 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. /'Iud Tracks Radial. Meas., Vol. 16, No. 2/3, pp. 115-123, 1989 0735-245X/89 $3.00 + 0.00 Inl. J. Radial. Appl .. Ins/rum., Part D Pergamon Press pic printed in Great Bntam INTERACTIONS OF ANTIPROTONS WITH ATOMS AND MOLECULES* Mmo INOKUTI Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. (Received 14 November 1988) Abstract-Antiproton beams of relatively low energies (below hundreds of MeV) have recently become available. The present article discusses the significance of those beams in the contexts of radiation physics and of atomic and molecular physics. Studies on individual collisions of antiprotons with atoms and molecules are valuable for a better understanding of collisions of protons or electrons, a subject with many applications. An antiproton is unique as' a stable, negative heavy particle without electronic structure, and it provides an excellent opportunity to study atomic collision theory.
    [Show full text]
  • BOTTOM, STRANGE MESONS (B = ±1, S = ∓1) 0 0 ∗ Bs = Sb, Bs = S B, Similarly for Bs ’S
    Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) BOTTOM, STRANGE MESONS (B = ±1, S = ∓1) 0 0 ∗ Bs = sb, Bs = s b, similarly for Bs ’s 0 P − Bs I (J ) = 0(0 ) I , J, P need confirmation. Quantum numbers shown are quark-model predictions. Mass m 0 = 5366.88 ± 0.14 MeV Bs m 0 − mB = 87.38 ± 0.16 MeV Bs Mean life τ = (1.515 ± 0.004) × 10−12 s cτ = 454.2 µm 12 −1 ∆Γ 0 = Γ 0 − Γ 0 = (0.085 ± 0.004) × 10 s Bs BsL Bs H 0 0 Bs -Bs mixing parameters 12 −1 ∆m 0 = m 0 – m 0 = (17.749 ± 0.020) × 10 ¯h s Bs Bs H BsL = (1.1683 ± 0.0013) × 10−8 MeV xs = ∆m 0 /Γ 0 = 26.89 ± 0.07 Bs Bs χs = 0.499312 ± 0.000004 0 CP violation parameters in Bs 2 −3 Re(ǫ 0 )/(1+ ǫ 0 )=(−0.15 ± 0.70) × 10 Bs Bs 0 + − CKK (Bs → K K )=0.14 ± 0.11 0 + − SKK (Bs → K K )=0.30 ± 0.13 0 ∓ ± +0.10 rB(Bs → Ds K )=0.37−0.09 0 ± ∓ ◦ δB(Bs → Ds K ) = (358 ± 14) −2 CP Violation phase βs = (2.55 ± 1.15) × 10 rad λ (B0 → J/ψ(1S)φ)=1.012 ± 0.017 s λ = 0.999 ± 0.017 A, CP violation parameter = −0.75 ± 0.12 C, CP violation parameter = 0.19 ± 0.06 S, CP violation parameter = 0.17 ± 0.06 L ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.06 k ∗ 0 ACP (Bs → J/ψ K (892) )=0.17 ± 0.15 ⊥ ∗ 0 ACP (Bs → J/ψ K (892) ) = −0.05 ± 0.10 + − ACP (Bs → π K ) = 0.221 ± 0.015 0 + − ∗ 0 ACP (Bs → [K K ]D K (892) ) = −0.04 ± 0.07 HTTP://PDG.LBL.GOV Page1 Created:6/1/202008:28 Citation: P.A.
    [Show full text]
  • Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays
    Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays !Resonances !Heavy Meson and Baryons !Decays and Quantum numbers !CKM matrix 1 Announcements •No lecture on Friday. •Remaining lectures: •Tuesday 13 March •Friday 16 March •Tuesday 20 March •Friday 23 March •Tuesday 27 March •Friday 30 March •Tuesday 3 April •Remaining Tutorials: •Monday 26 March •Monday 2 April 2 From Friday: Mesons and Baryons Summary • Quarks are confined to colourless bound states, collectively known as hadrons: " mesons: quark and anti-quark. Bosons (s=0, 1) with a symmetric colour wavefunction. " baryons: three quarks. Fermions (s=1/2, 3/2) with antisymmetric colour wavefunction. " anti-baryons: three anti-quarks. • Lightest mesons & baryons described by isospin (I, I3), strangeness (S) and hypercharge Y " isospin I=! for u and d quarks; (isospin combined as for spin) " I3=+! (isospin up) for up quarks; I3="! (isospin down) for down quarks " S=+1 for strange quarks (additive quantum number) " hypercharge Y = S + B • Hadrons display SU(3) flavour symmetry between u d and s quarks. Used to predict the allowed meson and baryon states. • As baryons are fermions, the overall wavefunction must be anti-symmetric. The wavefunction is product of colour, flavour, spin and spatial parts: ! = "c "f "S "L an odd number of these must be anti-symmetric. • consequences: no uuu, ddd or sss baryons with total spin J=# (S=#, L=0) • Residual strong force interactions between colourless hadrons propagated by mesons. 3 Resonances • Hadrons which decay due to the strong force have very short lifetime # ~ 10"24 s • Evidence for the existence of these states are resonances in the experimental data Γ2/4 σ = σ • Shape is Breit-Wigner distribution: max (E M)2 + Γ2/4 14 41.
    [Show full text]
  • Pion and Kaon Structure at 12 Gev Jlab and EIC
    Pion and Kaon Structure at 12 GeV JLab and EIC Tanja Horn Collaboration with Ian Cloet, Rolf Ent, Roy Holt, Thia Keppel, Kijun Park, Paul Reimer, Craig Roberts, Richard Trotta, Andres Vargas Thanks to: Yulia Furletova, Elke Aschenauer and Steve Wood INT 17-3: Spatial and Momentum Tomography 28 August - 29 September 2017, of Hadrons and Nuclei INT - University of Washington Emergence of Mass in the Standard Model LHC has NOT found the “God Particle” Slide adapted from Craig Roberts (EICUGM 2017) because the Higgs boson is NOT the origin of mass – Higgs-boson only produces a little bit of mass – Higgs-generated mass-scales explain neither the proton’s mass nor the pion’s (near-)masslessness Proton is massive, i.e. the mass-scale for strong interactions is vastly different to that of electromagnetism Pion is unnaturally light (but not massless), despite being a strongly interacting composite object built from a valence-quark and valence antiquark Kaon is also light (but not massless), heavier than the pion constituted of a light valence quark and a heavier strange antiquark The strong interaction sector of the Standard Model, i.e. QCD, is the key to understanding the origin, existence and properties of (almost) all known matter Origin of Mass of QCD’s Pseudoscalar Goldstone Modes Exact statements from QCD in terms of current quark masses due to PCAC: [Phys. Rep. 87 (1982) 77; Phys. Rev. C 56 (1997) 3369; Phys. Lett. B420 (1998) 267] 2 Pseudoscalar masses are generated dynamically – If rp ≠ 0, mp ~ √mq The mass of bound states increases as √m with the mass of the constituents In contrast, in quantum mechanical models, e.g., constituent quark models, the mass of bound states rises linearly with the mass of the constituents E.g., in models with constituent quarks Q: in the nucleon mQ ~ ⅓mN ~ 310 MeV, in the pion mQ ~ ½mp ~ 70 MeV, in the kaon (with s quark) mQ ~ 200 MeV – This is not real.
    [Show full text]
  • 1.1. Introduction the Phenomenon of Positron Annihilation Spectroscopy
    PRINCIPLES OF POSITRON ANNIHILATION Chapter-1 __________________________________________________________________________________________ 1.1. Introduction The phenomenon of positron annihilation spectroscopy (PAS) has been utilized as nuclear method to probe a variety of material properties as well as to research problems in solid state physics. The field of solid state investigation with positrons started in the early fifties, when it was recognized that information could be obtained about the properties of solids by studying the annihilation of a positron and an electron as given by Dumond et al. [1] and Bendetti and Roichings [2]. In particular, the discovery of the interaction of positrons with defects in crystal solids by Mckenize et al. [3] has given a strong impetus to a further elaboration of the PAS. Currently, PAS is amongst the best nuclear methods, and its most recent developments are documented in the proceedings of the latest positron annihilation conferences [4-8]. PAS is successfully applied for the investigation of electron characteristics and defect structures present in materials, magnetic structures of solids, plastic deformation at low and high temperature, and phase transformations in alloys, semiconductors, polymers, porous material, etc. Its applications extend from advanced problems of solid state physics and materials science to industrial use. It is also widely used in chemistry, biology, and medicine (e.g. locating tumors). As the process of measurement does not mostly influence the properties of the investigated sample, PAS is a non-destructive testing approach that allows the subsequent study of a sample by other methods. As experimental equipment for many applications, PAS is commercially produced and is relatively cheap, thus, increasingly more research laboratories are using PAS for basic research, diagnostics of machine parts working in hard conditions, and for characterization of high-tech materials.
    [Show full text]
  • ANTIMATTER a Review of Its Role in the Universe and Its Applications
    A review of its role in the ANTIMATTER universe and its applications THE DISCOVERY OF NATURE’S SYMMETRIES ntimatter plays an intrinsic role in our Aunderstanding of the subatomic world THE UNIVERSE THROUGH THE LOOKING-GLASS C.D. Anderson, Anderson, Emilio VisualSegrè Archives C.D. The beginning of the 20th century or vice versa, it absorbed or emitted saw a cascade of brilliant insights into quanta of electromagnetic radiation the nature of matter and energy. The of definite energy, giving rise to a first was Max Planck’s realisation that characteristic spectrum of bright or energy (in the form of electromagnetic dark lines at specific wavelengths. radiation i.e. light) had discrete values The Austrian physicist, Erwin – it was quantised. The second was Schrödinger laid down a more precise that energy and mass were equivalent, mathematical formulation of this as described by Einstein’s special behaviour based on wave theory and theory of relativity and his iconic probability – quantum mechanics. The first image of a positron track found in cosmic rays equation, E = mc2, where c is the The Schrödinger wave equation could speed of light in a vacuum; the theory predict the spectrum of the simplest or positron; when an electron also predicted that objects behave atom, hydrogen, which consists of met a positron, they would annihilate somewhat differently when moving a single electron orbiting a positive according to Einstein’s equation, proton. However, the spectrum generating two gamma rays in the featured additional lines that were not process. The concept of antimatter explained. In 1928, the British physicist was born.
    [Show full text]
  • Three Lectures on Meson Mixing and CKM Phenomenology
    Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively.
    [Show full text]
  • Detection of a Strange Particle
    10 extraordinary papers Within days, Watson and Crick had built a identify the full set of codons was completed in forensics, and research into more-futuristic new model of DNA from metal parts. Wilkins by 1966, with Har Gobind Khorana contributing applications, such as DNA-based computing, immediately accepted that it was correct. It the sequences of bases in several codons from is well advanced. was agreed between the two groups that they his experiments with synthetic polynucleotides Paradoxically, Watson and Crick’s iconic would publish three papers simultaneously in (see go.nature.com/2hebk3k). structure has also made it possible to recog- Nature, with the King’s researchers comment- With Fred Sanger and colleagues’ publica- nize the shortcomings of the central dogma, ing on the fit of Watson and Crick’s structure tion16 of an efficient method for sequencing with the discovery of small RNAs that can reg- to the experimental data, and Franklin and DNA in 1977, the way was open for the com- ulate gene expression, and of environmental Gosling publishing Photograph 51 for the plete reading of the genetic information in factors that induce heritable epigenetic first time7,8. any species. The task was completed for the change. No doubt, the concept of the double The Cambridge pair acknowledged in their human genome by 2003, another milestone helix will continue to underpin discoveries in paper that they knew of “the general nature in the history of DNA. biology for decades to come. of the unpublished experimental results and Watson devoted most of the rest of his ideas” of the King’s workers, but it wasn’t until career to education and scientific administra- Georgina Ferry is a science writer based in The Double Helix, Watson’s explosive account tion as head of the Cold Spring Harbor Labo- Oxford, UK.
    [Show full text]
  • Prospects for Measurements with Strange Hadrons at Lhcb
    Prospects for measurements with strange hadrons at LHCb A. A. Alves Junior1, M. O. Bettler2, A. Brea Rodr´ıguez1, A. Casais Vidal1, V. Chobanova1, X. Cid Vidal1, A. Contu3, G. D'Ambrosio4, J. Dalseno1, F. Dettori5, V.V. Gligorov6, G. Graziani7, D. Guadagnoli8, T. Kitahara9;10, C. Lazzeroni11, M. Lucio Mart´ınez1, M. Moulson12, C. Mar´ınBenito13, J. Mart´ınCamalich14;15, D. Mart´ınezSantos1, J. Prisciandaro 1, A. Puig Navarro16, M. Ramos Pernas1, V. Renaudin13, A. Sergi11, K. A. Zarebski11 1Instituto Galego de F´ısica de Altas Enerx´ıas(IGFAE), Santiago de Compostela, Spain 2Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom 3INFN Sezione di Cagliari, Cagliari, Italy 4INFN Sezione di Napoli, Napoli, Italy 5Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom, now at Universit`adegli Studi di Cagliari, Cagliari, Italy 6LPNHE, Sorbonne Universit´e,Universit´eParis Diderot, CNRS/IN2P3, Paris, France 7INFN Sezione di Firenze, Firenze, Italy 8Laboratoire d'Annecy-le-Vieux de Physique Th´eorique , Annecy Cedex, France 9Institute for Theoretical Particle Physics (TTP), Karlsruhe Institute of Technology, Kalsruhe, Germany 10Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology, Kalsruhe, Germany 11School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom 12INFN Laboratori Nazionali di Frascati, Frascati, Italy 13Laboratoire de l'Accelerateur Lineaire (LAL), Orsay, France 14Instituto de Astrof´ısica de Canarias and Universidad de La Laguna, Departamento de Astrof´ısica, La Laguna, Tenerife, Spain 15CERN, CH-1211, Geneva 23, Switzerland 16Physik-Institut, Universit¨atZ¨urich,Z¨urich,Switzerland arXiv:1808.03477v2 [hep-ex] 31 Jul 2019 Abstract This report details the capabilities of LHCb and its upgrades towards the study of kaons and hyperons.
    [Show full text]
  • Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings
    Date: April 19, 2018 Workshop on Pion-Kaon Interactions (PKI2018) Mini-Proceedings 14th - 15th February, 2018 Thomas Jefferson National Accelerator Facility, Newport News, VA, U.S.A. M. Amaryan, M. Baalouch, G. Colangelo, J. R. de Elvira, D. Epifanov, A. Filippi, B. Grube, V. Ivanov, B. Kubis, P. M. Lo, M. Mai, V. Mathieu, S. Maurizio, C. Morningstar, B. Moussallam, F. Niecknig, B. Pal, A. Palano, J. R. Pelaez, A. Pilloni, A. Rodas, A. Rusetsky, A. Szczepaniak, and J. Stevens Editors: M. Amaryan, Ulf-G. Meißner, C. Meyer, J. Ritman, and I. Strakovsky Abstract This volume is a short summary of talks given at the PKI2018 Workshop organized to discuss current status and future prospects of π K interactions. The precise data on π interaction will − K have a strong impact on strange meson spectroscopy and form factors that are important ingredients in the Dalitz plot analysis of a decays of heavy mesons as well as precision measurement of Vus matrix element and therefore on a test of unitarity in the first raw of the CKM matrix. The workshop arXiv:1804.06528v1 [hep-ph] 18 Apr 2018 has combined the efforts of experimentalists, Lattice QCD, and phenomenology communities. Experimental data relevant to the topic of the workshop were presented from the broad range of different collaborations like CLAS, GlueX, COMPASS, BaBar, BELLE, BESIII, VEPP-2000, and LHCb. One of the main goals of this workshop was to outline a need for a new high intensity and high precision secondary KL beam facility at JLab produced with the 12 GeV electron beam of CEBAF accelerator.
    [Show full text]