KINS/RR-225

23 n M 1L M

yss2i s as7i^7HS Establishment of Safety Audit Evaluation System and Development of Safety Issue Relevant Regulatory Technology for CANDU Reactors

yxtSEal SSg7t2E*M 7fl^

an# S7khi 14#

Development of Core Physics Evaluation Code for CANDU Reactors

2004. 2. ^ \n r° a SL eE da rKr £ m r2 _ JU -41 rC 0|» £ hJ VJ — >- >H 3. fll£ mini 5 rw oDi r|m lo r° Hu -IX Hu CM fr 4 0|H vj Hu oa 0|i fu|n vj raw- ¥ ry 5 [2 r2 r£ I jo □a HJ 4J 0|M H> No r\3 ofi djh r2 -U J; X' vj £ >£ 4> 0£ Ki 0£ ri° * In □a [£ 0|» 4J >d VJ 2004. m m> VI i-j

ni£ ow 44 40 l> D£i n£ it ID£ 2.

H> r° rh oa oh r° Hu

29. E° 0|X 12 Eh K) £4 rh: ofo Jffi 0>! ran- rw vj n

44 7}*** *#3* *1 o) #7}*4 ## 4*1*4 4# **4 44 4 44 **7} 4171431 *54, 44 7}***7} 2044 #4*3 *# 14 l 3.714 44/ 44444 4# 44*(Pressure Tube) 31(Creep)444 44 (Sagging) 44-4 44)44 3# 4444 4444 44# ##*3 44- 44 3.444-4 #444 4444 #44 444 *7}*4 ^*3 4## 44# 444 #44 *7}*53 3# 1*34 ###33 44# 444 43, *# 4## #3 #4 4# 45.4-41 434 #* 34 #4 #7}# *1*#.

44 # 4444# #43 *1*4 **l#4 4# 34# #7>7> 3 #4 44# 4## £44$!4. 4# 44 CANDU-6 444#434 q# 34#4 44 *4444 43 #431* #4# 31# #7>4 4# 4 4313 711144 #4# 3^4 3#4 *#44 44# 144 444 17}*#*. °1# 44 WIMSD-5B, MCNP, WIMS-AECL #433* 4*4 4 #44 314 *#4 2.5%4 5%1 #*, 4#7fl 7)2 #*5, 4434 4 4 #4 # 5 (relative fission density), 3#3 Pu *4*54 4#5(atom density) *4 3*4 #4#4# 43*454 4# HELIOS 334 44# 4-4- 43*44

* 4444# *44 31*44 34 #*54 44# 14# 3#* #4- 4# 441 WIMS-AECL #*33* 4**4 31*44 #4 **5 4 44# 14# l7}**54, *#*44**71*** 44**3 **4 *34# 71114* 34* **3 34^*711 #* CANNOD (CAndu Neutronics NODal code) 33# 1**4 31*44 3* *# * 4 44 # 1*1 3**33 #7>*7l 4*4 CANDU6 37)3*4 ** **5 14# *7>*#4-.

#4 1 34 444 #4/ *4*4 3l#(Creep Ratio)* *7># 4*7)1 44*3# 7l5#*5(Void Reactivity) *7># 31*4 *7}3 *#44 £*#* *33 17}###.

— 1 — SUMMARY C8 f- A ^ f)

The lattice cell calculation is performed to assess the sensitivity of the reactor physics parameters to pressure tube creep resulting from radiation aging. The used lattice codes are WIMSD-5B code, MCNP code and WIMS-AECL code and the analyzed lattice parameters are the coolant void reactivity, the fuel fission density and the atom density of Pu isotopes. The reference model(normal state) and two perturbed models accounting for the pressure tube creep are developed on the basis of CANDU6 lattice cell. The 2.5% and 5% values of pressure tube diameter with respective to normal state are considered. Also, The effect on the analyzed lattice parameters by depletion is investigated for the reference model and two perturbed models.

—11 — 4 1 4 4 ^ ...... 1

4 2 4 4^4 ^^4 £]3: bc4M# sg 7> ...... 6

4 1 4 4^4 434 #3 333333...... 7

4 2 3 343 334 33 ^333 3 7}...... 7

4 3 4 4^...... 17

%JL5-4...... 19

3 4- 3. *r

s. n. 4^#...... 3

5. 1.2. H^A>gjl 3

3 II.1. 37% q-gs 34 44 ...... 9

& H.2. 374 ^gi5L #1 5:^ ...... 9

5. II.3. Creep A] Pressure Tubes] ti>^ 4#...... 10

3 II.4. 4 ^r^A] Creep4# WIMS-AECL 34 7)14...... 10

5. II.5. 8ppm 4^ 444 creep4 4# WIMS-AECL 4 a} 7)14...... 11 a II.6. Creep ^ 4 4 AH 444 4# ...... 14

5. II.7. Creep 4# ^ai 4%^^44...... 14

— iv — ZL^ 1.1. CANDU ^ ...... 4 zl^ i.2. ^ 444 4^8 ...... 4 zl^ i.3. q-gs. 4#4 SAJ-...... 5 zl^ II.l. 37-g- 444a...... 8

Zl^ II.2. Creepofl 4# 4K^M]4 ^4 ...... 11

ZL^ II.3. Creep 0!] 4# Void Reactivity ^4...... 12

ZL^ II.4. Loading Pattern of Fresh Core ...... 13

ZI%] II.5. Half-Core Voided Pattern...... 13

ZL^] II.6. Creep Ratio 0]] 4# ^4 4"§-5-...... 15

ZL%| II.7. Creep Ratio 0!] 4-c- Void Reactivity...... 15

ZL%j II.8 . Creep Ratio 0!] 4-5- Void Reactivity 4°1 ...... 16 all 1 # 4 s. 4 i # 4 #

44 €7}1#15 5 7}#155(pwr)15 €45 #157)441 ^515 4544 #54 444# #4#, 7}#555(PHWR)ii €45 #1571 41 515 1#5 Hi 7} 7}545# H# 3)51# #544 #5# 441# #54- 11545 415 1414 11 1445 #4 !47j)€ 55 5. 7}-g-£) 4 #44 (Pressure Tube), 54 ##7)| 2} 1544 #7} 5(Calandria)4 4414 144 €7}54(Calandria Tube), 41# #541 1144 55 End Fitting # Bellows, #444 €1541 ### #<# 4 #7))# ##7)) lf-4 ## 4-a #147) 44 Garter Spring Spacer 4—5. 4444 44 (22 € 1.1 ~ 1.3). 4 444 H"155 44 6.3 m, 4)1 103.4 mm, 44) 4.19 mm, 47)1 61.4 kg44, 71)44 Zr-2.5 wt% Nb(Niobium)##55 #4 #4 4 316°C41 10.9 MPa44 (4

1.1).

415 4444 515 4444 454}, 415 47)15 44 44, 415 4# 44 45, 447} 57}4=4 44, heatup/cooldown7) #445 #5-# 44 54 5#11 €455 444 45 544 #444 45 44) 144 #5 # 4 44-7)1 44-. 441 114 1#4 114 #5* €4 €1 #4)47}# 4 444 7) 5 CSA-N285.4 # CSA-N285.2# 514 45 1114 #7}# 5=544. €1 €14 15 4414 14# 4 64 55 10444 51155 5*345 4 54 17}A) 157)e# 5445 114 #144 111 17} 1- 5*344 45 51 45# 1145 44

19734 45 #41 4555 44 7}h7} 441 #14^54, 44415 €4 5# 17) 17}A) 7)55 5445 144 1#1#54, 4# #5 #145 si € 155 #4 (5. 1.2).

-2- a i.i.

7 £ 15L71 23:7) 33:7) 43:7) Pickering #2

711 1 Zr 2.5% Nb Zr 2.5% Nb Zr 2.5% Nb Zr 2.5% Nb Zircaloy 2

m^ll (mm) 4.19 4.19 4.19 4.19 4.95

(mm) 103.4 103.4 103.4 103.4 103.4 Zr+2.5Nb+0.5 Spacer Wire Inconel X-750 Inconel X-750 Inconel X-750 Zircaloy 2 4 Cu 4 Girdle Wire Zircaloy 2 Zircaloy 4 Zircaloy 4 Zircaloy 4 Garter SpringDiameter Coil 5.59 4.83 4.83 4.83 6.81 (mm) Spacer Torus 124.5 107.9 107.9 107.9

4 4 4 4 2

Type Loose Tight Tight Tight

Rolling Improved Improved Improved Improved Over

Tift (ppm0(5)-) 25 10 5 5

2 3 4 4

5. 1.2. 51*11 A}e)l

9)3: 3)2)4# Shutdown 7)^4

1 1974. 8 Pickering 3 Over Rolling PT 17711 51*11

2 1975. 5 Pickering 4 Over Rolling PT 527fl 51*11 1071143

3 1982. 2 Bruce 2 Over Rolling PT 271) H*ll 47ni

4 1983. 8 Pickering 2 PT/CT 3# PT # an 51*11

5 1985. Pickering 3 Over Rolling PT I7fl 51*11

6 1986. 3 Bruce 2 Extrusion Lap PT/CT 17H 51*11 37n-@

7 1994. 2 Wolsong 1 Debris Fretting PT 371) 51 ail

— J — 1.1. CANDU $ ^5:

Feeder Calandria Tube Feeder

Bellows End Fuel Spacers Pressure Fitting Bundles

1.2. f Fuel Bundle Dz0 Coolant Garter Spring

Pressure Tube Calandria Tube Annulus Gas

^9 1.3. a] <9 4#4 99

99 445 994# #s4 949 S44 491 (Creep) 9 9994 44 99 499 444 44 ##5. 944 494 49# #7>99 94- 444 # 45(candu9)9 7}## 90 ] 49 . 999 4494-7} 7^444, 0)5. 999 994 4999 9999 999 #47} 94- s9 99 999 #9 #9 4451- H9 (On-power Refueling)9 # 9S# 495 449 #945 5. 4449 94 . ^94 49 s. 994 9^49 3D49S5 4944 49 # 5.9999 #7}94 49 4^4 9544 #7}& 99 9 i 9#S7} 9^44 49 ^4 9999 4999 9## &4# 4s. 94 9 9949 h99 #9 49 49 9949=4 4444 4^A5. 94 495 49# 44^ 447)1 #9= 4999 #7}4t)) 4s.5 ^9 9^9 0.5. 99# 949 4^, 947)1 9# 4j7 #4 9# 4s94 a)-jla] ^ ^4 #4 #7}# 4949 49 99 44 99# 944 94

-5- *il 2 % *g-w »iimi ^1# <9 # ^7> 4 2# ^#<9# ^7}

4 1# ### ## ######

#44# #A# 44-4 ^44 4&H (creep) 443M1 44, 444 3:1-4 44 €4&4 444 444 444 444 ^7>44 44 4444 #4 4 44& 444 4444 4444 44-.

44-4- 44 7]44 CNSC(Canadian Nuclear Safety Commission) 4 444 444 # #5-4-71 444 #4#44#(GAI: Generic Action Items)A5. ##4-3 444 44 4-44- 44 44# A#3};n 44-

o o]#43: 3] tl (ingress)# 44

o rolled-joint #4# 44

O 4-JE.!- 4-0]

o 7}s. 44# 4-4

O #44 44# 4-4

o #4 44* 4-4

711444 444 #431# #44 4 4 44-44 55.^^ (pressure tube aging management program)# #4 #443] 4# 444 45.3] 3}2. 44- 44 3)

44 cnsc# ##44 44445. 44 a## #7#} 4443] 44# 44=3] 4 4 44# 4314-9-5. #4#31 44 44 43] 3] 4 A 44 13:44 7>###7> 20

4# 3:44-31 44 #444 a## 4#4as. #7>#31 44 °1# 44 #31# 314A5. #4-

41 2 ^ 444 ^41 4% *971- # 44314# ##5 #44 #4# #7>31 4# #44 #443] 44# 44 $7}# 43f4 ##4 ###31 44 #4a# #4-47>4#4. 4# 4&H CANDU-6 4 4s 31 44 4#5 443] 44 44444 4x}s#4 #44 3-4 # #7]-(2.5%/ 5%)4 47fs## 4# 711444 wimsd-sb, mcnp, wims-aecl s A# a]-#4<3 4AMI4# #^4#4- s4 44*11 45 4#a, s3#5.# 44#

-7- 4 4 5 (relative fission density), Pu #4422) 4 4 5 (a tom density) #4 2c. #e)

44#4 444 #444 helios2] #44 424424, 425 #7M 4# 2 #4 4#2] #4011 #4444. 44#4 2^444 24 4454 444 4M 47>47l 444 4^444 4471## 2) 442.5 A^#-cfl#-H7> 7)144 5# 22# CANNOD(CAndu Neutronics NODal code)# 4444 2n# 45.42-4 2# 44°1 5# #-§-2c.°ll 4 4# 44# 4 71-444- 44 47} 44# 4 #44 4#4 44-

l. 44 #4-5 ^##7}

#444 CANDU 6^ 444r a# 11.14 44 4-444 444 444(Pressure Tube) 444 44 447)17} SH£# 4444 44

Fuel Element D2O Coolant Pressure Tube Air Gap Calandna Tube 0 Moderator 2# II.l. 37# 445 #A>#2

4444 37# 445 44- #5#4 44 4#4 445 44-4 4## 5 II.1 ^ 11.24 44- 44 445 5#44 444 4444 2# 4 4447)1 44 44 4 4444 44# 4447)1 4444 444 4## #44 #7>4t)1 44 444 2# 4 44- 444 444 4## & 11.34 44 24444-

-8- 5. ill 37# qA qq M

Material Radial Boundary(cm)

COOLANT 5.1689

FT 5.6032

GAP 6.4478

CT 6.5875

FUEL 0.6122

CLAD 0.654 * Lattice Half-Pitch 14.2875 (cm)

3. II.2. 373- 1-1 2:3

Nterid =E[g'ml3] WyiHadionP) SLM REL 103835280 1235 071097100 1238 99283SOOO Q6 1244251000 U234 00050800 11244250900 ZRSO 5051430000 ZR91 11.01590000 ZRS2 1683810000 ZR9t 17.0090000 ZRS6 27808030 W5H 001239000 FB6 019351230 FES7 000(41000 CUt) 639183000 CR50 00005539 CRS2 00833000 CRS3 000850000 CRSt 000236900 9849817331 N58 00005539 M83 000183561 000007980 N62 Q00025438 N64 QOOOQ5482 HO Q000059S2 cravw 083999600 H 008111111 E2 19.89100000 06 8Q06t88889 lOQOOOOOOCO ZRSO 500530000 ZR91 1091850000 ZR92 1668910000 ZR9t 1691290000 2RS6 273475000 M3B3 258000000 rest 000235002 FE56 004290650 FT 630410033 H2>7 000098238 CR50 QC0CB5M2 CR52 000673594 CR53 000035836 9999081132 CR54 000019128 M58 Q0023823) M50 000091781 N61 000000990 KK2 000012719 N64 000008*1 HO 00000301 G«P 000140000 FBI 10000000)00 lOQOOOOOOOO ZRSO 5052820000 ZR91 11.01900000 ZR92 16842X1100 ZR9t 17.06860000 ZRS6 27883000 rest 000796500 IBS6 QI238Z200 EB7 Q00283500 cr 640030000 CRS0 000434500 CRS2 008379000 CRS3 000950000 CRSt 000236500 9849801152 N58 QCB7K230 N53 Q01442350 N61 000052330 N62 Q0O1998X) N6t QOOO5G90O HO 000009952 BCCaP CUt) 030000000 CDCuttr 053003000 MXHWKR 1.08506460 H 001900303 EE 19965380 06 8001520357 lOQOOOOOOCO

* Library : ENDF/B-VI

-9- 5. II.3. Creep A] Pressure Tube 2) 4% 4#

Creep (%) I enter Radius(cm) Outer Radius(cm) 0.0 5.1689 5.6032 2.5 5.2981 5.7226 5.0 5.4273 5.8425 7.5 5.5566 5.9627 10.0 5.6858 6.0833

4^4 21% %% 4#S ^7}%7l 4444^ WIMS-AECL HE. [I]* °l-§-«H &7l 445-41H 444 H^oll 2]% %7> %-g-il- ^7>%$E. 4, 7)1 %# 4444^ 25- ^45. #44# H7l ^434## ^43 0.71%21 %4(natural) #4# ^<£g. 4#4 0.52%2| %#(depleted) #4^

443 4## %^44^-4, hD4 34 %^-ioii ui^i% 4% ^7>» %#44 ^ 4421 4#4 4#4 0 ~ 10%2l H^#(creep ratio)# %-g-%4 %-g-E. 4 W 471-444.

&7i #% 4 44%#n# 444^ 4^ # 44^ ^444 3## 44 44 44 4#s# 444^ 4^-5. &7] H%4 44421 s.%4 %

3. II.4. 4 iL# #44 Creep4 44 WIMS-AECL 44 7)14

K-INF Cooled K-INF Voided Creep Reactivity(mk) Void Reactivity(mk) Creep(%) NAT DEP NAT DEP NAT NAT 0.0 1.11678 0.98129 1.13804 1.00144 - 16.728 2.5 1.11445 0.97914 1.13736 1.00084 -1.872 18.075 5.0 1.11247 0.97732 1.13683 1.00035 -3.469 19.262 7.5 1.11061 0.97560 1.13629 0.99987 -4.975 20.349 10.0 1.10869 0.97384 1.13566 0.99930 -6.534 21.420

-10 |

oh 41 dr ch Itljo Ho Jp. Hi £ ^ jh _o 08, Creep(%) 7.5 2.5 4: 111? XI X 5.0 00 * » dih O'OI tuu ok u °!l HIT _>? lti|o _o o|yi lo qO? -a 1.03563 1.03785 1.04241 K-INF

NAT Ut j> HU A da 1 * f Ht

4i i oS, ■¥ dr 900101 X -a o|H dm oh a «$ -9 - Jh =& 0.90633 0.91295 oh d> dm K-infinity of Natural Uranium Bundle (mk) rti Cooled M U 4k P P § rA d° ^ rhi 41 rh, 1 1 -f. as? ofit dH 1 8 £ 41 44 rE B jh dr Hu d° ho nh 1.06746 4 1.06653 1.06704 1.06787

lo K-INF

NAT K2 J* r£ & a Hilo Hu os? d, ^ |$ojo air oS rjo OO E Hi ah a rh rnh ^ £ XJ jS H> ho i 0.93324 0.93369 0.93407 0.93445 r.2. o? Voided

-f. -a p DEP dT 44 #u 41 -a _a (ih i JS J4 * Hi ^ Jh dm !o ra a dr 4: & *. da ^2, rh (& oSt 42 r$s ^ iii oi 44 |0 Dffl Ui r°. M X o|H A -a 4k -8.759 -6.693 -4.646 -2.478 dm |o NAT Hu 4l nffl Hu =£ dr l Hijo Jh Hu 4k ' r£ ojj dr 41 °£ V ^ 0|>l ojo d> Jfl J4 — ^ ch XI Hi * ^ r& jh s f 3 Jo? l °h 55 Jo o $2 cfi,41 [fl] & rA mh * 44 -a dr p u _o * t< 1 JH. oh, Hu oh. oh Jh 26.358 24.680 22.872 20.841

ojfl > r9 4k A NAT 4: ^ U a ho o)o as? oh 4=i 1 4k mh A I rlrHi Hljo 4= -h r|o UJ _h dr rh K 4: 4i ah 44 I- jjj Ht rlr a f dff nffl 4tt 5 7]S£7> 3444-^3. £-5£5]o] 4447] nfl^-o]] 5.4 444 ^?j-# 4447]4 344 ^ai^a>o] 4^.44.

A) 28- -"— BORON Oppm • BORON 8ppm

"5 23-

Pressure Tube Creep Ratio (%)

ZL%! II.3. Creep 0!] 4# Void Reactivity 4#

2. 2n^ <£4^ ^^7>

3.444"°] 4444 44^ W# 5aM^-3. ^7H>7] 4]#4 n4 II.4 4 44 CANDU6 2:7] 2%4# 344 ^4^] 4# #^4^4- ^ 127H°] 44444 *943. 443- 444 ^-f(Typel)4 107]]a] 4444# ^4 & 4# 4 27]]a] ##44# 443 443 444 44(Type2 a} Type3)a] 37>x]

##3 44444- &M 344 34 #37} 6.3 ppmo]B] 4-g-H a]] o] #( Adjuster Rod)°] 44 4 4 $1^1, ^ 4-§■ (Mechanical Control Absorber) 4 4 4 4 (Shut-off Rod) 4 4#4 o] $1—°] ^ 4 4 ^14 7l (Liquid Zone Controller)a] 4-r] 4 49.60%5. 7^44 ^4 4444 °]7]] 44# 44444-

^47H 70>^a>jia] i^Ai ti>°-£ <^^4- 3|7>47] 4*1414 ZL^ 11.4a]- #4 3M

2r:Aio]] c]]4 ^4a]- n.% 11.5a]- 44 #7]]a] #47]] ## loop# 444 444 4

44 44 4 checker board ^e]]5. ^4^1]7]- #44 44# 44"—5. ^#7]-4^4-

-12- Bundle Index 01 02 03 04 05 06 07 08 09 10 12 Cbuad Typel NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT CkuMi Type! NAT NAT NAT NAT NAT NAT DEP DEP NAT NAT NAT NAT NAT NAT DEP DEP NAT NAT NAT NAT NAT NAT ZZ-3 II.4. Loading Pattern of Fresh Core

a 3 II.5. Half-Core Voided Pattern

3. 11.644# 4,5607)] 4# 444 4#4 ^^#7)1 2.5%, 5.0% ^ 7.5% EL 34 M# 7>^s>4 4 #-#4 ^ ^4-7]]#-#44 a# o.j-^yfl^^(K eff) 3#* 37}#^4- ZL514-, #4 ^#4 3-f# 434 #3 4-4-4 ^-44 3.3M1- 7I-47]] s)4 44# M# #7H44^ #34^-7]- #44 4. 444 4-44 4-0. ^44- 4-§-44 7}#-4 a 3#^# 7)1# #

— yj— 4# & II.7# #4

@145 444 #44 4 #4 #5. : Time-averaged 44—5.-if 4 -8-5.

: Time-averaged ^4544 #4°1 44 @14544 #44 ± lo 4 4# 414 2.5% H4#i: 71-442., la 54 e 4^4414 5.0%, 22)2 4 44 44444 0.0% 4-S-.

5. II.6. Creep 4 447)1 444 4# 54 4S#44#

Creep(%) Keff (Cooled) Keff (Full Voided) Keff (Half Voided) Keff (Checkers Voided) 0.0 1.00000 1.02232 1.01474 1.01115 25 0.99732 1.02190 1.01394 1.00963 5.0 0.99501 1.02155 1.01327 1.00833 7.5 0.99283 1.02121 1.01266 1.00711 * BORON: 6.3 ppm, LZCR: 49.60%Filled

5. II.7. Creep 4# 54

Creep(%) Keff (Cooled) Keff (Half Voided) Keff (Checkers Voided) 0.0 1.00654 1.02244 1.01786 Pattem(l) 1.00295 1.02147 1.01582

(1): Bundle Power7>ig-g-2] ± la *1! 4 C-2.5% creep & 7>^5>jt,

la ti-4 5 region °]}a)~ 5.0%, 7ie|l7L}u]x] 4444^-0.0%4-g-.

* Bundle 2:4 :5-4 natural uranium bundles. 7)44

* BORON: 6.3 ppm, LZCR: 49.60% Filled

z%4 11.6-c- 44-44 444 4442 4# 5444 a4#4 #7}# 4 54 4-8-5 44# 444 2455 244 §^4 4^244 444, 54 4444 2.5% creep4 444 444 5.0% creep4 44 4 4-44 44 -2.691mk, -5.021mk 4 4-8-5 44# 544-

—14 — ■ Reactivity Change by Creep without Void —— Reactivity Change by Constant Creep Pattern without Void

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Creep Ratio for Whole Core (%)

ZZ.%) II.6. Creep Ration] 4# 544-§*5

H.7-B" #7Ml 4# 7]5£4-g-5 44# 444 444 n.8^ a 4# #7M 4# 7ia 44-5# ^ 7ii4-§-5i- 44 a 445. 44\B 444- 4 # 7MM ^44 7j-44 a 5 7H4 444 Tilf-^ 444 7i]#4 444 44 € (Half-Core Voided with Creep Pattern)4 7]5L °l 4444 44 5# 4 til4 4 2.633mk 45 ^7>44 455. 444 4 18%45 #7}# 5_#4-

30

25

2" 20 E. I15 T 3 10 £ —■— Full Core Voided with Constant Creep # Half Core Voided with Constant Creep 5 * ----Checkerboard Voided with Constant Creep ------Half Core Voided with Creep Pattern Checkerboard Voided with Creep Pattern 0 i ' i ' i ' i ' i ' "ii ' i f '.. i...r i 1 i 1 i 1 i 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Creep Ratio for Whole Core (%)

a^ 11.7. Creep Ratio 4 4# Void Reactivity

15- *11 3 #

-17- *11 3 ^ # #

4444 5444°} 5^ #-g-54 44# 45# ^7^584 # ^#44# 5 4 44 y5# 54455 ^7\^7] 444 candu-6 5454# 44 55 4^4454, 4# 44 wims-aecl 47^54- #444-4 y#4#y 4 4 Aii-Lfly-H7> 7fly^y ##5 544^4 #4-554 canndoi- 4 #4 4 54444 5# 4#54 44# ^4# ^7>yy0.4 5 444 44-4 #4.

O 444iy 4 54444 44, 541-4 #7j-yy 54 4#5# 4^455 4 54# 44# 544. M, ^4^1)444 444 ### 54#4 #7}### 715. y-g-57} ^7>44 44-5 y#44 4444 #55 47>44. o 71-4-4 #44 H^^it 7>yy 57l 5444 4 7H4 ^4711 41## 444 44-711 Til#4 444 444 444 454454 544 #444 #4 54 4 44 y 2.633mk 45 #7^1-4 455 444 4 18%45 #7}* 5^4.

o 44444 45 #4 4 4544-5 #7^4 #7}#y 4^44 454-#! 54 #44#(pulse)i- ^7>44711 455 4444 544 44# # 4 44

45 #544# 7I-5# #55# 44-55 444 54444 544 445 5 54444 5y 4554 44# 44# #7>y 4444-.

-/s- —19 — 1. IS. Hong, C.H. Kim, B.J. Min, H.C. Suk, "Three Dimensional Two Group Finite Difference Diffusion Equation Solver for CANDU PHWR Analysis, FDM3D", 21st Annual Canadian Nuclear society Conference, Toronto, CANADA, 2000 June 11 14.

2. "CANDU6 Generating Station Physics Design Manual", Wolsong NPP 234, 86 03310 DM

3. IS. Hong, C.H. Kim, B.J. Min, H.C. Suk and B.G. Kim, "Validation of WIMS AECL With ENDF/B F Against Phase B Reactor Physics Tests at Wolsong Units 2 and 3", Proceedings of the 6th International Conference on CANDU Fuel, Vol 1, pp.40 51, September 26 30, Niagara, CANADA, 1999.

4. J. Griffiths, "WIMS-AECL Users Manual", RC-1176 COG-94-52, AECL, 1994.

5. CNSC GAI position statement 1999.

6. G. Has, F. Rahnema, V. Khotylev, D. Serhiuta and R. J. StammTer, "Impact of pressure tube aging on physics parameters of a CANDU lattice cell", ANFM2003.

-20-

2004 & 31 *}*#&*!

CANDU 6 ^^4 4# 5S7>

Assessment of Pressure Tube Creep Effect on Core Physics Characteristics for CANDU Reactors

34#', 33:3% #44^

' 4^44^4471#^, 1944 2 ^-8--^-'6 a] %cq-f 41%I9^ 4 56-144 3 44444 ^-^9 - 150

A 4

#4 7}##°l #^°1 #7}^4} 44 44444 4# 444 4441 44 t44 4714^1 434, 44 7}#

1. 4 #

7]-## ##3(CANDU4)4 #4°1 #7>t°il 44 #3#, 4#, 7]7] ## 44 44-3 44 #44 4aH 4# #47} 4443 $14. 44 CANDU4 #4 ## 4°1 71)4444# 44^44 4# 444 #37} #3# #433 47)43 4 4. °H 71)44 #47]44 CNSC(Canadian Nuclear Safety Commission) 44#

— 22 — 444344(GAI.' Generic Action Items)4 7} 3 43444 CANDU * 3 433 ^7}2S2l 71144 #3 7}** *34 ^^443 34 ^7}# *#* oil 44 [1], #437-15 *344 4&4 CANDU3 444 44 1:M4 7} *4*7} 204* 2:44s 4*4, 44 4444 *3# *7}3 44 444* 4 4 *34 414 AS. 44. CANDU3 44* 44 444 *4 *3 44s.* S4(On-power Refueling) 4 * 4*# 44s. 444 *44*5. *71144 44. *44 44s 444 444 4 *444*5 444-711 44 *54444 #7}43 44 4*4 45## * 7} 5 44 715. 4**71- #7MM] 44 *4 4444 *444 44* *34 ** 44. * 4444 a44 44*711 44 44**4 4444 #g*5 44 44 s 44* 44* 4*711 *4 444 4 #7}e}3 4*5 *4 4**4 444* 5 44* 4441 4*, * 4-711*4 a}ji #4 4* 4**4 4*4 ** *4 #4 * 71-# *4*4. 4-44 * 4*44* *444 *34*4 ** 4** 444 4 4 * 4 4* * *4 *5 4 7}4*7} *4.

2. «*44 4*41 44 *344 ^7>

*444 *34*4 *4 4**4 444 4** WM 444 44 4 7} 4 4 471*44 44*5 4*314-57} 711*4 *4 **4 CANNODCCAndu Neutronics NODal code)# 4*4-4 *4 4*4-54 *3 4*°1 ** 4**4 44* 4** 37}*44. *41 37} *3# 4 44* 4*4 44.

2.1 44 «]:** ***7}

4444 CANDU63 37}* 53 14 44 4*44 4*4 434(Pressure Tube) 4*5 ** 4*7117} 55*4 *71144 $14. 3**4 37# 34s 37} * 5*4 44 434 34s 37}4 5* *## 5 14 S 24 44. *3 34 s **43 444 4344 *34 4343 43 37} 3 4344 33* 43 43 *344 334 43* *33 M43 44. 434 *33 4* 434 434 44* 4 34 44 *3444. 434 *33 44 37} 4** 34* W43 4443* WIMS-AECL * *[ll# 4*44 *3 345443 344 *33 44 37} 4*** 37}44 *4, ** 34* 44471* 2* 34s 443* #*444. M 34544* *4* 0.71%4 34(natural) #4# 345 444 0.52%4 4* (depleted) #4 # 34s 44* 4344*4, *34 37} 4**3 44* 4* 37}# 444 7-)* 3-3-4 34S 4*3 444 0 - 10%4 *3* (creep ratio)* 3*44 4 ** 4#* 37}e}44. *7i 53 *4 7i 444*** 344* *3 * 44* *343 *** 34

-23- sm #5) ##4# $*.3. &7] a#°i # Efls. -^^5)7]J£ ^4. *1# 5L$^7] ^SH a 44 & 547.1 # 44 44 44 S#4 ^4 44 4 8ppm 4^4 ti.44 444 4fa 4444 a^&(creep ratio) 4 4# 44^444(K=) 44 4 yJ#A 44# 4444^4, 444 A3 44 444 4#4^4 ^44 4s 4-§-^4 44 ^#A 4/1-444. 4444 #4#444# ^ 24 44 44/fl 4#4 ^# 4444# 4 #444 44 3 as 4^44 4444# #4444 44444# #4 44 4as 4444. ag# #7>4 4# 4444# 44& 444 4A44A 3## ^4 34 44 h4#4 #71-4## 7ls4-B-A7> 7-14 444AS #7>44 #/> 4## S# # A7f #-a-#4 34) 4444. S# #s 8ppm4 44444 7)s4-§-A# 344 4444 44, 20.841mkS 44^A4 34#4 10%4 3# 27.976mkS 4 44 3 447)- 4 7mks 4-t- 37)1 444 3^)4 44/1]444 #44 444 4-t- 4444 #444 44# 4% # 4# 4AS 4444. 3S14 4 s44 4# 3^ 4 7)ss7> 3444 as #A44 444/1 4#4 A4 444 4/)-i- 4444# 344 S4444 4A44.

S 1. 37-S- SJj-gs. ^4 44

Material Radial Boundary(cm) COOLANT 5.1689 PT 5.6032 GAP 6.4478 CT 6.5875 Fuel Element DzO Coolant FUEL 0.6122 Pressure Tube "Calandria Tube CLAD 0.654 U3O Moderator * Lattice Half-Pitch 14.2875 (cm) =L$ 1. 37^ qys. ^4#:

E 2. 37-S- 5S-9E 2l^

MilcrisJ BEfo/cm^j SUM 10.38635280 0.71097100 99 28362000 13.44251000 0.00540800 11344250900 50.51430000 11.01590000 16.83810000 17.06390000 2.74908000 0.01239000 FE56 0.19261200 0.00441000 6.39180000 0.00476539 0.08379000 CR53 0 00950000 0.00236500 98.49817201 0.00476539 0.00183561 N16I 0.00007980 0.00025438 0.00006482 0.00005962 COOLANT 0.80799600 0.0811 llll 19.85400000 80.06488889 100.00000000 50.06730000 10.91850000 16.68910000 16.91290000 2.72475000 2.58000000 0.00276002 0.04290660 6.50410000 0.00098238 0.00035142 0.00677694 0.00076836 99.95081132 0.00019128 0.00238270 0.00091781 0 00003990 0.00013719 0.00003241 0 00002431 0.00140000 100.00000000 100 00000000 50.52820000 11.01900000 16.84270000 17.06860000 2.74983000 0.00796500 0.12382200 0.00283500 6.40030000 0.00434500 0.08379000 0 00950000 0.00236500 98 4980 II52 0.03744230 0.01442260 0.00062700 0.00199870 0.00050930 0.00005962 ENDCAP 0.33000000 COOLANT 0.53000000 MODERATOR 1.08506460 0.01900333 19.96579400 8001520267 100.00000000 * Library : ENDF/B-VI

— 24 — CO Hj nSL K Creep(%)

u Creep(%) rA oh K-infinity of Natural Uranium Bundle (mk) rid 7.5 5.0 2.5 8 S S S S - 7.5 5.0 2.5 0 0 00 001 i ts 001 ^ & N 1 1.11678 1.11247 1.11445 1.03785 1.04241 1.04511 1.03563 1.04006

K-INF K-INF NAT NAT CJ1 11061

K oh IT IA N

r|oi 6980 * 0$ 0.97560 0.98129 0.97384 0.97732 0.97914 0.90430 0.90633 090834 0.91048 0.91295 4a Cooled Cooled N DEP oh cSL DEP I oh v 4a W r)ra A ($■ °ftl ah rjo 2 aS. 1.13629 I 1.06704 1.13566 1.13683 1.13736 1.13804 1.06653 1.06746 1.06787 l K-INF K-INF -S. 2 NAT NAT id it, 4> r> m5

d rir rtt 8E890 d f 0.93369 0.93324 0.93407 0.93445 0.93490 0.99930 0.99987 1.00035 1.00084 Voided aS, Voided DEP DEP I =e I i bi U t -a affl. Void Reactivity of Natural Uranium Bundle r|m Creep -a Creep rim 2 M>

Reactivity(mk)

Reactivity(mk) sr -8.759 -2.478 -4.646 f -6.534 -4.975 -3.469 -1.872 Cfi jh NAT i NAT J2. 1° ' • t

2 £699" ra Ku oil rs. oS, JiL j?t xi < t

Void JH -St i." Void 2

» rh

Reactivity(mk) Reactivity(mk) 24.680 27.976 26.358 20.841 20.349 21.420 18.075 16.728 19.262 NAT 8 NAT d£ d

-St ZLVZZ .2, r& u Jot aSi jx -fc 44 CANDU6 fc4# 344 34 314# 48484. 843.318# 127114 4444# 843. 44s 444 4#(Typel)4 1044 4444# 445, 4# ^ 27H4 4##4# 84& 44S #44 3#(Type2 4 Type3)4 3?14 ##S 44444. 44 S4# 44 #S7l 6.3 ppm 44 44S 84 #(Adjuster Rod) 4 3488 4444 4s, 444(Mechanical Control Absorber) 4 444 (Shut-off Rod) 4 4#44 8#4 8 3] 4 4 3] 4 7l (Liquid Zone Controller) 4 44 # 49.60% 3 71444 44 4444 4 4 44# 44444. 444 aov^a>2.a] h%4 4#s 44# 471471 444# 34 44 4# 44 348 44 4#4 34 54 44 #44 "344 #4 loop# 44-71 444 44 4 4# 4 checker board 483 847fl7l #44 4## 8433. #71484.

OFF OEF 1 NAT

4. Loading Pattern of Fresh Core =L$ 5. Half-Core Voided Pattern

a 64M# 4,560;]] 843 4# 4414 444 #443] 2.5%, 5.0% ^ 7.5% 3 #4 M4 4## 7l#44 8448 91 ^47114444 34 #⁺^(Keff) 44# #71484. 344, 431 344 ### 843 444 #4 #38 444 #44 3^4S# 71431 44 44 4 #3# 471144# ##4&7l 8 # #44 4. 444 444 4# 34# 4444 71#-4 h^i# 444-834 314 4 4# 5. 74 44. • 843 444 #444 #4 #3 : Time-averaged 314AS-44 #3. • 3#4£ : Time-averaged 8438-# #44 #4 8434# #44 + lo 4 44 4# 2.5% 3 4## 71#<51J7| lo S4 # 84471 # 5.0%, 3 5] jl 444 44471# 0.0% 4#.

34 6# #444 444 444s 8# 34871 3^#4 #7l# 4 34 4 #s 44# 44# 3^35. 344 8# 7l#t^4 8 444, 34 43M41 2.5% creep°l #44 4#4 5.0% creep0] ^4% ### 44 -2.691 mk, -5.021mk4 4#3 4## S84. 34 7# 34# #7H 4# 4&4#s 44# 444 444 3# 8# 34#

—26— #7M] 4# 7]5 3.^0) 34^144 7]sav-g-£l- 7)^3.

5. ?M 71 *M3. vj-E^'ji 3M4. o] ^ 7H4 ^-#4 7}^#3 ^f ;M ^44 7%## 444 4-f °1 #44 44# 4f(Half-Core Voided with Creep Pattern)4 7}S. 3-44 #AS44 £>£■ 3#4 n]g% 4 2.633mk 4 3 ^7>44 4A& 4-4-4 4 18%4 £ ^7}# S.44-.

E 6. Creep ^ ^4^ 4^4 4# ^4

Creep(%) Keff (Cooled) Keff (Full Voided) Keff (Half Voided) Keff (CheckerB Voided) 0.0 1.00000 1.02232 1.01474 1.01115 2.5 0.99732 1.02190 1.01394 1.00963 5.0 0.99501 1.02155 1.01327 1.00833 7.5 0.99283 1.02121 1.01266 1.00711 » BORON: 6.3 ppm, LZCR : 49.60% Filled

E 7. Creep HI 4# ^4 ESL^IMIt

Creep(%) Keff (Cooled) Keff (Half Voided) Keff (CheckerB Voided) 0.0 1.00654 1.02244 1.01786 Pattem(l) 1.00295 1.02147 1.01582 (1): Bundle Power7> Jg 54 ± la ^ 4

la S.4 e region 4] 4 fe 5.0%, :n.4 31 <44 4 ‘g «H 4 fe 0.0%4 -§-.

* Bundle 24 ; SL^- natural uranium bundled 7)4#

* BORON : 6 3 ppm, LZCR: 49.60% Filled

2- 20- E t

-#— Full Core Voided with Constant Creep • Half Core Voided with Constant Creep

Reactivity Change by Creep without Void A Checkerboard Voided with Constant Creep Reactivity Change by Conatmnt Creep Pattern without Void ...— Half Core Voided with Creep Pattern 1 — Checkerboard Voided with Creep Pattern I ' I ' I ' I ' 'I ' I ' I ' I ' I ' I ' I ' I 'Ti I ' 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 .0 0.5 1 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Creep Ratio for Whole Core (%) Creep Ratio for Whole Core (%)

6. Creep Ratio4] <4€- it 4 til-§-51 32 4 7. Creep Ratio4] 4# Void Reactivity

27~ 7

c 5

ro 1 -■ i! o- —Full Core Voided with Constant Creep cc —• — Half Core Voided with Constant Creep *o -1 - * Checkerboard Voided with Constant Creep I I ------Half Core Voided with Creep Pattern £ -2------Checkerboard Voided with Creep Pattern a. -3—>—|—,—i—.—|—i—i—i—i—.—i—i—i—i—i—i—|—i— 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 Creep Ratio for Whole Core (%)

nil 8. Creep Ratio0!] 4# Void Reactivity 4°]

3. # #

44#4 a^!!4 !*a4 44* 4!* *7}444 a 4^4 a^ ^ ! 4444 4! 4!* iL**aa s%7}is}7) 444 CANDU-6 &7]a4! 4 *^44a4, 4# 44 WIMS-AECL *4aa4 !*-444444#!4 A^i-rflt)-H7}- 7}]!*4 a* 444 ^a>2Hoj CANNDO# 4*44 a44!4 ^A] D]A]^ <8 ## ^7}4$a4 a !4* 4*4 #4.

o 4 a* 444 44, a^#4 *7}44 a* !*a* 44*a& ! *4* 44-* a44. M, 44-7D4* 0! 44* 4** a^#4 *7}!44 7]5. **£7} #7}44 445. !!*4 *4*4 4AS. 47}!4.

o 7}44 *!* a 4 *5* 7}4! &7] a* 4* * 44 4*-7j| Tflf-4 44! 444 4*4 44! !!4 4*4 4&!*a* a^4 !444 4* a* 4 44 4 2.633mk *a *7}4* 4 as. 444 4 I8%*a *7}# a4 4.

o 4444* 4a !4 4 7|3E!*a #7}* * 7}&4 4444 4a44 a* * 44*(pulse)* * 7}a]7l4 4as. 4444 * 4* 4!* # * 44. !* 4*444 7}*# f*st 4!aa 444 a 4*44 44 a** 4!a a a^!!4 a* 4*a4 444 44* 47}! 4*44.

#a*4

1. I.S. Hong, C.H. Kim, B.J. Min, H.C. Suk, “Three Dimensional Two Group

-28- Finite Difference Diffusion Equation Solver for CANDU PHWR Analysis, FDM3D”, 21st Annual Canadian Nuclear society Conference, Toronto, CANADA, 2000 June 11 14.

2. "CANDU6 Generating Station Physics Design Manual", Wolsong NPP 234, 86 03310 DM

3.I.S. Hong, C.H. Kim, B.J. Min, H.C. Suk and B.G. Kim, “Validation of WIMS ENDF/B F Against Phase B Reactor Physics Tests at Wolsong Units 2 and 3”, Proceedings of the 6th International Conference on CANDU Fuel, Vol 1, pp.40 51, September 26 30, Niagara, CANADA, 1999.

4. J. Griffiths, “WIMS-AECL Users Manual”, RC-1176 COG-94-52, AECL, 1994.

5. CNSC GAI position statement 1999.

6. G. Has, F. Rahnema, V. Khotylev, D. Serhiuta and R. J. Stamm'ler, "Impact of pressure tube aging on physics parameters of a CANDU lattice cell", ANFM2003.

-29- 2004

CANDU-6 €34 <&^:&

Pressure Tube Creep Impact on the Physics Parameters of Lattice Cell for CANDU-6 Reactors

44444 *44 44* 150

44*. *4* 444444:47114 44444 *44 44* 19

*. %

**32] 7>^ *^o] ^7>^o)] q-e} ofq^(Pressure Tube)2] *4144 2]sfl al (Creep) 44"4 *7]-s]4 *44 444 tflt} -f^7> 4443 &3% *4 44 157] 2) 4* 7>^ 204* &4-*3 *4 * 44 13:7]a) 4*, 441*4 n]H * 44 3444-% 4 4 (Sagging) 14-*] 44*4 34 4441 4% *47]- ^]7]s]a 4*. 44 * 4*14* **3 4442] 44444 4# 3^t *7]-7]- 341 44 * 44* *4444. 4# 44 CANDU-6 4*44432] 443144 44 4 4444 7]* 445.14 444 3.41- *7H] 4# 445.I& 7]] 144 444 344 342] 4444 44* 444 444 47}%OT. 4* 44 WIMSD-5B, MCNP, WIMS-AECL ^43£f 4*44 444 3^4 4#2] 2.5%2f 5%1 44, 144] 7]5. 1-6-3, 145.2] 441415(relative fission density), 35]5 Pu * 4452] *45(atom density) *2] yfe] 4%}44* 454434 4# HELIOS 334 44*44 43444.

Abstract The lattice cell calculation is performed to assess the sensitivity of the reactor physics parameters to pressure tube creep resulting from radiation aging. The used lattice codes are WIMSD-5B code, MCNP code and WIMS-AECL code and the analyzed lattice parameters are the coolant void reactivity, the fuel fission density and the atom density of Pu isotopes. The reference model (normal

— 30— state) and two perturbed models accounting for the pressure tube creep are developed on the basis of CANDU6 lattice cell. The 2.5% and 5% values of pressure tube diameter with respective to normal state are considered. Also, The effect on the analyzed lattice parameters by depletion is investigated for the reference model and two perturbed models.

1. 4 # ##3(CANDU#)4 #7}-|M 44 7]714 4##4-7} 7}#s}4#, 4 & 444 444 4 44ii 444 44. 44 CANDU4 44s.4 44 4444 3## #3# ##4#33 3443 #34, 3444 711444 447144 CNSCCCanadian Nuclear Safety Commission) 4 Ai 4 4 4#44#(GAI: Generic Action Items)-AS. #444 #44 44 34# #7>7> 4444 44 # 444 44 47}# 4414A-S 44 [1]. 44 #4443 14 l:M 4 7}# ##7} 204# 344*11 44 #444 3## 44435. #7}#4 44 °1# 44 34# 4433 #4. °H 4 44444 #43 #44 34# #7}4 4# 344 #444 444 4 4 #7}# 444 3#4 4##*ll 44 ##3* #4 • #7}##4. 4# 44 CANDU-6 443*H 44 4#& 444 44 44444 #4# 34 # #7}(2.5%, 5%) 4 44-3## #4- 7H444 WIMSD-5B, MCNP, WIMS-AECL 33# 4#44 4444# #44#4. 34 14-4 43 4#3, 4#5.4 44#4#3(relative fission density), Pu -§-#434 =4 #3(atom density) #4 3#4 44#4 444 #444 HELIOS4 444- 434434, #33 #7}# 4-E- 3#4 444 444 4443 #4###.

2. #^4 3^41 4# 3#4 #4 ^7} 2.1 5§7>S.1 7H# ##5. #4#4 4# #sH 4# 3#(creep)4 3#4 44# 44# #444 444 ###4# 4#5. 4# 37;H#4 #44 CANDU6 3#4 444 47}4 #4 #14#4. 4#5_# 45.45.4 4#7H5. #44# ###4#43, #44 4#4 14-7114. 443#o}## #44# 4#7H# ^#44. 3#3 #444 4 435144 a>44 #4(gap)# 4#4#3(C02)44. #44 3#4 3#4 44 444 444 #4 #7}# 44 47} 4444 WIMSD-5B 33, MCNP 33# WIMS-AECL 337} 7}#4#4. 3## 44471 44 31# 44-4-44 7ie 314 2.5%4 5%4 #44 3# 4 41 #44 7i#4 #4# #44 3##4. # 7}# #44 3## 4 #44 4 314 #34# 444 3#4 #1 44 ##44 4# ### #7}# 4# 4, #444 #44 44-4-44 ##4 #4# 3444#4 3#4 #1 44 4 4##4. 34, #444 4# #44 4 4 7}#- 1 #5.(bottom fuel pin)4

-31- 44# 44414 £#4 #4. 444 £## 44414 la41 44 £ 44 1111 44 aa MCNP# 444 444 a.## £4# # 444, WIMSD-5B4 WIMS-AECL# 44 4 £14 £-44444. 4# £-444 44 W4-#£54 WIMS aa# £#* 114. 44444 £-14- 5% £-44 44 4 aa^M 444 £44 24 14 44. 44444 44 £14 444 all 44 444 4M £!1 444 44 444 #1414. WIMSD-5B# 69 a# 4 ENDF/B-VI 44 £4 44 44412, WIMS-AECL# 89 a 1-4 ENDF/B-VI 44 £4 4 4 44414.

2.2 £#4 44 4444 a if 14# ##£ 1444 41 144 £44 £#4 44441 441 1 41 41 44414. 4# 41 CANDU-6 145.4 115-111 11 244 4 4£!4 144 all 44 #44 14(444 #4)# al# 44£ll 11 ###114, 14"! 7]3#-g-£, 41 #4 l£(relative power density)! Pu # 44£4 4l£(atom density)## 1441 4a 43414.

#4#!If WIMSD-5B, WIMS-AECL4 MCNP# 1-8-41 14-41144 all 4# #4 #114(kinf)4 14# al 2, al 3! a 4 41 £4414. all# £#44 4! WIMSD-5B, WIMS-AECL4 MCNP4 14# 4441144 4#£## 7] #£5 41 all #1 441 44 ###ll#7l 444# 4# # 4 14. 44414 la# 1 2.5% al4 4# 4 Imk 41, ala 5% a44 4 # 4 2mk 41 ###11#7> 4414. 444 all #7>#l 44 ###1 144 41 444 ££4 1441 11# #441 14# 4## 1 # 14.

^41 7lj£l#£ 141 43##£# 14414 100% 7]£41(0.001 g/cm 3)* 7M41 1441 4. al 5~al 814 £#44 41 141 7l3##£# a!4 11 #7>#1 44 #7f#4. l# all #7>#1 44 44414 7]££#4 4a# 1, 14 14 11 4441 !#14. 1 £ 1# 14# 100% 43. 41 £4 14 411 1 #4 #114# 1 #1 441 £34 all #7>#1 44 141 43## £# #7>#-|- # 4 14. £# 1£7> 4141 44 141 43##£4 14 #44 414# 1 # 14. WIMSD-5B# 44414 tila# 1, 2.5% a!4 4# 0.7mkll 1.4mk44, 5% a!4 4# 1.2mkl4 2.7mk44 144. £4 WIMS-AECL4 4# 2.5% all 1, 0.9mkl4 1.6mk44, 5% all 1 i.2mk 14 3.Imk 44 444. MCNP4 14 #4 1# £41 2.5% all 1 4 0.5mk #1, 5% all 1 4 1.5mk #1 4444. aa4 14 #4, 141 7] 31#£ 14# 5% al4 4# 2.5% a!4 4 211# 1 4 14. #4 WIMS 2£4 14 44# 1£7> 4111 44 7l34#£4 44-7! 44 4-4

-32- #4 #, HELIOS s} 4# 14# # 3000MWD/T44 #2447} 44 #7}a}# 3 #1 2#4.

41 ^ 12 (Relative power density) WIMSD-5B4 WIMS-AECLir 4-g-#4 #27} 4^4! 44 4 4# #!#4 12# t11#4#jl, HELIOS si 7114444 #2414.(24 9, 31^ 10, 2l 11) WIMS 224 414 44 44444 #2# 4, 444 244 4444 4f ^ 1# 4442 4W4424 444 44 444 2#4. WIMS 224 HELIOS 4 7114 444 #!#4!2s] 44-7} 4 24 4 34 44 41, 4 44 44 4 4- 444. 444 4 11 44 WIMSD-5B4 444 44 44, WIMS-AECL4 HELIOS4 444 44 44 2#4. 2# HELIOS4 4444424 4444 WIMS 224 4 1/244, 427} 4111 44 #!#4l2 444 4«4 4 4 444& 4 4 44. 244 44 4# 44#4424 ### 5% 21# 4 2.5% 2^4 4 4 4144. 4 1444 44#4424 444 44 224 444 444x3 44 427} 2444.

Pu #4 4 24 4 4-2(atom density) Pu239 , Pu240, Pu2414 Pu2424 4224 4# #!2S] ### 2.5% 244 5% 2l 4 444# 1 44-444 #24#4.(2l 12-2# 14) HELIOS4 7114 444 Pu 44424 4424 43}7} 427} 4141 44 41423. 42## 4 4 44. 444, Pu239 * *11442 WIMS 224 7114 444 HELIOS4 4# 14* 244. 11 4444 44-4 ^£t 127} #4.

3. # # # 4447-14 444 244 44 2#4 441-4 44= 47}* 44 44 444 #11 #4. 44-22 WIMSD-5B 22, MCNP 224 WIMS-AECL 22# °1# 44 444 712 ##2, 44S-4 -o v4#412(relative fission density), 22I2 Pu #4424 #12(atom density)#4 2#s] 44441- !4##2 HELIOS 4 444 #2##4. CANDU6 44# 212 a}4 ^4414 4-g- 214 2.5%4 5% 444 24# 444# # 7}4 414 214 44 444 #141 4.

(1) #@14 214 44447-1 ###471147} 4441 1 # 44. 2.5% 2^4 5% 24# 42# 4 214 44 7}44 ###4711 #7} 44 4444, 44444 42# 4 2.5% 214 1# 4 lmk 441, 5% 214 4# 4 2mk 441 4444. 44z1 2l# #7}#! 44 ###1t11#1 4°1 414 22 4244 4441 44# #444 4#=# 4#* 4 # 44. (2) 44414 #2# 1 #44 2#4 4444 141 7li##2# 44 44 4. 447114 #4 2.5% 24# 1 4 lmk!71 gmk 44, 5% 241 1 #

— 33 — 2mk44 5mk 44 ^4^ 4 Sti>-g-37l- #7}43S 344 4f, 4 4^ 44434 4444 4^44 44# D1H r %14. (3) WIMSD-5B, WIMS-AECL4 HELIOS4 7114 44 ^ 44 44#4434 4 ## #4 44- 431, % 24 3 34 4=4 4& 444. 4 H 44 444 WIMSD-5B4 44 433, WIMS-AECL4 HELIOS4 444 4=4 4AS 4444. ° 4*1144 44 4£4 437} 44. 44444 «4t 4 5% 3.44 4444 3-f 44#44A4 444 2.5% 3^4 444 4 2444. HELIOS4 44 Pu #4434 44 344 4^444 44 4444, 34 4444 4A4 4^4 4 44 4A44. WIMS 334 4444 239 Put- 44 43 HELIOS4 44- 44# A44. 44 44 Pu #4 434 444 °fl 444 44# 44 4 4333 44 444# 4#4 4s# 437> 44.

444 # 4- 44# 4471^71- ^44# 47M #444444 4=44 4#3 s 4494^4.

#344 [1] B.J.Min, G.S. Shim, B.G. Kim and O.S. Kwon, "Evaluation of WINFRITH and ENDF/B-V Libraries for WIMS-AECL to analyze CANDU Core", Proceedings of the Korea Nuclear Society Spring, 1997. [2] J.V. Donnelly, "WIMS-CRNL A User's Manual for the Chalk River Version of WIMS", AECL Report AECL-8955, 1986. [3] M.J. Halsall and C.J. Taubman, "WIMSD: A Neutronics Code for Standard Lattice Physics Ananalysis", AEA Technology, 1986. [4] G. Has, F. Rahnema, V. Khotylev, D. Serhiuta and R. J. Stamm'ler, "Impact of pressure tube aging on physics parameters of a CANDU lattice cell", ANFM 2003.

— 34 — — 35 — Void reactivity(mk) H k-infinity k-infinity @ 20 21 22 23 17 18 19 12 13 14 15 16

4 0.0% 2

2000 WIMSD-5B* 2000

Burnup(MWD/T) Burnup(MWDZT) 6 4000 Creep

4000 WIMSD-5B*

2.6%

amount 6000 — -O-

6000 — A •

— ■ •

- —

4-8-# 2.5% 5% Reference WIMS-AECL WIMSD-5B MCNP

2.5% 5% Reference 8000

creep

Creep creep

Creep 5.0%

4-8-4 10000 10000

36 4I44 — o I f "O Q £ 0.96 0.98 1.00 1.02 104 1 o > o £ 1

18 5 -0.5 2.0 3.0 3.5 0.0 0.5 1.5 2.5 1.0

45.4-§-^4- ^44^1444 ------O- — A • 3

0.0% —

WIMSD-5B WIMS WIMS-AECL MCNP

<$<11 2000

Burnup(MWD/T)

Creep Burnup(MWD/T) ^4 4# AECL&

4000

2.5%

amount 44

— — 6000

A ■

(5% (2.5%

4-8-^

5% 2.5% Reference

creep-Ref)

8000

creep-Ref) Creep

Cree| 5.0% 10000 10000

Difference(%) ^66poo-&-kh)M Difference of void reactivity(mk) Void reactivity(mk) kjc*iub*beN>b>biu o£

nfl o 8 u

Hi U1 a-^oil osi Jo Bumup(

w 2 § - 1 ri

jot uSl 4# A (HELIOS) CO A. 0 • ■ o e 2 J2 co K> U1 ; o oSt a% o iu& fli|o on* S a a 3 (0(0(0 o 0jD

XI Difference^) o£ ^bb ppp-*-*|N>K> KiboAolubiobblu Difference of void reactivity(mk) A OOO-t-kMhJW W #W (n buibwowbin aSi J± M w «a l—* r5 Hi U1 o|o J2. £ Hi ri w jot Bffl, W ? Jo V ^ * 0 > °& W (ifi, O

3^ 12 5% 3^ 13 5% p u ^^£5] «i SKWIMSD 5B) 43'] 12^1 y^(WIMS-AECL)

10000 Burnup(MWIVT)

3^ 14 5% H^ollA^ pu ^^4:^ ^ei5L5] ^(HELIOS)

— 38~ 4 ^ ^

48 37l4aax^42L 4444aaAi4a:

KINS/RR-225

14/41 4144 1*^74114 44 4 - 4 4a# 4 ^1%7\3-^A] 71)4 - (434 ag# #7M 4# al*^ 3%M4) 444444 444 4 4 -g- (*44*44*) 444444 4444 444 444 4 44 4 8 3 4 44 48 344 %4444444#4 MM 4 2004. 2.

4 °1 4 34 p. £ 3. ( O ), 4 ( ) a 7] 21x29.7 cm. 4a44

4444 *7H( o ), 4*;H( ) iLaA) ^4 44aa4 444444 4 4 4 3i AS. (20044 44)

4 44444 #4a 4444 4/1)44 4444 444 44l44344(lAEA)a) 441**444 7fl4 44# a4^-aa4 #4^ 44&4 44 444444(GSI) a** 4" =344 444 4444 444 database* 4*44 44 44 44# 4" 8 3444. &4 4!44, 44, 4a 14 4, 4a4 44444 444- IAEA 4444 44 4-4444 asM4* 4444a 44-4a IAEA x)M44# la444- a #4 4 44-4 MM44 4 4)*, a4 444 4a* 48 344 *41! 44a4 4 444 44 4444 44444-. 44 444 44 4-§- 444 44* 444 4 44 44441 44 4a matrix* 444a $4 iaea **^ 44a 4444 44 7fl4 *# aA>* *1 44 is.* #4* 4S44 matrix4 44444- 444 4)44 44*4 4114 444 44#* £r #4 4a4 14, *4 444 #44 443.011 44 44* 444444## a#4444, a#4 444 444*4 44444 *4444 44444a 4444 a* 44ao) ^g. 44 444 4*4 1114 4 4 4 4-

44444a(i044 14) *44 44a(PHWR), 444444(GSi), 444^^7)^(IAEA) BIBLIOGRAPHIC INFORMATION SHEET Performing Org. Sponsoring Org. Report No. Report No.

KINS/RR-225

Title/Subtitle Establishment of Safety Audit Evaluation System and Development of Safety Issue Relevant Regulatory Technology for CANDU Reactors - Development of Core Physics Evaluation Code for CANDU Reactors - Sponsoring Org. Project and Manwoong KIM Project Manager Researcher and Dep't. Seong-Cheon KAM, etc.

Pub. Place Daejeon Pub. Org. KINS Pub. Date 2004 2

Page 34 p. II. and Tab. Yes ( O ), No ( Size 21 x 29.7 cm.

Note

Classified Unclassified( O ), Classified( ) Report Type Research Report

Sponsoring Org. Contract No.

Abstract (About 200 Words)

In this study, a base work to construct the database of the domestic and foreign GSIs were done through performing the deviation of GSIs for the PHWR by investigating the development trend of international joint studies and the GSIs of 4 countries as the PHWR state and examined the IAEA acceptance of GSIs classification for the GSIs of Canada, Korea Republic of, Argentina and India We evaluated the possibility of application of the safety issue for PHWR by investigating causes, contents and follow-up measures of each items. To evaluate the domestic application validity of the safety issue, We made the investigation matrix for the safety issue of each countries and also are reflecting new results in investigation matrix by examining IAEA PHWR GSI development trend. We intended to derive the GSIs which are most appropriate in our PHWR by examining every issues, the derived GSIs are divided into the design parts and the operation parts. And they have to be solved as soon as possible.

Subject Keywords (About 10 Words) Pressurized Heavy Water Reactor (PHWR), Generic Safety Issue (GSI), International Atomic Energy Agency (IAEA)